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Abstract –  

Despite the rapid development of reality capture 

technologies and progress in data processing 

techniques, current visual strategies for defect 

surveying are time consuming manual procedures.  

These methods often deliver subjective and 

inaccurate outcomes, leading to inconsistent 

conclusions for defect classification and ultimately 

repair needs. In this paper, a strategy for monitoring 

the evolution of ashlar masonry walls of historic 

buildings through reality capture, data processing 

(including machine learning), and  (H)BIM models is 

presented. The proposed method has been tested, at 

different levels of granularity, in the main façade of 

the Chapel Royal in Stirling Castle (Scotland), 

demonstrating its potential. 
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1 Introduction 

Whilst traditional approaches to defect identification 

and analysis are widely utilised, their results have been 

empirically shown to frequently yield subjective results 

and mis-classification [1][2]. Attempts to enhance 

accuracy have been sought in the use of unifying 

standards and the creation of a ‘common language’ for 

the classification of  masonry  defects [3]. The difficulties 

faced by surveyors in meaningfully attempting to 

accurately and rapidly identify defects make the process 

extremely time-consuming and therefore problematic 

when ‘upscaling’ the survey operations from individual 

masonry units, within localised regions, to complete 

façades and ultimately entire buildings. On a more 

fundamental level, the inability of traditional survey to 

facilitate the labelling of individual masonry units is of 

significant concern. Yet, all analysis and intervention 

flow from accurate initial identification of individual 

materials and components [4]. Indeed, best practice 

guidance in the conservation sector [5] proposes that 

those undertaking visual survey and evaluation of 

historic masonry fabric adopt detailed pictures of the 

defective areas that can be supplemented by additional 

information such as measured dimensional survey and a 

rudimentary process of manually ‘marking up’ the 

images with alternative colours denoting different defects. 

When seen from the perspective of time, cost, accuracy 

and reproducibility/transferability, these proceses are 

increasingly untenable.  

More recently, novel reality capture technologies, 

such as Terrestrial Laser Scanning (TLS) or 

photogrammetry, deliver coloured dense point clouds 

which can be used to support surveying activities, such 

as the identification and semantic labelling of the 

structural and non structural components. Regarding the 

digitisation of historic buildings, examples of the use of 

laser scanners include the work of Wilson et al. [6] which 

illustrates the potential of this technology with several 

UNESCO heritage sites.  

Beyond the sole recording of buildings and other 

constructions, the unstructured point clouds produced by 

these devices can also be used for the generation, and 

subsequent management, of semantically rich digital 

representation of buildings [7].  

In addition to reality capture technology, Building 

Information Modelling (BIM) is an effective digital 

approach to the whole lifecycle management of buildings. 

Besides new construction, for which BIM is used from 

the conception stage, BIM can be also applied to historic 

buildings, where it can play a particularly important role 

in operational maintenance and repair activities. BIM 

applied to the specific context of historic buildings has 

become increasingly accepted as HBIM [8][9].  

Pronounced differences are noted between BIM and 

HBIM insomuch that in new projects designs are digitally 

conceived by means of BIM and CAD design tools, while 

BIM models of historic buildings need to be produced to 

reflect their existing (i.e. ‘as-is’) state, increasingly using 

dense point clouds as a reference. Hichri et al. [7] provide 

a general review of the stages to be undertaken from point 

cloud to BIM, in a process now commonly termed Scan-

to-BIM. Similarly, Macher et al. [8]  present an approach 
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to create 3D models of historical buildings by means of 

point clouds. The authors divide the building in sub-

spaces, model surfaces and fit primitive shapes to 

architectural elements.  

The semantically-rich 3D models produced through 

Scan-to-BIM processes can subsequently be used as a 

reference to monitor the effects of deterioration. More 

specifically, decay or change of primary architectural 

elements or secondary components, such as walls, roofs, 

etc., can be tracked by means of the processing of newly 

acquired 3D coloured point clouds and their comparison 

with the previous known state of the building recorded in 

the BIM model, using Scan-vs-BIM processes [10]. 

