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Abstract – 

On a construction site, progress deviations can 

cause fatal damages to the project and stakeholders. 

Therefore, accurately monitoring and managing the 

construction environment is essential. Efficiently 

detecting and recognizing the changes will be the key 

factor for monitor and management goals. In this 

research, we present a framework for detecting and 

recognizing changes in repeatedly collected, massive 

3D point cloud data from a mobile laser scanning 

system. The framework mainly consists of three parts; 

1) mapping system; 2) analysis system; 3) Hadoop 

platform. Collecting point clouds is repeatedly 

executed to detect the changes over different time 

epochs. For collecting point cloud data, a mobile laser 

scanning system was developed based on Robot 

Operating System (ROS). Detecting changes between 

repeatedly collected point clouds have been processed 

based on Hadoop platform. Finally, detected changes 

are then implemented to a semantic mapping process 

which is based on deep learning. Developed 

framework have potential for wide application in 

massive point cloud data processing, construction site 

monitoring, street level change detection, and facility 

management. 
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1 Introduction 

Due to the remarkable developments of sensor 

technologies and processing algorithms for point cloud 

data acquisition and registration, mapping over large 

spaces became more accessible than ever before. Over 

the last few decades, research groups focused on 

formulating a metric map, within which the mapping 

system explores the area without any information and 

gets self-localized using, Simultaneous Localization and 

Mapping (SLAM) techniques. The next step in mapping 

technology is the ability to produce maps directly 

understandable by humans, semantic mapping, which 

consequently integrates the robots into human 

environments [1]. 

From civil engineering perspective, metric and 

semantic maps from various data sources have been 

applied to environmental monitoring [2], building change 

detection ([3], [4]), disaster management ([5], [6]) and 

construction/infrastructure monitoring ([7]–[10]). The 

above mentioned applications share a primary analysis 

technique which is 3D change detection. 3D change 

detections has growing demands and possibilities for 

applications in environmental and civil engineering fields 

[11]. 

Despite the recent developments  and possibilities, 

huge size of 3D point cloud data often leads to system 

slowdown or failure [12]. To overcome the issues, [13] 

and [14] introduced a distributed system to process point 

cloud data in a high memory cloud computing 

environment. However, it was costly to set the hardware 

environment. [14], [15] and [16] introduced a general 

solution for point cloud data processing based on Hadoop. 

In terms of cost, Hadoop had advantages, however, 

studies had limitations on analytic operations. Most 

previous studies mostly handle well-constructed data or 

operate on incompletely constructed data for distributed 

computing frameworks. Also, previous studies carry out 

research on only a small fraction of the whole process 

from beginning to the end. 

In this research, practical framework including point 

cloud acquisition to point cloud management and 

analysis was conducted. The contributions of this paper 

is as follows: (1) ROS based 3D mapping system, which 

consists of three 2D Laser Range Finders (LFR) was 

introduced; (2) Hadoop based massive point cloud 

analysis system, which interacts with users using web 

interface was developed; (3) Deep learning algorithm 

was applied for point cloud based semantic segmentation 

and the feasibility was verified. 

2 Integrated Framework Design  

Our integrated framework consists of three main parts. 

Firstly, the mapping system based on ROS, automatically  

and repeatedly achieves metric maps. Second, analysis 
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system detect changes from collected metric maps. 

Additionally, semantics were provided to the detected 

changes based on deep learning algorithm. Lastly, 

detecting changes and visualizing point clouds has been 

operated upon developed Hadoop platform. 

  

Figure 1. Integrated framework architecture 

2.1 Design of Mapping System  

The ROS platform is extensively used in this research 

since it can simply interconnect multiple programming  

languages and machines in seamless way. Due to this fact, 

ROS is the most popular robotics platform. It provides a 

set of tools, libraries and drivers in order to help 

developing robot applications, also with hardware 

abstraction [17]. In this research, the mapping system is 

based on ROS using packages for collecting data from 

sensors, constructing map from data and navigating 

through the map. 

The mapping system is equipped with three 2D LFRs  

(UTM-30LX, Hokuyo, Osaka, Japan). It provides a 

scanning range of 270° with angular resolution of 0.25°. 

It can measure distances up to 60 meters, but without 

guaranteed reliability. One full scan cycle lasts for 25 

milliseconds, which supplies a 40Hz measurement  

frequency. Pioneer 3DX mobile robot from ActivMedia 

Robotics, provides a stable platform for LRF sensors 

(Figure 2).  

Over past decades, the number of SLAM algorithms 

were developed and the performance of the algorithms 

were compared . Popular SLAM algorithms such as 

GMapping [18], Karto SLAM [19], Hector SLAM [20], 

and Google Cartographer [21] were compared each other 

with diverse approaches ([22]–[26]). Evaluation results 

on every paper indicates that Google Cartographer 

delivers most accurate and precise results compare to 

others. Therefore, in this research Google Cartographer 

was used to construct the map, which is a robust solution 

on most input sequences. Cartographer provides real-

time SLAM in 2D and 3D across multiple platforms and 

sensor configurations. It is a graph-based solution which 

stores a map of environment as associations for nodes 

and edges. Nodes represent a submap which has been 

created using scans, and edges represent transformations 

between corresponding submaps . 

