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Abstract – Infrastructure systems are very essential 
to every aspect of life on Earth. Existing 
Infrastructure is subjected to degradation while the 
demands are growing for a better infrastructure 
system in response to the high standards of safety, 
health, population growth, and environmental 
protection. Bridges play a crucial role in urban 
transportation networks. In addition to that, they 
are vulnerable to several deterioration agents such 
as the variable traffic loading, extreme weather 
conditions, deferred maintenance, etc. The 
development of Bridge Management Systems (BMSs) 
has become a fundamental imperative nowadays 
especially in the large transportation networks due 
to the huge variance between the need for 
maintenance actions, and the available funds to 
perform such actions. Condition assessment is 
regarded as one of the most critical and vital 
components of BMSs. Ground Penetrating Radar 
(GPR) is one of the non-destructive techniques 
(NDTs) that are used to evaluate the condition of 
bridge decks which are subjected to the rebar 
corrosion. This paper presents a corrosiveness index 
that is capable of evaluating the extent of severity of 
corrosion in concrete bridge decks. Different 
clustering algorithms are compared in order to select 
the most feasible clustering algorithm. A 
probabilistic deterioration model is constructed in 
order to model the future condition rating of bridge 
decks. Anderson darling test is used to select the 
most feasible probability density function, and the 
parameters of the probability density functions are 
obtained using maximum likelihood estimation. 
Finally, two case studies are presented to illustrate 
the capabilities of the proposed model. 
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1 Introduction 

Bridges are vital links in transportation networks 
that should be safe, functional and serviceable during 
their service life to facilitate the mobility of people and 
transportation of goods which causes sustainable 
economic development. Concrete bridges are prone to 
high level of deterioration because of the variable traffic 
loading, extreme weather conditions, cycles of freeze 
and thaw, deferred maintenance, etc. More than 40% 
(700 bridges) of Egyptian bridge inventory out of 1,700 
bridges have exceeded their maintenance limit and are 
at risk of failure. 

American Association of State Highway and 
Transportation Officials (AASHTO) defined Bridge 
Management System (BMS) as “a system designed to 
optimize the use of available resources for inspection, 
maintenance, rehabilitation and replacement of bridges” 
[1]. AASHTO and Intermodal Surface Transportation 
Efficiency Act (ISTEA) defined five main components 
for BMS which are as follows [2]: 1) database for data 
storage, 2) condition rating model, 3) deterioration 
model, 4) cost model, and 5) optimization model for 
running system. The structure of BMS is shown in 
Figure 1 [2].  

The database is the most essential component of the 
BMS where it is used to store information that is related 
to every bridge in the network. Bridge condition rating 
is based on field inspections to evaluate the condition of 
bridges. Deterioration model is used to predict the 
condition rating of different bridge elements over time. 
The cost model is divided into two main types which are: 
1) agency costs, and 2) user costs. The agency costs ae 
based on the expenditure of maintenance, repair and 
rehabilitation activities (MR&R) to improve the 
condition rating of the bridges. The user costs are based 
on the impact of deterioration on road users as a 
function of the bridge condition [3]. The optimization 
model is implemented to determine the optimum 
maintenance, repair and rehabilitation activities for 
different bridge components. The proposed model 
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focuses on two bridge management components which 
are: 1) the condition assessment model, and 2) the 
deterioration model. A corrosion index is developed 
based on the ground penetrating radar. Also, the weibull 
distribution is used to model the deterioration of bridge 
decks. Accurate condition rating and reliable 
deterioration models help in minimizing the risk of 
failure of aging infrastructures.  

 
Figure 1: Typical structure of BMS [2] 

2 Destructive and Non-Destructive 
Techniques  

The condition assessment model heavily depends 
on the inspection type. The process of monitoring 
bridges should be cost effective, efficient, and fit for the 
purpose [4]. Thus, bridge inspectors should use 
techniques to assess accurately and effectively the 
corrosion of the bridge decks. Bridge inspection can be 
defined as “a process in which the defects on a bridge 
are identified, recorded to be used for assessing bridge 
condition”. Inspection techniques are divided into two 
main categories which are: 1) destructive techniques 
(DT), and 2) non-destructive techniques (NDT).  
Destructive Techniques (DT) provide accurate and 
direct results, but they cause damage to the element 
under investigation, and they are expensive and time-
consuming. Non-Destructive Techniques (NDT) are 
inexpensive and quick, but they do not provide direct 
information about the element under inspection. NDTs 
gain popularity due to their various advantages 
including; providing a high level of safety for the labor 
staff, time saving, providing high rates of production in 
comparison to traditional methods. 

