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Abstract –  

A major bottleneck activity in the process of 

restoration of Heritage Structures is the reassembly 

of its fragments. Computer-aided reassembly could 

assist in finding the relation between them thereby 

reducing time, manpower and potential degradation 

to fragile fragments. Using geometric compatibility 

between the adjacent fragments as the central idea, a 

reassembly framework for a three-dimensional shell 

is proposed as a logical extension of the two-

dimensional framework. Edges are extracted as 

polygons and relevant features are computed at each 

of its vertices. Sequences of the match for two 

fragments in the feature space are found using a 

modified version of Smith-Waterman Algorithm. 

Each match is assessed using a connectivity score. 

The final choice of best match is left to the user by 

displaying the resultant assembled fragments of 

prospective candidates along with the score. After 

pairwise matching, the global reassembly is done 

through a clustering-based method. This framework 

can handle fragments even with curved edges which 

can be reasonably approximated by a set of edges. 

 We verify the methodology using a simulated 

dataset for both 2D pieces and a shattered 3D 

surface object. 
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1 Introduction 

A large number of fragments are discovered during 

archaeological excavations and heritage site restoration 

tasks. Finding their relative positions is a very laborious 

yet crucial step. Manual methods are time-consuming, 

demands the construction of special supporting 

structures, labor intensive for heavy fragments and can 

potentially damage the fragile pieces during the process.  

With advancements in technological developments 

to digitalize objects, computers can aid to a great extent 

in automating the process. [2] talks about the methods 

and technologies available for three-dimensional 

digitization of objects and monuments. [3] introduces a 

3D digitizing pipeline for cultural heritage where they 

brief about polygonizing the point cloud to mesh to 

represent the geometry of the object. 

This problem is similar to solving a three-

dimensional jigsaw puzzle. There are a variety of 

approaches to solve the problem. The fragmented pieces 

themselves contain the clue for solving it. The clue 

varies from colour compatibility in the case of paintings 

[4], incisions on the surface for stones, marble veining 

directions [6], hand impressions on pottery [7] etc. 

Sometimes the clue also comes from knowing the end 

result like in the case of Skulls where similarity 

matching could be performed with the standard template 

to reassemble [8]. For highly eroded fragments, 

reassembly can be performed with the objective of 

maximising its packaging efficiency.  

Unlike paintings, unearthed and abandoned 

fragments of buildings do not have colour or colour 

variations. Neither do we have a clear idea of the end 

result of the structure after reassembly of the fragments. 

The scope of the paper is to assemble pieces which have 

retained their geometric information without making 

any assumptions about the reassembled piece. We 

follow a framework for assembling pieces in two 

dimensions making use of only its geometry by contour 

curve matching. This has applications in assembling flat 

fragments like the fresco, walls. We then, logically 

extend the framework to assemble a three-dimensional 

surface object. Applications include reassembly of 

surfaces like domes, thin shell structures etc. This paper 

aims to help archaeologists reassemble interactively 

with user involvement only in the approval stage. 

2 Related Works 

The problem of reassembly has different approaches 

and is dealt in different ways depending on its 

applicability for each scenario. Every problem is 

essentially three dimensional. But some problems can 

be converted to two dimensions. Instances like flat 

fragments where the third dimension is uniform and 

does not exhibit appreciable variation belong to this 
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category. Square type jigsaw puzzles involve utilizing 

boundary pixel values as the parameter to search among 

other pieces since there is no variation of shape along 

the edges [10]. Geometric reassembly dates back to 

1964 where Freeman et al. encode the boundary as 

chains and partially matches chainlets through features 

for a commercially produced jigsaw puzzle [9]. As 

mentioned in [11], generalized reassembly is different 

from the jigsaw puzzles because of the uncertainty in 

the endpoint, unlike jigsaw puzzles where the delimiting 

point is fixed. The combination of geometrical and 

colour matching is very suitable to handle fragments of 

paintings. 

 A significant project in this domain was The Digital 

Forma Urbis Romae project where reassembly of 

marble pieces belonging to a giant map of Rome is 

attempted [6]. The clue, in this case, is contained in the 

incisions of the surface. Prediction of the pattern of the 

adjacent fragment based on the boundary drawings and 

searching for it through a number of pieces had resulted 

in significant improvements in its reassembly. 

