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Abstract -
Sensor technologies play a significant role in monitoring

the health conditions of urban sewer assets. Currently, the
concrete sewer systems are undergoing corrosion due to
bacterial activities on the concrete surfaces. Therefore,
water utilities use predictive models to estimate the
corrosion by using observations such as relative humidity or
surface moisture conditions. Surface moisture conditions
can be estimated by electrical resistivity based moisture
sensing. However, the measurements of such sensors are
influenced by the proximal presence of reinforcing bars. To
mitigate such effects, the moisture sensor needs to be
optimally oriented on the concrete surface. This paper
focuses on developing a machine learning model for
localizing the reinforcing bars inside the concrete through
non-invasive measurements. This work utilizes a resistivity
meter that works based on the Wenner technique to obtain
electrical measurements on the concrete sample by taking
measurements at different angles. Then, the measured data
is fed to a Gaussian Markov Random Fields based spatial
prediction model. The spatial prediction outcome of the
proposed model demonstrated the feasibility of localizing
the reinforcing bars with reasonable accuracy for the
measurements taken at different angles. This information is
vital for decision-making while deploying the moisture
sensors in sewer systems.
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1 Introduction
Recently, robotic systems are largely viewed by

scientists as a promising tool to navigate, explore and
measure environmental health of hostile areas [1]. One
such area is an urban sewer system, where long-term
direct human exposure can cause occupational health
hazards [2]. Exploiting robotic inspections in such
infrastructures not only requires hi-tech robots but also
advanced sensing technologies in order to provide
credible information about the sewer assets. In this
context, this work focuses on utilizing the sensor data and

provide meaningful information for pertinent
decision-making.
The underground sewer pipes are deteriorating mainly

due to microbial induced concrete corrosion [3, 4]. This
raises concerns among water utilities around the globe as
the sewer asset rehabilitation costs are at an estimated
annual value of over $100 millions [5, 6]. Presently,
water utilities use data-driven machine learning models
for estimating corrosion [7]. In such models, surface
moisture conditions of the concrete sewers can be used as
an observation for improved prediction [8, 9]. So, a new
robust sensing technology was developed by us in
collaboration with four water utilities in Australia. This
technology estimates surface moisture levels based on
non-invasive electrical resistivity measurements.
The technology was deployed and tested in a sewer

pipe belonging to Sydney Water in Sydney, Australia.
This evaluation demonstrated sensing feasibility under
aggressive sewer conditions and capabilities for
long-term moisture monitoring operations. However, the
sensor measurements can be influenced by the
reinforcing bars (rebars) inside the concrete and hence
requiring onsite calibration. Therefore, the research
problem is to determine the location and orientation of
rebar embedded in concrete by using the same sensor
rather than having to rely on expensive sensors such as
ground penetratin radars. This allows appropriate
localization of sensor installations to improve the
reliability of moisture estimations.
In this paper, we propose a discretely indexed Gaussian

Markov Random Fields (GMRFs) based data-driven
machine learning model for spatially localizing the rebar
embedded in concrete using electrical resistivity
measurements. The proposed machine learning method
is a computationally efficient alternative to the
non-parametric Gaussian Process (GP) based models. In
this work, we employ resistivity meter to perform
non-invasive measurements of electrical resistivity
variation on the concrete sample by utilizing four probe
Wenner technique. The measurements were taken at
different spatial location of the concrete sample by
placing the resistivity meter on the concrete surface at
different angles with respect to the rebar. Then, the
measured data obtained from each angle is fed to the
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GMRF model for experimental investigations.
The remainder of the paper is structured as follows:

Section 2 elucidates the sensing technique and procedures
followed for data collection. Section 3 formulates the
theoretical considerations for spatial prediction. Section
4 presents the experimental results with analysis. Section
5 discusses the limitations of the work. Finally, Section 6
concludes the proposed work with future prospects.

2 Electrical Resistivity Measurements
An electrical resistivity meter was developed in the

laboratory to measure surface electrical resistivity
variations on the concrete. This device performs
non-invasive measurements based on the Wenner
technique [10], which uses four electrodes with an equal
spacing distance between them. The two outer electrodes
inject electrical current into the concrete material
whereas the two inner electrodes measure the electrical
potential differences. Then, the electrical resistivity of
the concrete on the surface of interest can be determined
by using Equation 1:

ρ = 2πa
(V

I

)
(1)

where ρ is the electrical resistivity of the concrete denoted
in terms of kΩcm, a = 40mm is the spacing between the
two electrodes, V is the electrical voltage signal measured
by the inner two electrodes and I is the electrical current
injected by the outer two electrodes.
The developed device is compact and works on the

open-source electronic prototyping platform (Arduino
Nano). It was evaluated on the benchmark scale and it
produced measurements as desired. More information on
the development of this resistivity meter is available in
[11].