Ground penetrating radar (GPR) is one of the non-
destructive techniques that are used for field 
investigation in structural engineering.  Ground 
Penetrating radar can determine the subsurface structure 
easily and accurately. Moreover, it has the capability of 
locating metallic and non-metallic objects. GPR 
transmits pulsed electromagnetic waves from the 
transmitting antenna which is located on the ground 
surface and signals are then received by the receiving 

antenna [5]. The proposed model utilizes GPR in order 
to evaluate the corrosion of the reinforcement rebars in 
the concrete bridge decks.  

3 Model Development  

The utilized GPR system incorporates two ground-
coupled antennas which are: 2000 MHZ and 400 MHZ. 
The 2000 MHZ antenna is utilized because of its high-
resolution capability. Thermal drift, electronic 
instability, cable length differences and variations in 
antenna airgap can cause ‘jumps’ in the air/ground 
wavelet first arrival time (usually referred to as the 
time-zero point). Therefore, traces require the adjusting 
to a common time-zero position before applying 
processing methods. This is usually achieved using 
some particular criteria (e.g., the air wave first break 
point or first negative peak of the trace) and is often 
done automatically by the processing software [6, 7, 8]. 

Several precautions are considered during the operation 
and processing processes. For the thermal drift, the 
scanning process was performed at night 2:00 am to 
overcome the internal heating of the equipment during 
the operation process. The antenna air gap is removed 
by moving the profile start time to the asphalt layer.  For 
the dielectric constant of the material (concrete in our 
case), the wave length of the electromagnetic waves 
decreases as they encounter higher dielectric material. 
The utilized GPR is equipped with two antennas. The 
utilized GPR is equipped with two antennas which are: 
2000 and 400 MHZ. Thus, in case the electromagnetic 
waves fail to reach the desired penetration depth, the 
lower frequency (400 MHZ) is utilized. The GRED HD 
software is used to extract the amplitudes of the top 
reinforcement rebars. 

There are two main methods for GPR data analysis 
which are: 1) numerical amplitude method, and 2) 
image-based method. Numerical amplitude method 
depends on the value of amplitude of the reflected 
waves from the top layer of reinforcement. The higher 
the amplitude, the better the condition of the bars. This 
method main limitation is its lack of a clear value for 
the thresholds that define the different categories of 
corrosion. For example, the profiles of one bridge deck 
may have amplitude values from 10 dB to -5 dB, where 
10 dB represents the best condition and -5 dB represents 
the worst for that bridge. Meanwhile, another of Bridges’ 
profiles may have amplitude values that range from -5 
dB to -40 dB, where -5 dB represents the best condition 
and -40 dB represents the worst condition. 

Therefore, a comparison between the clustering 
algorithms should be performed in order to select the 
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most feasible clustering algorithm. After the selection of 
the most appropriate clustering algorithm, a corrosion 
map is developed and consequently a corrosion index is 
calculated. The second step is to construct a 
deterioration model. A stochastic model is constructed 
in order to overcome the vagueness and uncertainties 
associated with the deterministic models. The most 
suitable probability density function is defined based on 
the Anderson Darling statistic. The parameters of the 
probability density function are defined based on the 
maximum likelihood estimation algorithm.    

 

3.1 Clustering Algorithms  

The proposed model develops a corrosion map that 
is extensively based on the clustering algorithms. 
Clustering is the process of partitioning the dataset into 
a homogenous set of clusters without having any prior 
information about the clusters where the points within 
the same cluster share similar features. The selected 
clustering algorithms incorporate a combination of soft 
and hard clustering techniques. Hard clustering is the 
process of the assignment of data points to only one 
cluster such as K-means. On the other hand, soft 
clustering is the process of the assignment of data points 
to the clusters with different membership degrees such 
as Fuzzy C-means clustering (FCM).  