1.1 Increasing the Level of Detail (LoD) in 

Scan-to-(H)BIM 

Various researchers and practitioners are introducing 

HBIM to surveys, taking advantage of the structured 

digital representations of buildings provided by these 

models [11] [12]. Dore et al. [13] undertook a Scan-to-

BIM process for sections of the Four Courts in Dublin 

and structural damage and decay simulations were 

applied for conservation analysis. In addition,  Oreni et al 

[14], presented a case study in which HBIM models were 

generated for digitally surveying an earthquake affected 

church prior to restoration. This work is particularly 

interesting in highlighting their approach to the 

management and evaluation of ashlar columns, whose 

blocks are individually modelled and their dimensions 

considered for potential replacement operations.  

However, BIM elements, such as walls, typically 

obtained with these Scan-to-HBIM approaches, do not 

contain the granularity of composition that is necessary 

for a detailed annotation and analysis of typical surveys, 

or require significant manual work to obtain such level of 

detail. Indeed, surveys may require delineating wall 

façade defects as effecting a single stone, a cluster of 

stones (or wall region), or even a part of a stone. There is 

thus a need for Scan-to-BIM approaches that can 

efficiently deliver ‘as-is’ semantically-rich 3D models 

with such higher LoD – in the case of stone walls, down 

to the individual stones (and mortar regions). 

With the objective of automating these segmentation 

processes, several authors have recently proposed 

solutions for the computerised segmentation of images 

[15] or 3D data [16] of various building elements to 

support the identification of defective regions. Oses et al. 

[15] present a semi-automatic process for delineating 

ashlar in masonry walls in 2D images. Whereas Drap et 

al. [16] identify clusters of ashlar stones in 3D data. Even 

if these works propose solutions for dividing structural 

elements (i.e. walls) into smaller parts, an automated 

stone-level segmentation process would produce higher 

LoD representations of walls. Valero et al. [17] 

previously proposed a method for the automatic 

segmentation of random rubble from point clouds. 

However, whilst it is recognised as a significant step 

forward, that approach is not well suited to ashlar wall 

constructions for which 3D data alone may not be 

sufficient to robustly segment the wall data (mortar depth 

profiles are often too well aligned with stone profiles to 

easily detect the stone boundaries using this information 

alone).  

1.2 Survey Objectivity 

Whilst defects are wide ranging, they have been 

codified into five primary categories in the ‘ICOMOS 

glossary of stone deterioration patterns’ [3]. These 

include: Crack and deformation; Detachment; Features 

induced by material loss; Discolouration and deposit; and, 

finally, Biological colonisation. These are the broad 

categories that have been adopted for this research. 

The heterogeneity and sophistication of these 

catalogued defects make their labelling process  complex, 

even for professionals, who can differ in their analysis. 

For example, historic building walls are composed of 

hundreds, and in many instances thousands, of unique 

units (i.e. stones, bricks…), and can be affected by almost 

countless defects. Sánchez et al [18] proposed a novel 

strategy to identify, in point clouds, the deformation and 

erosion of walls and highlight unit clusters (i.e. areas) 

affected by decay. Valero et al. [4] have recently 

proposed the use of geometric and colour-related features 

from individual masonry units relevant to  interpretation 

or conservation purposes, but that interpretation 

remained manual. 

While these recent works investigate the potential of 

using point clouds to detect wall defects, these remain 

preliminary in nature. They do not fully automate defect 

detection and classification, or do this in a limited way, 

both in terms of the range of defects being detectable and 

the depth of the classification/analysis.  

1.3 Contribution 

This paper aims to address the two needs identified at 

the end of the previous two sub-sections. We first present 

a novel Scan-to-(H)BIM approach that automatically 

segments point clouds of ashlar masonry walls into their 

constitutive units, i.e. stones, and mortar regions (Section 

2). Then, we propose a novel machine learning based 

approach to masonry wall defect classification, that 

considers both the geometry and colour information of 

the acquired point clouds, to classify a selective range of 

common types of masony wall defects (Section 3). The 

defects are found in relation to the masonry HBIM 

element and constitutive units, and so can be recorded in 

a structured manner within the HBIM model, so that the 

condition of all architectural components can be 

effectively tracked over time. 
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For the theoretical presentation of those two novel 

contributions, Section 4 reports experimental results 

obtained using real data. Finally, Section 5 concludes the 

works and proposes directions of future research 

development. 