A concrete of thickness: 10 cm, width: 35 cm and
length: 35 cm was made with a rebar having width: 1.2
cm, height: 1.2 cm and length: 30 cm was embedded into
the concrete material at a 2 cm depth from the top surface
of the concrete. This concrete was divided into several
cells to perform measurements in those cells. Totally,
the concrete was partitioned into 49 cells and each cell
had a dimension of 4cm2. The rebar runs through the
column 4 of the (7 × 7) partitions. Electrical resistivity
measurements in each cell were obtained by placing the
inner two electrodes of the sensor at different angles. For
each angle, two sets of data were taken in each cell.

3 Modelling for Spatial Prediction
3.1 Gaussian Markov Random Fields

GMRFs are a discretely indexed Gaussian Fields,
which can be achieved through the observations of

random variables in the spatial process [12]. It
incorporates Gaussian Processes and also satisfies
Markovian property [13]. This makes GMRFs a
computationally efficient alternative to GP [14].
Let s = (s1, s2, s3, ..., sn)T with s ∼ N(µ,Q−1) referring

to GMRFs given by the mean µ and a symmetric and
positive definite precision matrix Q that represents the
convex polytope in Rd (R denotes real numbers), and an
inverse of the GP covariance matrix,

∑
[12, 15]. So, the

density of s will be of the mathematical form as given in
Equation 2:

p(s) = (2π)− n
2

(
det(Q)

) 1
2
exp

{
− 1

2
(s− µ)TQ(s− µ)

}
(2)

The salient feature of the Markovian property is that
the full conditional distribution of si (1 ≤ i ≤ n) is only
dependent on the elements set of the neighbourhood
structure of the process and it is given by Equation 3

p(si |s−i) = p(si |sNi) (3)

where s−i represents the elements in s apart from the
element si , and sNi denotes the neighbourhood elements
of si . Therefore, it is established that in the case of given
neighbourhood elements, si element is independent on all
other elements in s with the exception of the element sNi ,
which defines the conditional independence as
si ⊥ s−i,Ni |sNi (⊥ denotes the independence of two
variables) for 1 ≤ i ≤ n. According to [12], µ is not
related to pairwise conditional independence properties
of s and therefore, afore stated characteristic is limited to
the precision matrix Q. Generally, if si and sj are
conditionally independent, si ⊥ s−j |s−i, j is equivalent to
Qi j = 0. This condition give rise to Qi j , 0 when
j ∈ {i, Ni} and deduce the sparsity of Q that results
significantly in computation performance.

3.2 Spatial Field Model by way of GMRFs

Let the finite set of spatially observed locations be ψ =
(ψT

1 , ψ
T
2 , ψ

T
3 , ..., ψ

T
n )T . Each spatially observed location in

ψ comprise of one electrical resistivity measurement data
and consider x(ψ) = (x(ψ1), x(ψ2), x(ψ3), ..., x(ψn))T as
the vector of measurements in the spatial field [12]. In
this work, the model utilized is similar to [15, 14], which
is a summation of a large scale component, a random
field and an identically distributed noise. The model is
mathematically defined in Equation 4:

x(ψ) = ζ(ψ)β + s(ψ) + ε(ψ) (4)

where ζ(ψ)β = E(x(ψ)) is the expectation of (x(ψ)) and
E(·) defines the expectation operator. ζ(ψ) is the covariates
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determined at spatial locationψ and β is the vector ofmean
parameters. s is a GMRFs with a n zero mean vector and
a n× n precision matrix Q. ε(ψ) is the measurement noise
with µ = 0 and a known covariance matrix σ2

ε Iε at spatial
locationsψi (1 ≤ i ≤ n), whereσ2

ε is assumed to be known
and Iε is the identity matrix, n × n.

As in [16], the GMRF can precisely work as a GP
when the continuous domain stochastic partial
differential equations (SPDE) possess a solution with
Matern covariance function [12], which is
mathematically given by Equation 5:

cov(γ) = σ2

Γ(v)2v−1 (κγ)
vKv(κγ) (5)

where γ indicates the Euclidean distance between the
spatial locations, γ = ‖vi − vj ‖. The term σ2 denotes the
marginal variance and the term κ implies spatial
parameters with v as the Matern smoothness and Kv

represents the modified Bessel function [12]. The term
ζ(ψ)β, in this case denotes the mean function in the
context of GP [17, 18].

