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Abstract – 

Automated, real-time, and reliable equipment 

activity identification on construction sites can help to 

minimize idle times, improve operational efficiencies, 

and reduce emissions. Many previous efforts in 

activity identification have explored different 

machine learning algorithms that use time-series 

sensor data collected from inertial measurement units 

mounted on the equipment. However, machine 

learning algorithms requires large volume of training 

data collection from the field, as inadequate and 

smaller amounts of data results in model overfitting. 

This study proposes an automatic and real-time 

activity recognition framework by using data from 

multiple IMUs attached to equipment’s moving and 

articulated parts. In doing so, first a time-series data 

augmentation technique called window-warping (WW) 

is introduced to generate synthetic training data from 

a smaller volume of field-collected data. Two 

supervised machine learning algorithms, artificial 

neural network (ANN), and K-nearest neighbour 

(KNN) were trained and evaluated using the 

augmented training data to identify equipment 

activity. The developed data augmentation 

methodology is validated using a case study of an 

earthmoving excavator. The results show the 

potential for using time-series data augmentation in 

training machine learning algorithms for 

construction equipment activity recognition using 

minimal data collected from the field.  
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1 Introduction 

Automated, and real-time activity recognition of 

construction equipment plays an important role in 

construction operation analysis by enabling productivity 

monitoring [1-2], preparation of input for near real-time 

simulation [3–5], and automated cycle-time analysis [2-

6]. It is also a key necessity for real-time safety 

applications on the construction site [7–9] and for 

automating environmental assessments [11-12]. 
Equipment activity identification can also enabled 

several applications in AR/VR visualization [12–15]. 

Despite being a necessary component for all the 

aforementioned applications, activity identification in 

construction site has historically been a manual effort. 

The manual approach of observing, recording, and 

analysing an equipment’s action is prone to human error 

and requires excessive time, effort, and cost. In order to 

overcome these shortcomings, past efforts have 

investigated vision-based, as well as inertial 

measurement unit (IMU)-based activity recognition 

frameworks to automatically identify the activities that 
are performed by construction equipment in real-time or 

near real-time. Previous efforts in IMU-based 

frameworks have mostly used a single IMU attached to 

the equipment’s cabin in order to capture the vibration of 

the equipment [9–11]. The vibration data were then used 

to train different machine learning algorithms that then 

classified an equipment actions. However, training 

machine learning algorithms requires a large volume of 

initial training data, which can be challenging to acquire 

from an active construction site due to the cost and effort 

inherent in such an endeavour that requires equipment 
and their operators to perform tasks that are extraneous 

to the work involved with their operation. Collecting data 

from an equipment during the course of its regular 

operations results in data that needs to be manually 

labelled and data that is non-uniformly distributed over 

the various activities that the equipment could be 

performing. These factors result in low-quality training 

data that result in poor performance of the training 

algorithm. Moreover, a small volume of training dataset 

poses a challenge in identifying a higher number of 

activities performed by the equipment as it creates an 

imbalance in the dataset. This paper describes a means 
for increasing the amount of training data for machine 
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learning algorithms for equipment activity identification 

by using the technique of data augmentation.     

In the machine learning domain, specifically in object 

recognition, handwriting recognition, and speech 

recognition, data augmentation is a popular technique to 

generate synthetic training data when only small training 

sets are available [17]. By augmenting training data, 

errors of the classifiers due to variance can be reduced. 

The issue of model overfitting due to a dearth of learning 

examples can be overcome by introducing synthetic data 

generated by data augmentation. Even though literature 
is rife with examples that have applied data augmentation 

techniques for images, handwriting, and speech, data 

augmentation of time series data for classification 

purposes has not be fully explored yet.   

This paper thus presents a real-time and automatic 

activity recognition framework for construction 

equipment using augmented data from multiple IMUs 

that mounted to articulated parts of the equipment. A time 

series data augmentation technique called window-

warping (WW) is introduced to generate synthetic 

training data, thereby eliminating the need for obtaining 

large volume of field data. The developed framework is 
validated by carrying out a case study using an excavator 

from an actual earthmoving site. 

This paper is organized as follows. First, a review of 

the state-of-the-art in IMU-based construction equipment 

activity recognition and data augmentation is provided to 

set the context for this research and highlight research 

gaps. Then, the methodology section discusses the main 

components of the proposed framework. Next, the results 

of the case study are presented. Finally, the results and 

main contribution of this work is summarized along with 

the limitations and future directions of this research.   

2 Related Work 

The framework presented in this paper consists of an 

activity recognition platform for construction equipment 

using multiple IMUs and a time-series data augmentation 

technique. This section provides a comprehensive 

literature review in IMU-based equipment activity 

recognition and data augmentation techniques in 

classification. 