Additional constraints come from the nature of the 

material - marble veining direction. Here we seek to 

reassemble apictoral fragments which provide us with 

no other clue than its edge contour. A similar problem 

was attempted in [12] and [13] where the fragments 

were converted to invariant features and compared in 

the feature space. Different features, the way matches 

are detected and their global reassembly methods are 

explored in various works. 

In case of surface fragments like potteries, the two-

dimensional simplifications do not hold. Some authors 

make use of the symmetry of objects by utilizing the 

thickness profile to reassemble pottery [5]. In this paper, 

we look at a generic case of reassembling 3D surface 

object without utilizing any information other than its 

edge information. Thus the proposed framework can 

handle missing pieces since it relies only on the strength 

of edge matching.  
The extent of automation also varies for different 

works. A few works require the user to specify initial 

constraints like iso-planarity, adjacency while others do 

not involve the user at all and perform a completely 

automatic reassembly [12] [14]. We use very low user 

intervention in the following processes: (1) to finalize 

the pairwise and (2) reject the match when overlaps 

occur during global reassembly. 

3 Framework 

This paper aims to propose a 3D surface object 

reassembly framework by extending that of a 2D 

reassembly and verifying both the frameworks using a 

simulated dataset. The steps involved in the framework 

are described in the following sub-sections. 

3.1 Extracting the Contour 

The only piece of information we extract from the 

fragment is its contour. We attempt an apictoral 

reassembly. While extracting the boundary, we 

observed many consecutive ‘almost’ collinear points in 

the contour, which created a lot of edge jaggedness. 

This can be seen in Figure 1. We use Douglas-Peucker 

Algorithm to remove these points which do not 

contribute significantly to the matching process [17]. 

This reduces the processing complexity significantly. 

The choice of the threshold given as an input to the 

algorithm should be optimum since smaller values can 

be less effective and higher values can alter the shape of 

the fragment itself making it less suitable for the further 

process. 

 

 

Figure 1. A fragment - Input to the Douglas 

Peucker algorithm (green) and output (red) with 

threshold = 0.01 

3.2 Feature Extraction and normalization 

With this reduced number of points in the contour 

which better capture the shape variation, we extract the 

following features based on [12] at every vertex:  
I. Log of mean of edge lengths 
II. Log of Absolute Value of signed curvature 
III. Internal angle  
For fragment i, let Fic contain the features extracted 

from the contour clockwise and Fi anticlockwise. The 

perimeter of each fragment is also stored in PM. 
Distances in the feature space are highly dependent 

on the scale of each feature. Thus, to obtain uniformity, 

we use min-max normalization.  

3.3 Pairwise matching 

We use a modified version of Smith Waterman 

algorithm to match the two fragments i and j using Fic 

and Fja or Fia and Fjc [15]. Two vertices are said to be 

same if their Euclidean distance in the feature space is 

less than Φ. 

 The endpoint to break the matching sequence is, 

cyclic matching i.e., we duplicate the sequence and 
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append it to then end, and then match the sequence by 

removing repetitions [13]. The output of this is a list of 

matches between the fragments. The sequences greater 

than a minimum connectivity value C(i,j) as defined in 

[12] is stored in G.  

C(i,j)=  
Length of common boundary

Minimum (PMi, PMj)
                        (1) 

 

The transformation in the 2D space is estimated, 

checked for overlaps after transformation and displayed 

along with the connectivity value to the user to finalize 

the match. 

 

Figure 2. Fragment 2 and 3 pairwise match with 

Φ=0.05 

3.4 Global reassembly 

The order of assessment and reassembly of 

fragments is essential since wrong matches at initial 

stages potentially lead to error accumulation. Initially, 

connectivity score is found for all possible pairs of 

fragments (highest of all the matches for the pair of 

fragments is chosen). As proposed in [12], we use an 

agglomerative clustering algorithm. Pairwise matching 

is continuously performed for the pairs in decreasing 

order of their connectivity. The scores are not calculated 

after each iteration significantly reducing the 

computational requirement. After the reassembly, the 

fragments merge and form a single piece. Now, if any 

fragment is left over, the connectivity is recalculated 

considering the assembled fragment as a single 

fragment because the newly formed fragment structure 

might pose a good match to the leftover fragments. For 

our test dataset, a single iteration is adequate to 

assemble all of the fragments when we follow the 

approach of following the decreasing connectivity 

order. The assembled structure is shown in Figure 3. 