RapidMiner 7.5 and KNIME 3.3.1 softwares [9, 10] are 
used as platforms to perform the clustering algorithms. 
The proposed methodology compares between five 
clustering algorithms which are: K-means, K-medoids, 
fuzzy C-means, expectation maximization, and X-
means. K-means and k-medoids are two similar 
clustering algorithms. The proposed model assumes that 
the there are four categories for the condition of the 
bridge deck which are: “very severe”, “severe”, 
“medium”, and “good”. i.e., three thresholds 

3.1.1 K-means algorithm 

K-means clustering algorithm is based on 
minimizing the distance between the average squared 
Euclidean distance and the clusters’ centroids. The 
output of the clusters’ centroids is greatly influenced by 
the initial selection of the clusters’ centroids. The 
number of clusters in the K-means clustering algorithm 
must be defined initially. The clusters’ centroid is the 
mean of the data points within the cluster [11]. The 
output of the K-means is that the similarity between the 
data points within the same cluster is higher than the 
similarity between the data points in the different 
clusters [12]. The main distinct feature between K-
means and k-medoids clustering algorithms is that one 
of the data points represents the centroid of the cluster 

in the case of k-medoids. K-means algorithm utilizes the 
mean of the data points. 

The steps of K-means clustering are as follows [13]: 

1- Select number of desired clusters ܭ. 
2- Select ܭ  starting points randomly to be used as 

initial candidates for clusters’ centroids.   
3- Calculate the distance between data points and 

cluster centroids.  
4- Assign the data point to the cluster centroid which 

has the minimum distance between the data point 
and cluster centroids. The distance is simply the 
Euclidean distance.  

݀൫ݔ, ൯ܥ ൌ ට∑ ሺݔௗ െ ܿௗ

ௗୀଵ ሻ	²																												ሺ1ሻ                        

5- Re-compute the new cluster centroids (centroid is 
the mean point of the cluster).  

6- Repeat steps 3, 4, and 5 until convergence (centroid 
and data points no longer move).  

 
X-means clustering algorithm is introduced in order to 
overcome a major drawback of the K-means clustering 
algorithm which is the necessity of knowing the number 
of clusters ( ܭ ) before processing. The X-means 
clustering algorithm tends to search the space to 
compute the clusters’ centroids based on the Bayesian 
Information Criterion (BIC) or the Akaike Information 
Criterion (AIC). The expectation maximization 
clustering algorithm calculates the probabilities of 
cluster memberships based on one or more probability 
distribution. The number of the clusters is 
predetermined in the expectation maximization 
algorithm. Expectation maximization algorithm is based 
on maximizing the probability that the data point 
belongs to the clusters of the model.  

3.1.2 Fuzzy C-means Algorithm 

Fuzzy C-means (FCM) is an iterative 
clustering algorithm where each data point is assigned 
to one cluster or more based on the membership degrees. 
FCM was developed by Dunn in 1973 and improved by 
Bezdek in 1981. FCM is based on minimizing the 
following objective function [14].  

௪ܬ ൌ 	∑ ∑ ݑ
 ฬቚ൫ ܺ െ ൯ܥ

ଶ
ቚฬ 																															 ሺ2ሻ

ୀଵ
ே
ୀଵ                          

Where; 
݉  is a fuzzifier constant that is greater than one. ݑ 
denotes the degree of membership of the ܺ  in the 
cluster ݆ and it is between zero and one. ܺ is a  ݅ െ  ݄ݐ
data point in a d-dimensional space. ܥ  represents the 
centroid of the ݆ െ || .cluster ݄ݐ ∗ || is a norm distance 
that represents the similarity between the data point and 
the centroid of the cluster.              
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FCM starts by randomly initiating the cluster centroid. 
The second step is to construct the membership matrix. 
A membership matrix ( ሺܷேൈሻ) is composed of a group 
of membership degrees. The degree of membership (ݑ) 
can be calculated using Equation 3. The cluster 
centroids are then updated and can be calculated using 
Equation 4. The cluster centroids and the membership 
degrees are iteratively updated until the convergence 
criteria are satisfied. The convergence criteria is shown 
in Equation 5. The de-fuzzification process is performed 
using Equation 6 where the data point is assigned to the 
cluster that has the maximum degree of membership.  