2 High LoD HBIM Masonry Wall 

Element 

In this work, principal building elements, such as roof 

or walls, are referred to as elements, that can be 

subsequently segmented into their constitutive sub-

elements, named units. These would include bricks or 

stones in the case of walls (See Figure 1). Furthermore, 

if several contiguous units are affected by the same 

defects, these should be recorded and studied as a region. 

Therefore, we refer to several adjoining units composing 

regions of interest as clusters. Finally, certain defects can 

affect only parts of a unit. We call such region a sub-unit 

region.  

 

Figure 1. Proposed levels for analysis. Ilustration 

for a wall 

 

To deliver the hierarchical subdivision described 

above, a segmentation process was developed to identify 

the individual masonry units composing the overall 

element. This method considers colour and 3D 

information at both local and global level and it is 

grounded on the analysis of data in the frequency domain. 

The 2D Continuous Wavelet Transform (CWT) is 

applied to identify the joints between units and segment 

individual stones (see Figure 2).  

(a) (b) 

Figure 2. Ashlar masonry wall (a) Coloured point 

cloud (b) Segmented ashlar units 

3 Identification of Defects using Machine 

Learning 

Several geometric and colour metrics are presented in 

this section, that highlight stone regions potentially 

affected by decay, at different levels, both unit and sub-

unit (Section 3.1). These are used for defects 

classification by means of machine learning (Section 3.2).  

3.1 Metrics for the Identification of Defects 

Once units are segmented and labelled, information 

regarding geometry and colour is extracted from each 

stone and several parameters are calculated to evaluate its 

state. 

In the case of coursed ashlar, two specific parameters 

can play an important role to identify decayed units.  

Regarding geometric-based defects, the evaluation of the 

roughness of the stone face profile helps differentiate 

between flat and rough masonry units. Higher levels of 

roughness can suggest stones affected by deformation 

and detachment, related in most cases with loss of 

material. Roughness is calculated as the standard 

deviation of the distance of the profile points to the 

profile’s mean plane: 

𝑅𝑎 =  √
1

𝑁
∑ (𝑑𝑖 − 𝜇)2𝑁

𝑖=1 , with 𝜇 =
1

𝑁
∑ 𝑑𝑖

𝑁
𝑖=1  

 

(1) 

where N is the number of 3D points for the given 

stone face and di’s are the projection distances of those 

points to the fitted plane.  
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With respect to colour-related defective areas, the 

analysis of the dispersion of colour in each stone, by 

means of the calculation of the standard deviation of the 

hue values within each ashlar unit (Equation (2)), can be 

used to highlight zones affected by discolouration or 

other defects associated to color, such as efflorescence or 

biological colonisation.  

𝐻𝜎 =  √
1

𝑁
∑ (ℎ𝑖 − 𝜇)2𝑁

𝑖=1 , with 𝜇 =
1

𝑁
∑ ℎ𝑖

𝑁
𝑖=1  

 

(2) 

for which the Red-Green-Blue (RGB) colour data is 

first converted into Hue-Saturation-Value (HSV) format, 

using the algorithm presented in [19]. 

The evaluation of these two parameters can be 

undertaken at the unit level (i.e. stone), resulting in the 

generation of two colour maps as illustrated in Figure 3. 

Figure 3 (a) corresponds to the roughness map, while 

Figure 3(b) illustrates stones potentially affected by 

defects related to colour variation. Traffic light colour 

maps have been used, in which the stones coloured in 

green are less likely to be affected by decay and the 

yellow and red ones are potentially defective.  

 (a) (b) 

Figure 3. Geometry- and colour-based parameters 

(a) 𝑅𝑎 (b)  𝐻𝜎  

 

These above parameters and subsequently produced 

maps are of value for unit-level analysis and are useful to 

highlight clusters affected by decay. However, a more 

detailed analysis (i.e. at sub-stone scale) can deliver 

information about the precise defects which are affecting 

a specific stone.  