Using previously constructed map and navigation 

stack from ROS, the mapping platform autonomously 

navigates the given environment safely based on proper 

operation. The Adaptive Monte Carlo localization (amcl) 

[27] package was used to localize the platform itself in 

the previously constructed map. Additionally, the 

‘move_base’ package [28], which links the global and 

local planner together, was used to accomplish 

navigation tasks. Standard A* path planning algorithm 

was used for global path planning and Dynamic Window 

Approach (DWA) [29] was used for local path planning. 

To perform navigation task efficiently, essential goal 

point needs to be set for our system. To achieve the goal 

points, morphological skeletonization [30] was applied in 

the 2D occupancy grid map. Among the exported 

candidate points from skeletonization, the goal points for 

the navigation stack was selected manually. 

 

Figure 2. Mapping platform 

2.2 Design of Analysis System  

Semantic mapping explains the surrounding 

environment with various components, provides intuitive 

understanding of the situation to humans and bridges the 

gap between robots and humans. This could improve 

efficiency on conventional applications in infrastructure 

monitoring fields, since it can reduce the human labor on 

manually giving attributes to geometric information. 

Recent developments in autonomous driving and 

robotics applications accelerate the necessity of point 

clouds semantic mapping. However, the development 

stage for point cloud is far behind image segmentation 

using Convolutional Neural Networks (CNNs). There 
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have been only a few studies related to semantic mapping 

with 3D point datasets.. PointNet [31] and PointNet++ 

[32] are the pioneers in this area which introduces 

efficient and flexible ways to deal with point cloud data. 

In this study, PointNet++ was implemented to 

analyze the geometric point cloud data. PointNet++ 

processes a set of points sampled in a metric space in a 

hierarchical manner. It first partitions the set of points 

into overlapping local regions by the distance metric of 

the underlying space. As well as extracts local features 

capturing fine geometric structures from small 

neighborhoods; such local features are further grouped 

into larger units and processed to produce higher level 

features. This process is repeated until algorithm obtains 

the features of whole point cloud data. PointNet++ 

presents more robust result regardless of the density [32]. 

2.3 Design of Hadoop Platform 

The overall architecture of our Hadoop platform with 

the three main layers is depicted in figure 3. The 

framework consists of 3 layers: (1) Storage layer; (2) 

Operation layer; (3) Interactive layer. The storage layer 

is optimized by indexing techniques to accelerate the 

Hadoop Map-Reduce applications. The operation layer is 

equipped with two powerful modules including “Change 

Detection” and “3D Geometric Model” for efficient  

monitoring. In this study, only change detection module 

was used. More details for 3D geometric model will be 

introduced in our future paper. Lastly, The Interactive 

layer enables users to approach a distributed computing 

model on Hadoop without requiring deeper related 

knowledge. 

 

Figure 3. Hadoop platform architecture 

3 Implementation and Experiment 

The overview of this research is as follows. 

• Using the mapping platform 3D point cloud map 

was constructed.  

• Based on the pre-constructed map, mapping system 

navigates the manually defined goal points 

automatically and constructs another map. 

• Change detection was processed based on Hadoop 

platform between 2 maps. 

• Semantic segmentation was implemented to 

detected changes. 

3.1 Mapping System Experiment 

3.1.1 Calibration  

Calibration is the process of estimating the 

parameters that need to be applied to correct actual 

measurements to their true values. According to the 

parameter types, calibration also can be divided into 

intrinsic and extrinsic forms. This research assumes that 

the intrinsic sensor calibration is completed and focuses 

on the extrinsic calibration of multiple LRF sensors to 

identify the rigid transformation from each sensor frame 

to the platform body frame.  

Figure 4(b) shows three 2D LRFs in the mapping 

system and the configurations of the three coordinate 

systems. The middle LRF is mounted horizontally, other 

two LRFs are mounted vertically to scan the profiles of 

the surrounding environments. For carrying out the 

calibration, the double-deck 3D calibration facility was 

developed as shown in figure 4(c). The alignment errors 

usually are computed by least squares using a set of target 

points captured from the scanners. Since this research is 

not focused on calibration, further information about the 

least squares system equation and experimental results 

can be referred from [33]. 

  

Figure 4. Double-deck calibration facility 
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3.1.2 SLAM and Navigation 

The implementation of Google cartographer SLAM 

was conducted in seminar rooms and corridors in the 

Engineering building at Yonsei University. Map was 

built twice in the same location with intentionally caused 

changes. Figure 5 shows two types of intentionally 

caused changes, which is newly added space and added 

furniture in existing space. Figure 5(a) is an added 

seminar room which can be seen in the left part of the 

figure 6(b). Additionally, chairs were added in figure 5(b) 

which were located in middle of the corridor as shown in 

figure 6(b). Figure 6 shows the map where high intensity 

values are represented bright.  