 

Figure 3. Assembled fragments 

4 Extending towards a 3D case 

The framework is easily and directly extendible to a 

3D scenario. The input model now contains information 

in three dimensions. Techniques and technologies 

available to produce the digital representation of solid 

objects and monuments are discussed in [2]. The kind of 

features we compute now would differ because of the 

third dimension. 

4.1 Creating the dataset 

A unit sphere was created and shattered into 10 

pieces using the 3D computer graphics application 

Autodesk Maya. They were randomly translated along 

three axes and rotated at different angles. Each 

individual piece is stored separately and labeled for 

further processing. 

 

Figure 4. Input fragments 
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4.2 Extracting the contour 

The created fragments were stored as object files 

(.obj) since it stores the mesh representation of the 

object as a set vertices with their coordinates, set of 

edges making up each triangle. Edges which are not 

common to two triangles indicate the end of the surface 

and are extracted to form a closed figure. Douglas 

Peucker algorithm is modified to be applied in three 

dimensions to smoothen the curve. As mentioned 

earlier, the threshold value decides the extent of 

smoothening and is necessary to maintain it constantly 

for all pieces. For our dataset threshold (th) was chosen 

as 0.005. The number of vertices constituting the 

contour drop drastically and hence makes the processing 

easier. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) Fragment when generated (b) Its mesh 

representation and borders highlighted (c) Extracted 

contour as the output of Douglas Peuckar algorithm 

with threshold th = 0.005 

4.3 Feature Extraction 

Features extracted for a 3D polygon at its vertices 

are different from that of a 2D polygon owing to its 

non-planar nature. Every curve representing a fragment 

has a set of points P1, P2 … Pn. Each point has the 

location in the form of 3D coordinates associated with 

it. We use the numerical approximation used in [18] and 

[19] for each of the feature defined for a smooth curve. 

The features extracted here are: 

1. Curvature: It measures the amount of deviation of 

a curve from a straight line. Mathematically, it can 

be obtained by calculating the reciprocal of its 

radius. The numerical approximation for curvature 

is  

αi=4·areai/(ai·bi · ci)          (2) 

where  

areai= √(si · (si-ai)·(si-bi) · (si-ci))  
ai = Distance between Pi and Pi-1 

bi = Distance between Pi and Pi+1 

ci = Distance between Pi-1 and Pi+1 

si=0.5·(ai+bi+ci)  

2. Derivative of Curvature: This measures the rate of 

change of curvature with respect to arc length. 

This can be numerically approximated by 

β
i
=

3·(αi+1-αi-1)

2·ai+2·bi+di+ei
                         (3) 

where  

di= Distance between Pi-2 and Pi-1 

ei= Distance between Pi+2 and Pi+1 

3. Torsion: This is an indicator of the curve’s non-

planarity by measuring the speed at which the 

osculating plane rotates along the curve. A 

numerical approximation is given by  

γ
i
=0.5·(γ'i+γ''i)               (4) 

where  

γ'i=(6·H'i)/(αi · ei · fi · g
i
 )  

fi = Distance between Pi+2 and Pi 

gi = Distance between Pi+2 and Pi-1 

H'i=3·V'i/areai 

V'i=
det(Pi+2-Pi-1,Pi+2-Pi , Pi+2-Pi+1)

6
 

γ
i
'' =((6·Hi

'' ))/((α
i
· d

i
· hi·ji  ))  

γ''i = (6·H''i) / (αi·di·hi·ji)  

hi = Distance between Pi-2 and Pi 

ji = Distance between Pi-2 and Pi+1 

H''i=3·V''/areai  

V''i=
det(Pi-2-Pi+1,Pi-2-Pi , Pi-2-Pi-1)

6
 

Here we take the average of γ' and γ'' to avoid 

introducing asymmetry in our calculations. 

