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Abstract –  

The characteristics of dynamic construction sites 
increase the difficulty of collecting the high-quality 
geometric data necessary to achieve construction 
management activities. This paper introduces a new 
autonomous framework for 3D geometric data 
collection in a dynamic cluttered environment using 
an unmanned ground vehicle (UGV) and an 
unmanned aerial vehicle (UAV). This method first 
deploys UAV to collect photo images of a site and 
builds a point cloud of the 3D terrain of the site, 
including obstacle information. A mesh grid is then 
created from the UAV-generated point cloud, and 
simulation for laser-scan planning is conducted to 
determine the stationary laser-scan positions at 
which a mobile robot can collect data with less 
occluded views while capturing all crucial geometric 
information. Finally, optimal paths for the UGV to 
navigate among the estimated scan positions are 
generated. Promising test results regarding data 
accuracy and collection time show that the proposed 
collaborative UAV-UGV approach can significantly 
reduce human intervention and provide technologies 
for enabling construction site to be frequently 
monitored, updated, and analyzed for timely 
decision-making. 
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1 Introduction 

Collecting accurate and complete geometric data 
from construction sites is essential but challenging. It is 
particularly crucial to obtain timely, complete, and 
accurate spatial information for decision-making in 
construction projects since inaccurate, missing, or 
insufficiently detailed data can lead to uncertainty in 
decision-making. However, the dynamic and complex 
properties of construction sites not only require various 

3D geometric data but also increase the difficulty of 
efficiently and effectively collecting spatial data [1], [2]. 
It is also necessary to ensure that data collection 
activities have a minimal influence on other 
construction activities; interference between data 
collection and construction activities can cause project 
delays and low data quality, which results in poor 
decision-making and further delays [3]. 

Currently, the quality of 3D spatial data acquisition 
depends solely on the intuition or experience of the data 
collector. This experience-based data collection may not 
be practical or efficient due to the complexity of the 
process, which involves 3D spatial domain and the 
physical target placing for registration. Also, feedback 
is limited during the data acquisition, and registration 
process since the completeness of site scan is unknown 
until the full registration is completed. Furthermore, 
low-quality 3D spatial data can negatively impact 
effective decision-making, and duplicated data caused 
by largely overlapping scan ranges can result in 
extensive time and computational burdens for data 
processing. Further, it is possible that unnecessarily 
high-quality data may be collected for unimportant 
features at a job site while other geometric data 
necessary for making critical decisions may be missing. 
Therefore, a strong need exists to smoothly integrate 
automated jobsite inspection into the daily or weekly 
work cycle. If the jobsite inspection is automated, 
quality control measurements can be taken and reported 
to stakeholders automatically as well. To increase the 
efficiency of daily as-is data collection in the field, this 
study proposes a framework of the unmanned aerial 
vehicle (UAV)-assisted laser-scan location and path 
planning for an autonomous mobile robot, or unmanned 
ground vehicle (UGV). 

 

2 Related Work  

2.1 3D Reconstructions from UAV Images 
and Cooperation with UGV  
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Extracting 3D geometric data from the scene of 
interest [4] is very valuable for activities such as 
monitoring construction progress [5], [6] and defect 
analysis [7], [8]. The 3D reconstruction process has 
advanced dramatically due to recently developed 
computer vision-based technologies. One method for 
producing a 3D sitemap is photogrammetry. 
Photographs provide useful information about the 
construction progress that can be automatically 
processed and converted to 3D point clouds using 
Structure from Motion [7]-[9]. Due to stability and 
payload issues, UAVs typically use a photo camera to 
capture scenes and build a 3D point cloud with 
photogrammetry. Since a ground robot can be more 
easily stabilized with higher payloads than an aerial 
robot, it can collect a higher quality of 3D geometry 
data.  