ݑ ൌ
ଵ

ා ቌ
ฬቚቀషೕቁቚฬ
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ቍ

మ
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max

ሼ|ݑ

௧ାଵ െ ݑ
௧|ሽ ൏                                                                                                                           	ሺ5ሻ																																																	ߞ

ܥ ൌ arg୧ሼ݉ܽݔሺݑሻሽ																																																							ሺ6ሻ	                                                                                                                        

 ݑ


ୀଵ
ൌ 1																																																																					ሺ7ሻ                                                                                                                         

Where; 

 ݐ݅ .is the termination constant between zero and one ߞ
refers to the number of iteration steps. 

3.2 Clustering Validity Indices 

Clustering is an un-supervised algorithm. 
Therefore, evaluating the output of the clustering 
algorithms is a matter of great importance. Assessing 
the clustering algorithms is much more difficult than the 
supervised algorithms because there is no “ground 
truth”, i.e., there are no-predefined classes for the 
domain problem. Moreover, it is very difficult to find 
the appropriate metrics to evaluate the quality of the 
generated clusters. 

The proposed model utilizes two clustering validity 
approaches to assess the quality of the generated 
clusters and to identify the optimal partition of clusters 
which are: 1) Davies-Bouldin index, and 2) Dunn index. 
The objective of the clustering validity approaches is to 
select the most feasible thresholds that ensure that the 
clusters are compact and well-separated, i.e., maximize 
the inter-cluster distance (distance between the clusters), 
and minimize the intra-cluster distance (distance 

between data points within the same cluster) (see Figure 
2).  

 

Figure 2: Overview of the clustering process 

3.2.1 Davies-Bouldin Index 

Davies-Bouldin index is a ratio between the 
sum of intra-cluster scatter to the inter-cluster separation. 
The Davies-Bouldin index can be calculated using the 
following Equation [15].    

ܫܤܦ ൌ ሺଵ

∑ max

௩ஷ௪
ሺ	 ೢାೡ
ௗሺೢ,ೡሻ

ሻ 	
௪,௩ୀଵ 																														ሺ8ሻ                              

 Where; 
 represents the intra-cluster distance. ݀ represents the ܦ
inter-cluster distance.  

The intra-cluster distance (ܦ ), and the inter-cluster 
distance (݀) can be calculated using Equations 9, and 10, 
respectively based on the Euclidean distance principle. 
The intra-cluster distance is the average distance 
between the data points and the cluster centroid. The 
inter-cluster distance is the distance between the 
centroid of the two clusters. 

ܦ ൌ ൬
∑ ||ೌିೢ||

సభ

ேೢ
	൰																																																										ሺ9ሻ                        

݀ ൌ ,௪ܥሺݐݏ݅݀ ௩ሻܥ ൌ

ටሺܥ௪ଵ െ ௩ଵሻଶܥ  ሺܥ௪ଶ െ .௩ଶሻଶܥ … ൫ܥ௪ െ ௩൯ܥ
ଶ
					ሺ10ሻ                       

Where; 
ܺ is an arbitrary data point that belongs to a cluster ݓ. 
௩ܥ ௪, andܥ  represent the centroid of clusters ݓ, and ݒ, 
respectively. ܰ௪ represents number of data points in the 
cluster ݓ . The smaller Davies-Bouldin index denotes 
that the clusters are compact, and the centers of the 
clusters are far away from each other (Sahani and 
Bhuyan 2014). ݐ is the number of the data points in the 
cluster. ݍ is the number of the dimensions of the model. 



35th International Symposium on Automation and Robotics in Construction (ISARC 2018) 

3.2.2 Dunn Index 

The Dunn index is used to assess the quality of 
the clusters and it can be calculated using Equation 11 
[16]. 

DUI ൌ max
ଵஸ୵ஸ୩

ሺ min
ଵஸ୴ழ,௩ஷ௪

൬ min
୧ஸஸ

൬ ୢሺ୶౭,୶౬ሻ	

୫ୟ୶൫ୈሺ୶ౡሻ൯
൰൰ሻሺ11ሻ 					                                                                                              

Where; 
D , and d  are defined as above. The larger the Dunn 
index indicates that the clusters are compact and well-
separated. 
 