3.3 Sensor Data Modelled by GMRFs Using SPDE
Approach

The SPDE approach formulated by [19] demonstrates
computational effectiveness while used in the spatial
process. This approach incorporates finite element
method [20] to focus the SPDE onto a basis
representation, which includes piece-wise linear basis
functions described by a triangulation that pertains to the
interested regions [12]. Assuming that the spatial process
s(p) is observed at N locations where
p = (pT1 , pT2 , pT3 , ..., pTn )T , then the initial vertices of the
triangle are set at those spatial locations. Further, in
order to achieve spatial prediction, more vertices of the
triangles are added to realize a large triangulation.
The GMRF model is developed on the basis function

representation for the given triangulation of the domain Q
[12]. Therefore, s(p) is given as in Equation 6:

s(p) =
n∑
i=1

fi(p)wi (6)

where { fi(p)} denotes the basis functions that are piece-
wise linear on each triangle [12]. In the ith vertex of the
mesh, fi(p) of the functions { fi(p)} is 1, and 0 for all other
vertices. The term {wi} denotes the Gaussian distributed
weight. At each triangle vertex i, the value of the spatial
field is given by {wi} [12]. Thus, the SPDE approach
incorporating finite element method establishes the link
between the GP and GMRFs with feasible computation
efficacy. The precisionmatrixQ of size n×n is determined
by computing the Equation 7:

Q = τ2(κ4D + 2κ2H + HD−1H) (7)

where τ controls the variance, D and H are the n × n
matrices with Di j =

〈
fi, fj

〉
and Hi j =

〈
∆ fi,∆ fj

〉
.

The total number of triangulation vertices defines the
dimension of Q in the region of interest. Thus, Q can be
seen as a function of κ and τ. Lets define the
hyper-parameter vector as Φ = (log(τ), log(κ)). Now, it
can be said that the sparse property of Q is embraced by
the GMRFs representation built by the linear basis
functions. The inherent random field at the n vertices of
the triangulation is defined by GMRFs with µ as

s |Φ ∼ N(µ,Q−1) (8)

In the interest of mapping between the basis function
representation located at n vertex of the triangulation and
random field at resistivity meter locations having N
dimension, let us consider the projector matrix as B,
whose size is N × n. B projects the modelled inherent
random field at the vertices of the triangulation to the
data locations.

In reference to the spatial field model presented in the
preceding section, the measurements at N locations of the
spatial field can be given by Equation 9:

x |s,Φ, β, σ2
ε ∼ N(ζ(p)β + Bs, σ2

ε IN ) (9)

where ζ(p) refers to N × q matrix of covariates, β and Φ
are the estimated parameters of the maximum likelihood
approach [18], IN refers the identity matrix N × N .
If all the model parameters are learned, the joint

distributions of x and s are calculated by adopting the
technique in [21, 12], which is given by Equation 10:

s |x,Φ, β, σ2
ε , B ∼ N

( [
0

ζ(p)β

]
,

[
Q−1 Q−1BT

BTQ−1 σ2
ε I + BQ−1BT

] )
(10)

The full conditional distribution of s given by x is also
Gaussian with respect to probabilistic theory [12]. By
using block-wise inversion approach [22] and the Schur
complement, the Gaussian expressed in Equation 10 can
be mathematically written as in Equation 11:

s |x,Φ, β, σ2
ε , B ∼ N

(
µs |x,Q−1

s |x

)
(11)

where µs |x denotes the vector of posterior means and the
term Qs |x denotes the posterior Q. They are given as
follows:

µs |x = ζ(ψ)β +Q−1
s |x(σ

2
ε IN )−1(x − ζ(p)β) (12)
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Qs |x = Q + BT (σ2
ε IN )−1B (13)

Equation 12 factorizes the sparse matrix Qs |x .
However, Qs |x is not dependent on the collection of
sensor measurements [15, 12].

4 Experimental Results
4.1 GMRFs Spatial Prediction Performance

This section investigates the spatial prediction
performance of the GMRFs model. In this regard, this
evaluation was carried out by placing the resistivity meter
at an angle 90◦ and three sets of data were taken in the 49
partitions. Among the 49 partitions, 20 were used for
training the GMRFs model and 29 were used for testing.
The spatial prediction results for the three different
datasets are shown in Figure 1, Figure 2 and Figure 3.

In order to evaluate the spatial prediction performance
efficacy of the GMRFs model, Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) were used
as metrics, which was computed based on the data of
measured values and the predicted values. Table 1
tabulates the computed metric values for the three
different datasets, where it can be observed that the MAE
and RMSE are reasonably low and therefore, the results
indicate that the GMRFs model can be utilized for
localizing the rebar.