The fine dressing of ashlar masonry, especially in 

polished finishes, facilitates the detection of defective 

areas. In these cases, the stone profile should fit a plane, 

with areas potentially affected by geometry-related 

defects can be found as those containing the outliers. 

Figure 4 illustrates, for each ashlar, the inliers (in green) 

and the outliers, which are coloured from yellow to red, 

according to the distance of the recorded 3D points to the 

fitted plane. Regions coloured in red are those with a 

more pronounced loss of material.  

 

Figure 4. Sub-stone level analysis map 

 

3.2 Machine Learning Approach for Defects 

Classification 

An extended evaluation of the areas containing 

outliers can be undertaken in order to identify the 

particular effects affecting the material. Figure 5 (a) 

illustrates a decayed region of ashlar, where a plane is 

fitted to the stone and the outliers are considered to be 

part of a defective area (see darker points in Figure 5 (b)). 

While 3D coordinates are used to calculate the roughness 

coefficient (the point cloud is coloured according to their 

depth in Figure 5 (c)), additional metrics are calculated 

after the binary image obtained from the 3D point outliers 

(see Figure 5 (d)). 

(a)
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(b)

(c) 

(d) 

Figure 5. Process for parameters extraction (a) 

Original coloured point cloud (b) Inliers (red) and 

outliers (gray) after plane fitting (c) Depth map for 

outliers (d) Binary map created after orthogonal 

projection of outliers 

 

From the 3D coordinates of the outliers, two metrics 

are extracted:  

• 𝑅𝑎, the roughness coefficient of the defective area, 

(Equation (1)), and 

• The median value of the normal vectors of the 

outliers with respect to the plane fitting the ashlar. 

From the binary map obtained after the projection of 

the ouliers, the following parameters are considered:  

• the number and area of unconnected defective areas 

(white segments in Figure 5(d)), 

• the elongation of the defective areas, which is the 

ratio of the lengths of the minor to major axes and 

gives an indication of how ‘oblong’ a defective area 

is, 

• the rectangleness of the defective areas, which is 

calculated as the fraction of the bounding box 

covered by the object, and 

• the circularity of the defective areas, which is the 

ratio of the area of the projection of the defective 

region to the area of a circle with the same perimeter 

(p), as detailed in Equation (3). 

𝐶 =
4·𝑎𝑟𝑒𝑎·𝜋

𝑝2   (3) 

From the colour information of the points associated 

to the defective area, two metrics are extracted: 

• 𝐻𝜎  , as detailed in  Equation (2). 

• Colour lightness. RGB  colour data are converted to 

grayscale [20], and the median value of gi, (the 

grayscale value of each point inside the defective 

area) is calculated to provide information about the 

colour lightness. 

 

Machine learning techniques are effective tools for 

classification and analysis. In this work, we propose a 

supervised learning algorithm to classify masonry units 

affected by different types of decay, and using the 

parameters described above. Stones labelled as ‘defective’ 

by professional surveyors, as illustrated in Figure 6, are 

used for training the classifier and producing an inferred 

function that is subsequently employed to automatically 

label new data. 

 

Figure 6. Defective areas labelled by surveyors 

 

The chosen machine learning algorithm may vary 

depending on the number and nature of samples in the 

studied dataset and features [21]. In this work, after 

evaluating the amount of available samples and the 

extracted features, a logistic regression algorithm has 

been employed. 
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4 Experimental Results 

The proposed approach has been tested with data 

from the main façade of the Royal Chapel in Stirling 

Castle, Scotland. A coloured dense point cloud (see 

Figure 7) has been produced after merging four scans  

acquired with a Leica P40 TLS device [22]. 

4.1 HBIM and Unit-level Maps 

The generated point cloud was considered as a 

reference to create an ‘as-is’ 3D model of the Chapel 

Royal’s façade. This model, that distinguishes the wall, 

door and windows (Figure 8) is used as the base of an 

HBIM model.   