To build the second map, consecutive goal points 

were manually selected among the junctions from the 

skeletonization result of pre-constructed map. Figure 7(a) 

shows the skeletonized result, and red dots in figure 7(b) 

shows the path consists of manually selected goals .  

 

Figure 5. Added environments in the second map 

  

Figure 6. (a) First map; (b) Second map 

  

Figure 7. (a) Skeletonization results;  

(b) manually selected goal points  (red dots) 

3.2 Analysis System Experiment 

3.2.1 Change Detection  

Change detection between two maps were processed 

based on the Hadoop operation layer. The Hadoop cluster 

was configured with 8 nodes of the same capacity, i.e. 

Intel Core i5-2300 2.80GHz*4, 16GB memory.  

Figure 8 shows the two maps and change detection 

result, using the web User Interface (UI) based on 

Hadoop platform. Detail explanation for the WebUI will 

be in our future paper. The red and green part represents 

the first and second map respectively. Blue dots are the 

parts which have been detected as a change. Developed 

platform can simply upload and overlay different point 

clouds and visualize them. The detailed description for 

the change detection algorithm is introduced in section 

3.3.  

 

Figure 8. Change detection result in webUI 
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3.2.2 Semantic Mapping  

For training the model for point cloud segmentation 

for semantic scene labeling, the Stanford Large-Scale 3D 

Indoor Spaces Dataset (S3DIS) [34] was used. The 

dataset was acquired using Matterport scanners in 6 areas 

for 271 rooms. 13 classes were annotated to each point. 

The model was trained using S3DIS from area 1-5 and 

tested using area 6. The overall per-point accuracy of the 

trained segmentation model was 83.4%. Per-point 

accuracy compares the predicted label and real label for 

each point. 

Trained model was implemented to the map which 

was detected as a change between the first and second 

map from mapping system. To evaluate the accuracy of 

the semantic segmentation result, annotations were 

manually assigned to each point in the map. Figure 9 

shows the semantic segmentation result for seminar room.  

 

Figure 9. Semantic mapping result (point cloud)  

Table 1.  Semantic mapping accuracy 

Overall accuracy 72.76% 

classes IoU 

Ceiling 0.502 

Wall 0.721 

Floor 0.527 

Door 0.050 

Chair 0.000 

Table 0.000 

 

Overall per-point accuracy for experimental data was 

72.76%. IoU in Table 1 stands for Intersection over 

Union, which is calculated by equation (1). 

𝐼𝑜𝑈𝑖 =
𝑇𝑃𝑖

𝐹𝑃𝑖 + 𝐹𝑁𝑖 + 𝑇𝑃𝑖
 (1) 

Where TP is the true positives FP is the false 

positives FN is the false negatives and i stands for each 

class such as ceilings, wall etc. 

In figure 9, ceiling points were colored in deep green, 

wall points in blue, floor points in sky blue and doors in 

pink but not visible in the figure. As listed in table 1, table 

and chairs were not detected. Firstly, the top surface of 

the table was not collected enough in our data, since the 

height of the table top and the sensor was similar. 

Secondly, there were too many sensor noise for chair data. 

Compared to the S3DIS training dataset, the data 

acquired from our mapping system contains more noise 

since it was acquired while moving through the 

environment and no additional process were conducted 

after acquiring. To segment the movable objects , such as 

table, chair, sofa, bookcase and boards , further 

improvements are necessary for the mapping system.  

3.3 Hadoop Platform 

To optimize the storage layer in the Hadoop platform, 

Sort-Tile-Recursive (STR) algorithm [35] was applied to 

construct a global index. STR groups nearby points in 

each minimum bounding rectangle (MBR) which does 

not exceed 128MB. After constructing a global index, an 

Octree local index is also implemented on each block.  

Based on the storage layer, change detection was 

tested for the operation. Change detection is based on a 

soft-join algorithm which is an application of point-to-

point change detection in a distributed system (Figure 10). 

The interactive layer was developed based on web UI. 

Interface provides simple access to users and visualizes 

massive point cloud data directly from Hadoop, which is 

useful for analytical processes. 

 

Figure 10. Change detection on Hadoop platform 

4 Conclusion 

An integrated framework for processing massive 

point cloud data was introduced in this research. It is 
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consisting of three main parts: mapping system; analysis 

system; and Hadoop platform, for the integrated 

framework developed as a prototype. However, this 

comprehensive system is a pioneer work related to 

massive point cloud data producing and processing. 

Future works for this prototype version will be focused 

on each system. For mapping system, additional sensors 

which can provide more information, should be 

implemented. Also, navigation algorithms will be 

improved for fully automated system. For analysis 

system, change detection process need to be focus on 

algorithm perspective, since it is now focused managing 

massive point cloud data. Applied semantic mapping 

process will also be included in the process more 

practically. 
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