As a means of collecting 3D geospatial information, 
UAVs and mobile robots share the advantage of being 
able to collect geospatial information without exposing 
surveyors or device operators to hazardous areas. 
However, both technologies also have distinct 
disadvantages caused by their measuring positions. The 
ground-based measurement methods used by mobile 
robots have blind spots behind vertical obstacles and 
cannot capture horizontal surface data located higher 
than the robots. In contrast, UAVs generate blind spots 
under horizontal obstacles (e.g., roof). Furthermore, the 
overall accuracy of the point cloud generated by UAVs 
is lower than that of the ground-based generated point 
cloud even though UAVs possess operational 
advantages over the ground-based approaches regarding 
navigation. 

 

2.2 Scan Planning and Autonomous Scanning 

A widely used technology in many field applications, 
Light Detection and Ranging (LiDAR) can measure a 
wide area with higher resolution and accuracy compared 
to photographs and is generally not limited by 
surrounding lighting and weather conditions during its 
operation. However, multiple scans from different 
locations must be taken and registered because of 
limited data capture coverage and occlusions. To 
register multiple scans in one coordinate system, many 
physical targets or markers are typically pre-installed in 
the overlapping scan area, which requires substantial 
cost, labor, and time [9]. A well-designed scanning plan 
minimizes data collection time while capturing all 
required geometric information. Latimer et al. [10] have 
used the concept of “sensor configuration space” to 
automate laser-scan planning. The configuration space 
is a 3D volume in which specific geometric features, or 
“information goals,” are displayed on an imaging sensor. 
Their algorithm clusters information goals and generates 

configuration spaces for each cluster. It then selects 
sensing locations and plans the “minimum-time” path 
for moving the scanner to this location. Some studies 
have shown that the laser-scan planning problem can be 
solved using as-designed models [11], [12]. However, 
current practices still manually collect and process the 
3D point clouds of large-scale environments, which 
requires many scans and often results in high labor and 
time costs, human errors, and inconsistent data quality. 
Automating some or all of the data collection and 
registration processes can mitigate these problems.  

Automatic scanning has recently gained strong 
interest among academics and industry technology 
developers. Various sizes and types of LiDAR have 
been equipped to vehicles and mobile or aerial robots, 
and the simultaneous localization and mapping (SLAM) 
technique has been utilized in their approaches in 
generating dynamic point clouds[13], [14]. In robotics, 
SLAM is a popular method for enabling a robot to 
estimate its current position and orientation from a map 
of the environment created by LiDAR or cameras. The 
problem with this approach is that most SLAM systems 
are commanded manually; humans must decide where 
to go and how to perform complete scanning of a large 
site [15], [16] 

 

3 Objective  

The objective of this study is to explore a 
methodology that carries out multiple automation 
including robot navigation, laser scanning, and 
registration of multiple point clouds collected by 3D 
laser scanners mounted on UGV. To achieve the 
research objective, the following primary tasks are 
proposed. First, UAV is deployed to obtain an initial 3D 
map of the cluttered site. Second, optimal scan locations 
are estimated by simulation, using a mesh grid applied 
to the UAV-generated map and an occupancy map 
generated based on the gradient value of the terrain. 
Finally, the optimal navigation path is determined from 
among the simulated scan locations. The overall 
framework of the proposed approach is shown in Figure 
1. 

 

4 Methodology 

4.1.1 System Architecture 

In this study, a UAV (DJI Mavic Pro) equipped with 
a 1/2.3” complementary metal-oxide semiconductor 
sensor and a hybrid LiDAR system mounted on the 
Ground Robot for Mapping Infrastructure (GRoMI) are 
used, as shown in Figure 2. The two major parts of 
GRoMI are a laser scanning system and a mobile 
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Figure 1. The overall framework of the collaborative UAV-UGV data collection and visualization 
 

platform. The upper laser scanning system includes four 
vertically mounted 2D SICK line laser scanners to 
collect 3D mapping information. A horizontally 
mounted 2D line laser scanner is to estimate the robot’s 
location and pose information on a 2D plane and a 
regular digital camera to obtain the RGB data of the 
scenes. The lower mobile platform system, used 
primarily for navigation, has object avoidance sensors, 
an IMU, and a navigation camera. The robotic system 
offers the following functionalities: 1) point-cloud data 
acquisition while the robot is moving; 2) RGB data 
collection through a DSLR camera, and 3) autonomous 
navigation. 