The clustering index is performed in order to compare 
between the five clustering algorithms. The clustering 
index can be calculated using the following equation.   

ܷܮܥ ൌ ୈ୍ିூ

ଶ
																																																																ሺ12ሻ                                                                                                                         

Where; 
DUI represents the Dunn index while ܫܤܦ represents the 
Davies-Bouldin index. ܷܮܥ denotes the clustering index.  

Surfer 12 is a plotting and mapping software that is 
utilized to develop the corrosion map for the concrete 
bridge decks. Finally, a Corrosion Index (CI) can be 
calculated as follows. 

ܫܥ ൌ
 ொൈௐ

ర
సభ

 ொ
ర
సభ

																																																																ሺ13ሻ                                                                                                                        

Where; ܳ represents the quantity of a bridge element in 
category ݅ . ܹ 	 represents the weighting factor for a 
bridge element in category ݅. The weighting factors for 
the “good”, “medium”, “severe”, and “very severe” 
categories are assumed 100%, 70%, 50%, and 20%, 
respectively.  

4 Deteriroation Models  

Deterioration model is the most crucial 
component of the BMS because it enables the 
transportation authorities to predict the future bridge 
condition ratings. Planning of maintenance, repair and 
rehabilitation activities (MR&R) of bridges is based on 
calculating accurate future bridge condition ratings. A 
high-quality deterioration model enables infrastructure 
managers to optimize MR&R activities and minimize 
un-planned maintenance activities. The deterioration 
model constructs a relationship between the facility 
condition rating and group of explanatory variables such 
as age, traffic volume, weather conditions, percentage of 
commercial vehicles, etc. 
 
Goodness of fit is a statistical measure that is used to 
determine the compatibility of fitting set of data to 
probability distributions. Goodness of fit is a means to 
evaluate different probability density functions and to 
determine discrepancies between observed values and 

expected values in a certain statistical model. There are 
several goodness o fit tests such as Kolmogorov-
Smirnov test, Anderson Darling and chi-squared test. 
The proposed model utilizes Anderson Darling statistic.  

Anderson Darling test (A²) is used to compare the fit of 
an observed cumulative distribution function to an 
expected cumulative distribution function. Anderson 
darling provides more weight to the distributions’ tail 
than the Kolmogorov-Smirnov test. Anderson Darling 
Statistic can be calculated as follows [17]. 

²ܣ ൌ െ݊ െ
1		
݊
ሺ2i െ 1ሻ


ୀଵ

ൈ ሺlnFሺx୧ሻ  ln	ሺ1 െ FሺX୬ି୧ାଵሻሻሻ	ሺ14) 

There are different methods for parameter estimation of 
probability density function such as maximum 
likelihood estimation and least squares, method of 
moments estimation (MME), and median rank 
regression (MRR). The proposed model utilizes 
maximum likelihood estimation (MLE) algorithm as a 
parameter estimation method. MLE is based on finding 
the parameters that maximizes the likelihood function 
where the observations are assumed to be independent. 
The MLE is characterized by being is asymptotically 
efficient where larger the sample size the more likely 
the parameters converge to precise values.   

MLE is based on finding the unknown parameter θ that 
maximizes the log Lሺθ/yሻ because it is often easier to 
maximize the log-likelihood function than the likelihood 
function itself [18]. 

log Lሺθ/yሻ ൌlog	ሺ



ୀଵ

݂ሺݕ|θሻሻ																																						(15) 

Where; 

Y୧  represents a set of independent variables. ݂ሺݕ|θሻ 
denotes the probability density function of the random 
variable  ݕ  

5 Model Implementation  

There are two case studies to validate the proposed 
model. The length and the width of the scanned bridge 
deck of El-Kobba bridge are 20 meters, and 3 meters, 
respectively. The length and the width of the scanned 
bridge deck of Torra bridge are 21 meters, and 6 meters. 
The data collection of El-Kobba bridge deck is shown in 
Figure 3.  
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Figure 3: GPR data collection for El-Kobba bridge deck 

The grids spacing in both the longitudinal and 
transversal directions were taken to be 1.0 m. 
Consequently, the number of scans in the longitudinal 
and transversal directions in El-Kobba bridge are 3, and 
21, respectively. The number of scans in the 
longitudinal and transversal directions in Torra bridge 
are 6, and 20, respectively. A plan of the scans of El-
Koba bridge deck is shown in Figure 4. 