As [16] states, only the above three metrics are enough 

to parameterize a Euclidean signature since they are the 

fundamental signature invariants. Feature extraction is 
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done both clockwise and anticlockwise. 

4.4 Pairwise Matching 

We use the modified form of Smith Waterman 

algorithm like in the previous case except for the 

features matched. Two points A (α1,β1,γ1) and B 

(α2,β2,γ2) of two different fragments score a similarity 

score of 1 if the distance between them in the feature 

space is less than the threshold. For matching fragments 

i and j, features extracted clockwise for fragment i and 

counterclockwise for fragment j or vice versa is given as 

input to the algorithm. 

A connectivity score as defined in (1) is evaluated 

for each pair and values below µ=0.1 are discarded. 

Once a good match (> 0.1) is found, the appropriate 3D 

transformation of one of the piece is estimated and 

made to merge with the second fragment and displayed 

(as shown in Figure 6) for the user to approve the 

connection. Once approved, the connectivity score and 

the start and end vertices of the matching part is stored 

separately. 

 
(a) 

 
(b) 

Figure 6. Pairwise matching of fragment 2 and 8. 

(a) shows Fragment 2 (cyan) and Fragment 8 

(black) with the matching portions of the 

fragments in blue colour and red colour 

respectively. (b) shows the three-dimensional 

merged fragments after translation 

Table 1. Matrix showing the connectivity values of 

fragments (a) as estimated by the algorithm and (b) as 

calculated while creating the fragments. The rows and 

columns indicate fragment number. (c) shows the 

percentage error in connectivity value for each pair. 

The maximum error in the connectivity value was 

55% (for fragment 3 with fragment 1) and the minimum 

was 0% (for multiple fragments as shown in Table 1c).  

This maximum value occurs when nearly half the 

original connection was undetected by the algorithm. 

The minimum value indicates a perfect fit.  

4.5 Global reassembly 

For each pair of fragments, the connectivity value 

calculated and approved by the user is recorded in the 

form of a matrix as shown below. The values less than 

0.1 are reported as 0 as shown in Figure 7. The 

connectivity values obtained for our dataset as shown in 

(a) 

(b) 

(c) 



35thInternational Symposium on Automation and Robotics in Construction (ISARC 2018) 

the figure indicate that each fragment has found a strong 

connection with atleast one other fragment implying if 

no overlaps detected, just one iteration is enough to 

assemble back all the nine fragments.   

Starting with the pair having the highest connectivity 

value, each pair is transformed and merged. At any 

point throughout the global reassembly process, the user 

can intervene and undo a merge if any sort of wrong 

overlaps is visually detected.  

A major advantage is that the connectivity value 

need not be calculated over and over again. Since there 

were no overlaps, in one iteration all of the pieces were 

assembled back to form the assembled object as shown 

in Figure 7.  

 

Figure 7 Assembled fragments 

5. Results  

From table 1c and Figure 7, it can be seen that 

despite having error values for pairwise connectivity, 

the sphere was assembled correctly because the location 

of matches detected were correct though only partially 

matched. The reasons for a partial match of the common 

curve could be because of the quality of the image 

processed and stored as vertices, choice of threshold 

given as input to Douglas Peucker algorithm or the 

sampling rate of points along the boundaries of the 

object.   

 

6. Conclusion and Future work 

A framework for re-assembling 3D surface object as 

an extension of the 2D reassembly framework was 

proposed and verified using simulated datasets. The 

merits of this framework are manifold. It is an 

unsupervised reassembly where the reassembled 

structure is not known prior to the process. The global 

reassembly does not compute the connectivity values 

after each pairwise merging reducing computational 

requirement. Additionally, while the user involvement 

was minimal, this involvement along with the cluster-

based merging process prevented error accumulation. 

For the given dataset, the reassembly was completed in 

the first iteration. This way, an efficient tool for the 

archaeologist to speed up the reassembly is put forward.  

In future work, the proposed framework will be 

tested on a real datasets where the fragments are not 

predefined by the user. This methodology can be used in 

addition to features extracted from fracture surfaces for 

validation while reassembling a solid object.  
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