After removing the points corresponding to the door 

and the windows using a Scan-vs-BIM process, the point 

cloud composing the wall is segmented, producing a 

database with 1,116 ashlar units, as illustrated in Figure 

9. 

The points assigned to each ashlar unit are then 

automatically processed to calculate the parameters 

mentioned in the Subsection 3.1.  Two maps, containing 

the values of Ra and 𝐻𝜎   can be seen in Figure 10.  

As can be observed in Figure 10, the bottom part of 

the façade is found to be potentially affected by both 

geometry and colour-related defects. Also, the left and 

right ends of the walls have decayed regions. Physical 

inspection of the wall confirmed long term deterioration 

associated with previously defective rain water 

downcomers, leading to higher fabric moisture contents 

and subsequent increased incidence of freeze thaw decay 

processes. In addition, the presence of white ‘blooms’ 

were noted and are most likely attributed to salt 

crystallisation.  

 

Figure 7. Dense coloured point cloud of Chapel 

Royal’s main façade 

 

Figure 8. Rendered 3D model of the façade 

 

Figure 9. Segmented ashlar units  

 
(a) 

 

  
(b) 

Figure 10. Colourmaps generated for the façade. 

(a) Roughness. (b) Standard deviation of hue 

values 

 

All produced outcomes in the form of colourmaps,  

were subsequently added to the HBIM model (see Figure 

11) adding information that can be contrasted with the 

status of the structural components at previous epochs. 

 

Figure 11. Datasets attached to the HBIM model 

 

4.2 Classification of Labelled Defective Areas 

To enhance the rapidity, accuracy and objectivity of 

labelling, machine learning techniques were developed 

and applied. The initial classification (i.e. labelling) of 
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defective stones and broader areas was performed by 

specialist surveyors with expertise in masonry fabric 

repair and deterioration. The Stirling Castle Royal 

Chapel’s ashlar façade was used and comprehensively 

surveyed and subsequently adopted to test the algorithms. 

As previously illustrated in Figure 6, approximately 

230 defective stone areas were labelled by specialist 

surveyors. Although approximately ten different types of 

defects were identified, only three of them were 

representative in significant numbers to be considered in 

this study: erosion (E), mechanical damage (M) and 

discolouration (D). The frequency of those most repeated 

defects is detailed in Table 1. 

Table 1 Frequency of defects identified by surveyors in 

the studied area 

Defect Repetitions 

Erosion 77 

Mechanical damage 53 

Discolouration 43 

As previously mentioned in Section 3.2, the logistic 

regression algorithm was then employed, performing a 

‘one vs all’ training process. For the training process, 

random samples of these three classes (72 from erosion, 

48 labelled as mechanical damage and 38 identified as 

discolouration), were used as input to the algorithm. A 

maximum of 50 iterations has been used, with a 

regularization parameter  applied to the cost function. 

A total of 15 samples (5 of each class) were included 

in the test set, obtaining a global accuracy of 93.3% in the 

classification. More detailed results are summarized in 

Table 2. Additionally, Table 3 shows recall and precision 

values for the classification process. 

Table 2 Confusion matrix for the classification of 

defects 

 E M D Predicted 

E 4 0 0 4 

M 0 5 0 5 

D 1 0 5 6 

Labelled 5 5 5 15 

Table 3 Precision and recall values for the different 

classes 

 Recall Precision 

Erosion 0.8 1 

Mechanical 1 1 

Discolouration 1 0.83 

5 Conclusions 

A strategy for monitoring the evolution of ashlar 

masonry walls of historic buildings through reality 

capture, data processing including machine learning, and  

(H)BIM models is presented in this paper. Different 

levels of magnitude are considered to perform surveying 

tasks: from element to sub-unit levels, several point 

clouds and maps are produced to illustrate the defective 

regions of the studied façades. At a sub-stone level, a 

more detailed analysis is carried out to extract different 

metrics which are of interest to identify decayed areas by 

means of machine learning techniques. 

A preliminary experiment has been performed with 

geospatial data from a historic building and the obtained 

results demonstrate the potential of the proposed 

methodology.  
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