 
Figure 4: A plan of the scanned paths in El-Kobba 

bridge deck 

After the data collection process, the GPR data profiles 
are transferred to a PC for processing. The software IDS 
GRED HD is used to process the B-scans. IDS GRED 
HD is used to compute the travel time, and the 
amplitude of each reinforcing rebar. The profile 
obtained from the GPR is depicted in Figure 5. 

 

Figure 5: GPR profile of Torra bridge deck 

Rebar locations were clear in the raw data as well as 
obvious areas of deterioration where rebar reflections 
were weak. Areas of the bridge deck having weak 
reflection amplitude values are typically indicative of 
the deterioration. These weaker reflections can be due to 
several factors, including high chloride content, 
concrete deterioration or corrosion of the embedded 
steel rebar, which all attenuate the radar signal. 

The RapidMiner software is used in order to perform 
the K-means clustering, expectation maximization 
cluster, X-means, and K-medoids. KNIME platform is 
used in order to perform the fuzzy C-means clustering. 
The developed clustering model using the RapidMiner 
platform is shown in Figure 6. The developed clustering 
model using the KNIME platform is shown in Figure 7. 

 

Figure 6: Interface of the RapidMiner platform 

 
Figure 7: Interface of the KNIME platform 

The clustering indices of the five clustering algorithms 
in Tora and El-Kobba bridges are shown in Table 1. As 
shown in Table 1, K-medoids has the largest clustering 
index and therefore K-medoids is the most feasible 
clustering algorithm. Moreover, K-medoids has the 
largest clustering algorithm in El-Kobba bridge which 
means that K-medoids is the most feasible clustering 
algorithm 

Table 1: Clustering indices of the two bridges  

Clustering 

algorithm 

Clustering index 

(EL-Kobba) 

Clustering 

index (Torra) 

K-means 1.4118 1.1566 

K-medoids 1.8954 2.8291 
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X-means 1.3948 1.2322 

Expectation 

maximization  

1.5585 1.3896 

Fuzzy C-means 1.5118 2.3124 

The corrosion map for El-Kobba bridge is depicted in 
Figure 8 where 18.67% of the bridge is a “very severe” 
condition, 43.98% of the bridge is in a “severe” 
condition, 30.71% is in a “medium” condition, and 6.64% 
is in a “good” condition.  Based on Equation (13), the 
Corrosion Index is 70.76% which means that the bridge 
deck is in the “medium” category. The amplitude 
thresholds are expressed in volts. The amplitude 
thresholds are 0.106, 0.202, and 0.325. The corrosion 
map for Torra bridge is depicted in Figure 9 where 14.8% 
of the bridge is a “very severe” condition, 22.37% of the 
bridge is in a “severe” condition, 26.64 is in a “medium” 
condition, and 36.18% is in a “good” condition.  The 
Corrosion Index is 68.98% which means that the bridge 
deck is in the “medium” category. The amplitude 
thresholds are -0.477, -0.3605, and -0.1999.  

 
Figure 8: Corrosion map of El-Kobba bridge 

 
Figure 9: Corrosion map of Torra bridge 

The attributes of the bridges are stored in shapefile 
format for documentation purposes as shown in Figure 
10. The shapefile format is a well-known geospatial 
vector data format for geographic information system 
(GIS) softwares.  

 

Figure 10: Storing of the bridges’ attributes 

Based on the Anderson Darling test, weibull distribution 
is the best-fit distribution followed by the lognormal 
distribution, and finally the exponential distribution, 
whereas the Anderson Darling statistics of the previous 
distributions are 0.٤٤٨٨, 0.٤٧٠٥, and 0.٦٥٣٩, 
respectively. The parameters of the weibull distributions 
are obtained based on the maximum likelihood 
estimation, whereas the shape factor and scale factor are 
١٫٩١٧٤, and ٥٠٫٩٣٥٤, respectively. The deterioration 
model based on the weibull distribution is shown in 
Figure 11. 

 
Figure 11: Deterioration model based on weibull 

distribution 
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