The proposed framework allows the robot to 
automatically collect the geometry data for construction 
progress monitoring and analysis through LiDAR-based 
SLAM and automatic point cloud registration methods. 
To avoid the potential of interfering with construction 
workers and other activities, the data collection has been 
done after daily work is completed. In addition, 
collecting scan data during construction work is not 
meaningful because the site geometry is rapidly 
changing and blocked by moving objects (e.g., workers 
and equipment). In this study, the tested environment is 
limited to the outdoor construction site since this 
approach is using UAV-generated map data as prior 
information for UGV’s scan and path planning. 

 

4.1.2 UAV Scan 

The factors affecting the performance of the 

photogrammetry created from UAV include 1) ground 
control points (GCPs); 2) ground sampling distance 
(GSD); 3) overlapping ratio; and 4) image processing 
methods.  

 

 

Figure 2. UAV (top) and ground robot systems 
(below) 
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Because this study is intended for autonomous 3D as-is 
data collection in which there is no human intervention, 
and GCPs were not considered. Referring to the number 
of pixels per unit length, GSD is a factor related to the 
flight level, focal length, and resolution of the camera. 
The GSD can be written as the following Equation (1): 

GSD =
𝐻

𝑓
 𝜇 (1) 

Where H is flight height above ground level (m), f is a 
focal length (mm), and μ is pixel size (μm). Since the 
GSD value directly affects the results of the 
photogrammetry, it is important to determine the flight 
altitude. The overlapping ratio also affects the accuracy 
of the photogrammetry. Both GSD and overlapping 
ratio should be determined when the flight plan is made. 
In this study, flight altitude was set to 30 m above 
ground level to determine the GSD to be 1 cm. Using 
the images obtained from the UAV, this study processed 
photogrammetric data to generate a point cloud, as 
shown in Figure 3. 

 

Figure 3. UAV-generated 3D point cloud map of 
the construction site using image data 

 

4.1.3 Scan-Spot Selection for the Mobile 
Robot 

The scan planning method proposed by this study is to 
locate satisfactory stationary scanning locations for 
GRoMI by evaluating the candidate scan locations with 
a line-of-sight simulation of a 3D laser scanner. 
Considerations for selecting these locations include 1) 
the surface point with a large field-of-view of the 
surroundings with minimal obstructions; 2) the minimal 
overlapped area between scans; and 3) the most 
complete possible scan areas for the entire site. 
Evaluation criteria include a quantity of point data and 
the amount of occlusion, which differ depending on 
each scan location. Based on these criteria, a number of 
scans and data collection time can be reduced while 
maintaining satisfactory area coverage and level of 

detail. The scan-spot selection process is accomplished 
through the following four steps: 

1) Divide the job site into cells (1 m by 1 m each) 
and compute the gradient between neighbor 
cells for each cell, 

2) Create a 2D gradient map and an occupancy 
map to find the movable area at a site, 

3) Run a line-of-sight simulation for every 
candidate scan location cell and count how 
many points and how few occlusions can be 
achieved, and 

4) Find candidate scan locations where more 
point-cloud data and less occlusion can be 
obtained.   

These four steps are described in detail below. 
 