2.1 IMU-based Equipment Activity 

Recognition 

IMU-based approaches for equipment activity 

recognition leverage the location and/or the vibration of 

the equipment in order to identify its activity at a specific 

time. El-Omari and Moselhi (2011) [18], and Ergen et al. 
(2007) [19] proposed a framework combining radio 

frequency identification (RFID) and global positioning 

system (GPS) technology for automated localization and 

tracking of construction equipment. Vahdatikhaki and 

Hammad (2014) [5] enhanced the performance of 

equipment state-identification approach by adopting a 

multi-step data processing framework combining 

location and motion data. Song and Eldin (2012) [20] 

developed an adaptive real-time tracking of equipment 

operation based on their location to improve the accuracy 

of project look-ahead scheduling. Although location-

based operation tracking can identify the state and 

operation of construction equipment at a coarse level 

(e.g., idle and busy states), it is incapable of classifying 
the activities performed by equipment when it is 

stationary. Such limitations of location-based operation 

tracking have inspired researchers to explore the 

feasibility of both independent [10] and smartphone 

embedded [9 - 10] inertial measurement units (IMUs) for 

automated equipment activity recognition. Ahn et al. 

(2015) [10] used a low-cost accelerometer mounted 

inside the cabin of an excavator to collect operational 

data from an earthmoving worksite. Several classifiers 

were tested to classify three different states (i.e., engine-

off, idle, and busy) of an excavator. Mathur et al. (2015) 

[6] utilized smartphone-embedded accelerometer by 
mounting it inside an excavator cabin to measure various 

activity modes (e.g., wheel base motion, cabin rotation, 

and arm movement) as well as duty cycles. Akhavian and 

Behzadan (2015) [16] adopted a similar approach by 

attaching a smartphone to the cabin of a front-end loader 

to collect accelerometer and gyroscope data during an 

earthmoving operation, upon which several classification 

algorithms (i.e., ANN, DT, KNN, LR, SVM) were tested. 

Their study also investigated the impact of different 

technical parameters such as level of details, 

segmentation window size, and selection of features on 
the performance of different classification algorithms. 

The same approach and technical parameters were 

further extended for construction workers [21].  

2.2 Data Augmentation for Classification 

Numerous data augmentation techniques have been 

tried and tested in computer vision [24–28] and speech 

recognition domain [29–31]. Charalambous and Bharath 

(2016) [24] introduced a simulation-based methodology 

which can be used for generating synthetic video data and 
sequence for machine/deep learning gait recognition 

algorithms. D’Innocente et al. (2017) [22] proposed an 

image data augmentation technique which zooms on the 

object of interest in an image and simulates the object 

detection outcome of a robot vision system. The goal of 

this paper was to bridge the gap between computer and 

robot vision, utilizing data augmentation. Most of the 

advanced object recognition algorithms utilizes various 

image augmentation techniques on images, such as 

flipping, rotating, scaling, cropping, translating, adding 

Gaussian noise etc. in order to generate synthetic data for 
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training and testing machine/deep learning algorithms 

[25,26,30]. Moreover, in the speech recognition domain, 

studies have applied techniques such as vocal tract length 

normalization [27-28], speech rate, and frequency-axis 

random distortion [27], label-preserving audio 

transformation [29] to improve the performance of 

learning algorithms.  

Despite the frequent implementation of data 

augmentation techniques in the computer vision and 

speech recognition domains, data augmentation in time 

series classification have not been deeply investigated yet 
[31]. Guennec et al. (2016) [32] proposed two time series 

data augmentation techniques; window slicing, and 

window-warping to train a convolutional neural network 

(CNN). In order to reduce the variance of a classifier, 

Forestier et al. (2017) [17] introduced  dynamic time 

warping (DTW) for time series classification. Um et al. 

(2017) [31] proposed the most comprehensive set of time 

series data augmentation techniques in order to monitor 

Parkinson’s disease patients using wearable sensors.  

2.3 Research Gaps and Point of Departure 

Several machine learning approaches in IMU-based 

activity recognition for construction equipment have 

been explored in the recent past. Machine learning 

models usually benefit from larger training dataset 

because small and inadequate training data leads to 

model overfitting [33]. Moreover, small training dataset 

prevents a classification algorithm from learning 

parameters for identifying a higher number of classes due 

to an imbalance in data [16]. Furthermore from a 

practical standpoint, collecting large volume of IMU data 

from equipment operating in active construction sites 
poses challenges related to cost, time, and effort. In order 

to overcome these challenges, this paper aims to develop 

an equipment activity recognition framework which uses 

augmented training data, decreasing the effort of 

collecting large volume of field data. In doing so, a time-

series data augmentation technique named window-

warping (WW) is developed.      

3 Methodology 

The general architecture of the designed framework 

for data augmentation and classification is presented in 

Figure 1. In this methodology, accelerometer and 

gyroscope data are collected from multiple IMUs 

attached to different articulated elements of the 

equipment. The raw data is first divided into training and 

test data. The raw training data are used for data 

augmentation. The raw and augmented training data are 

combined together to train the machine learning 

algorithms. The trained models are then evaluated using 
the test data, separated at the beginning of the data 

processing. 