4.2 GMRFs Spatial Predictions for Measurements
Obtained from Different Angles

This section presents the results of the GMRFs
predictions for localizing the rebar based on non-invasive

Figure 1. Dataset-1: Spatial prediction using
GMRFs by taking resistivity measurements at 90◦.

Figure 2. Dataset-2: Spatial prediction using
GMRFs by taking resistivity measurements at 90◦.

Figure 3. Dataset-3: Spatial prediction using
GMRFs by taking resistivity measurements at 90◦.

Table 1. GMRFs Spatial Prediction Performance

Datasets MAE (kΩcm) RMSE (kΩcm)

Dataset-1 0.50 1.69

Dataset-2 0.61 1.60

Dataset-3 0.28 1.37
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electrical resistivity measurements. The measurements
were taken by placing the resistivity meter at different
angles such as 0◦, 30◦, 45◦, 60◦ and 90◦. The angle 0◦ is
perpendicular to the rebar whereas the angle 90◦ is
parallel to the rebar.
Figure 4 shows the spatial prediction for the

measurements taken at an angle 0◦, where it can be
observed that area of low resistivity denotes the presence
of rebar. Similarly, Figure 5 shows the spatial prediction
for the measurements taken at an angle 30◦, Figure 6
shows the spatial prediction for the measurements taken
at an angle 45◦, Figure 7 shows the spatial prediction for
the measurements taken at an angle 60◦ and Figure 8
shows the spatial prediction for the measurements taken
at an angle 90◦.
From the figures showing the spatial prediction using

GMRFs, the low resistivity area represents the influence
of the rebar located inside the concrete. It can be said
that the measurements taken at different angles such as
0◦, 30◦, 45◦, 60◦ and 90◦ can be utilized to locate the
rebar embedded in the concrete through GMRFs based
spatial prediction model. This information of rebar
placement can be used for optimal moisture sensor
installations. However, it can be observed from the
Figure 4 that the measurements taken at the angle 0◦ has
less rebar influence compared to other angles.

5 Discussion
In the reported work, we performed electrical

resistivity measurements on the concrete that has a rebar
at 2 cm depth from the top concrete surface. In order to
locate the rebar inside the concrete, whose rebar is placed
at different depths lower than 2 cm, modifications need to
be done in the sensing technique by changing the

Figure 4. GMRFs prediction at 0◦ measurements.

Figure 5. GMRFs prediction at 30◦ measurements.

Figure 6. GMRFs prediction at 45◦ measurements.

Figure 7. GMRFs prediction at 60◦ measurements.
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Figure 8. GMRFs prediction at 90◦ measurements.

operating frequency. Presently, the device used in this
work is set to perform measurements with 40 Hertz.
However, it is possible to change the frequency of the
device based on the application. Also, the rebars that are
located near the measuring surface of the concrete only
has influence during moisture measurements for 40
Hertz. Higher the operating frequency higher is the
penetration depth of electrical signals into the concrete.
With the operating frequency of 40 Hertz, given the

unknown conditions of the rebar at sewer pipes, the
electrical resistivity measurements taken at different
angles through GMRFs spatial prediction model can shed
light on the rebar location. Therefore, this information is
vital to place the electrical resistivity meter for surface
moisture estimation in sewer systems.

6 Conclusions
This paper proposed a machine learning model using

GMRFs for localizing the rebar in concrete infrastructures.
In this context, the work reported has led to the following
three major contributions:

• We experimentally demonstrated that non-invasive
electrical resistivity measurements based on Wenner
technique has influence to the embedded rebar of the
concrete and henceforth, the measured data can be
utilized to determine the rebar location.

• The proposed GMRFs model for spatial prediction
based on electrical resistivity measurements has
produced satisfactory results and the statistical
evaluation results computed from three different
datasets demonstrate that the spatial prediction
performance of the GMRF model is reasonably
accurate and can be used for localizing the rebar.

• GMRFs spatial prediction based on the
measurements at different angles such as 0◦, 30◦,
45◦, 60◦ and 90◦ demonstrated that rebar can be
identified irrespective of measurement angles.
However, there was less influence of rebar when the
measurements were taken perpendicular to the rebar.

Overall, the proposed work can improve the way
surface moisture conditions are quantified inside the
concrete sewer systems. In the future, the reported work
will be extended to perform measurements on larger
concrete having rebar meshes. Then, in-situ evaluation
will be conducted within the Sydney based municipal
sewer system. Eventually, the field results will be
reported in the appropriate journal.
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