A. Gradient Map Generation  

The first stage of the scan planning process requires 
obtaining an initial 3D terrain model of the target site. 
In general, it is difficult to use existing or as-designed 
3D data because as-is site conditions are generally 
different from the existing information. Therefore, the 
UAV-generated point cloud is used as a guidance map 
to compute the scan locations and to generate a 
navigation path for GRoMI. The gradient-based map is 
used to simulate a series of scan views for the robotic 
scanning system at all scan locations before GRoMI 
conducts any data acquisition tasks. At first, the UAV-
generated point cloud of the construction site is divided 
into 1 m by 1 m cells. Gradients between neighbor cells 
are then computed. Figure 4 demonstrates the gradient 
map of a test site. It can visualize which cells are 
flattened, tilted or occupied by obstacles. The blue color 
area is relatively flat with a small gradient value where 
the mobile robot can be better balanced horizontally for 
laser scanning, and the red color area is relatively 
inclined with a more considerable gradient value where 
the mobile robot should avoid. 

 

Figure 4. Gradient map of a test site 
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B. Occupancy Map for Candidate Scan Locations 

Based on the generated gradient map, the movable 
and flat areas in the site are defined by setting a specific 
gradient threshold value. The movable area is the place 
where GRoMI can move around because the area has a 
relatively small gradient value, and it is used for path 
planning for GRoMI. A reference point is required for 
selecting optimal locations. This study uses the starting 
position of GRoMI as the reference point. Figure 5 
shows the occupancy map of the movable areas, while 
GRoMI’s initial location is shown as a small red dot in 
the target site. Occupancy means whether the obstacle is 
present at each cell.  

 

Figure 5. Occupancy map for the movable area 
 

C. Line-of-Site Simulation 

The next step is to compute the visibility of each 
candidate scan location. The ray tracing algorithm [17] 
is used to calculate the line-of-sight visibility. At first, 
the mesh grid is created from the UAV-generated point 
cloud. The 3D ray tracing for each laser line is then 
simulated. It is possible to find the cross points between 
laser lines and contour of the terrain. These points can 
be classified into two groups. The first is the simulated 
laser points, which are the minimum distance points 
from the specific scan location, has one point per laser 
line. The others are occluded points. This simulation 
lists the scan locations with the maximum number of 
points from the laser scanner and the minimum number 
of occlusion points. In addition, the greedy cover 
algorithm [18] is utilized to select an approximation for 
the optimal number of scan locations necessary to cover 
the entire site. It chooses the scan location that can see 
the largest amount of the boundary and then continues 
selecting the scan locations to cover the remaining area 
from the potential viewpoints. This process repeats until 
either the entire site has been covered or the iteration 

reaches the approximation for the optimal number of 
scans. 

 

D. Find Satisfactory Scan Locations 

The scan planning simulation calculates the number 
of laser points and occlusion points during the previous 
steps. Among these locations, removing some of the 
scan locations within a specific distance is required to 
minimize the overlapped area caused by the redundancy. 
The specific distance differs depending on the size of 
the target site; a 10 m distance is used for our test bed. 
After the simulation, four of the optimized scan 
locations were estimated as shown in red dots in Figure 
6. 

 

Figure 6. Identified scan locations from the scan 
planning simulation with UAV’s point cloud (top 
view) 

 

4.1.4 Automatic Registration of Scans 

The laser-scan data from the horizontal LiDAR is 
used by the Hector SLAM algorithm to estimate the 
position and orientation of GRoMI on the horizontal 
plane. The Hector SLAM algorithm, developed by 
Kohlbrecher et al. [19], is employed in this study to 
perform laser-scan matching between the laser scans 
and progressively built maps to estimate the robot’s 
postures and planar maps of the environment. In 
addition, the SLAM-driven localization approach is 
used to automatically register the point clouds obtained 
from each stationary scan location [20]. 

 

5 Results  

In this study, a real-world construction site at the 
Georgia Tech campus was selected as a cluttered 
environment for the test. Three devices, UAV, GRoMI, 
and a commercial laser scanner, were used to build 3D 
point clouds of the site. To generate a 3D point cloud, 
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UAV used the photogrammetry technique, and a commercial laser scanner used sphere targets for point  

 

Figure 7. Registered 3D point cloud of the test site and GRoMI’s scan and moving paths 
 

cloud registration. As previously described, GRoMI 
conducted the SLAM-based automatic registration. 
Figure 7 shows the automatically registered RGB point 
clouds of the target site made by GRoMI. 

Table 1. Error assessment 

 GRoMI 
Mean absolute error (MAE) 1.97 cm 

Root mean square error (RMSE) 2.31 cm 

Table 2. Required time from data collection to 
registration 

 GRoMI 
Commercial laser 

scanner 
Pre-processing 35 min 10 min 

Operation 30 min 40 min 
Post-processing 0 min 40 min 

In this study, the commercial laser scanner is 
considered the ground truth to measure the registration 
error of the registered point cloud collected by GRoMI 
since the terrestrial laser scanner has the highest 
accuracy of ±3 mm. As shown in Table 1, the mean 
absolute error (MAE) between the GRoMI and 
commercial laser scanner point clouds is 1.97 cm, and 
the root mean square error (RMSE) is 2.31 cm; MAE is 
an average distance between two point cloud sets, and 
RMSE is a standard deviation between two data sets. 

Table 2 shows the required time to build a 3D 
registered point cloud with each device. The pre-
processing includes the UAV’s scanning time and path-
planning processes for GRoMI and a target placing and 
laser preparation time for the commercial laser scanner. 
Operation refers to the data collection process with each 
device, and post-processing is the point-cloud 
registration process. During the 35 min of pre-
processing for GRoMI, 10 min of UAV operation, 20 
min of point-cloud generation, and 5 min of scan 
planning are included. The clear advantage of using 
GRoMI with UAV is the shortened processing and 
operation time. A commercial laser scanner has slightly 
higher accuracy but requires significantly more time 
than GRoMI for the target relocation and manual point 
clouds registration.  Also, it cannot guarantee the 
complete scan of the job site since selecting scan 
locations is based on human intuition. Conversely, the 
advantage of using GRoMI is the planning scan 
locations and paths created by using a UAV-generated 
point cloud. Thus, it can realize more favorable results. 
Also, it does not need post-processing (registration) 
because it is registered automatically using the robot 
localization data (i.e., SLAM). Therefore, the proposed 
aerial mobile robot-based autonomous data acquisition 
approach resulted in higher time and cost efficiencies 
compared with the traditional terrestrial LiDAR-based 
data acquisition method. 
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6 Discussion and Conclusion  

In general, effective mobile robot path planning for 
unknown and clustered environments is challenging 
because no a priori information of site conditions exists. 
To overcome these problems, this paper introduces an 
autonomous method for 3D point-cloud generation 
through the collaboration between UAV and UGV. 
From the test results, both commercial laser scanner and 
UGV yielded satisfactory accuracy. However, the 
proposed method, with UGV (GRoMI), is more 
effective in post-processing for point-cloud registration 
using the SLAM-driven robot localization data. The 
advantages of using the proposed approach over 
traditional methods include (1) to automate the point-
cloud acquisition process by finding the robot’s 
preferred scan locations and planning navigation paths 
with the aid of UAV’s site map; (2) to remove 
redundant scans and reduce time and cost for data 
collection; (3) to reduce missing areas of the target site; 
and (4) to automatically register multiple scans.  

The proposed framework enables mobile robots to 
robustly and effectively collect high-quality site data, 
thereby enhancing site inspection and monitoring 
capabilities and reducing necessary time and cost. Since 
the robot can frequently update the geometric 
information of a site, it can be used for several 
construction management applications including virtual 
site access from remote places, progress monitoring, 
defect management, safety, legal dispute, supply chain 
management, as-built BIM, and more.  

However, the implementation of the proposed 
method is still limited by its dependence on UAV’s 
generated map data. As such, pre-processing for the 
proposed approach requires more time than the 
traditional 3D scanning process. For future study, the 
current robotic approach should be further investigated 
for cases when UAV data is not available (e.g., indoor 
construction). In this case, the robot must be able to 
itself estimate preferred scan locations. 
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