 

Figure 1. Developed framework for data 

augmentation and classification model 

The following sections discusses the methodological 

details of data augmentation and model training.      

3.1 Data Augmentation Using Window-

Warping (WW) 

Data augmentation can be regarded as an insertion of 
prior knowledge about the invariant properties of the data 

against certain transformations. The resulting augmented 

data can cover an unknown input space, prevent model 

overfitting, and increase the generalization capability of 

the classification model [31]. It is well known in the 

computer vision arena that minor changes (or 

augmentations) of the image in terms of jittering, scaling, 

warping, and rotating do not change the data labels as 

they can happen in real world observations. But not all 

data augmentation techniques implemented in computer 

vision domain are applicable to time-series data 
augmentation. This study utilizes a time-series specific 

data augmentation technique named window-warping 

(WW). Figure 2 provides a visualization of the WW 

augmentation technique proposed in this research. This 

data augmentation technique is implemented by warping 

the time-series data of each activity by speeding it up or 

down. This technique is logical in context of this research 

as the construction equipment can perform any specific 

 

Figure 2. Window-warping (WW) data 

augmentation 

activity at slightly different speeds. Thus, synthetic data 
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can be generated, which generalizes IMU data for 

different operational speeds of the equipment. In this 

paper, warping ratios of 1 2⁄ , 3 4⁄ , 1.25 and 1.5 were 

considered. In other words, the raw training data are 

speeded up to 1.25, and 1.5 times and slowed down up to 

1 2⁄ , and 3 4⁄  times. Figure 2 illustrates the WW 

technique with warping ratio 3 4⁄  (top), and 1.25 (bottom) 

for a specific activity X, which generates two augmented 

activities; X1, and X2. Applying four different warping 
ratio, training data are increased 5-fold, considering raw 

training data as 1-fold. This method generates training 

data of different lengths, which cause difficulties in 

training the machine learning algorithm. This issue is 

dealt with segmenting all training data (i.e., raw training 

data and augmented training data) with sliding window 

technique of fixed length and 50% overlap. More 

specifics about the data preparation and classification 

model training are discussed in following section.     

3.2 Data Preparation 

The data preparation step of the methodology 

includes data segmentation and feature extraction from 

the field-collected data. A single data point of the IMU 

sensor does not provide useful information about the 

activity of the equipment, since it just represents a 

momentary position of the equipment, similar to a 

snapshot image. In contrast, the activities of equipment 

consists of sequential motions distributed over a period 

of time, similar to a sequence of images or a video. Thus, 

data streams containing individual data points are 

segmented into data windows (i.e., consecutive time-
series data points). In this paper, data windows of 1 

second fixed length is considered with a 50% overlap 

between adjacent windows. After segmenting the time-

series data into windows, a set of time-domain statistical 

features are extracted from each window. These features 

represent the pattern of the signal in the corresponding 

window and are eventually used as inputs in the 

classification algorithms. In this paper, 12 statistical 

features are extracted from each window, and they are 

mean, maximum, minimum, standard deviation, mean 

absolute deviation, interquartile range, skewness, 
kurtosis and, 4th order autoregressive coefficients. Using 

these features as inputs, classification models are trained 

as discussed in the next section.   

3.3 Training and Evaluation of Classification 

Model 

Activity recognition frameworks are developed using 

both supervised and unsupervised classification models. 
However, since supervised learning algorithms provide 

better performance for equipment activity recognition 

[34], a network-based learning algorithm, Artificial 

Neural Network (ANN), and a distance based 

classification algorithm, K-Nearest Neighbour (KNN), 

are considered for training. Both ANN and KNN models 

are trained using the combined (raw and augmented) 

training data. After each model is trained, they are 

evaluated with the test data, which were separated from 

the raw data before the data augmentation phase. The 

performance of the model is evaluated using accuracy, 

precision, recall, and F-1 score. Confusion matrices are 

also generated in order to analyse inter-activity confusion 

of the trained model. The following section discusses the 

results of the case study carried out in this research, using 

motion data captured from an excavator.  

4 Case Study and Results 

In the case study, three IMUs were attached to the 

bucket, stick, and boom of an excavator. The excavator 

was operating on an earthmoving site, loading trucks 

with soils and levelling the ground. In addition to IMU 

data, video data were also collected for 2 hours for 
labelling purpose. The entire operation of the excavator 

was divided into 9 different classes: Engine Off, Idle, 

Scooping, Dumping, Swing Loaded, Swing Empty, 

Moving Forward, Moving Backward, and Ground 

Levelling. Raw data from the IMUs were labelled using 

the video, with numeric numbers (1 to 9) being assigned 

for each activity. Next, the raw data was separated into 

training and testing data with 50-50 ratio. Raw training 

data were used for the window-warping (WW) data 

augmentation, generating 4-fold augmented training data 

(with warping ratio of 1 2⁄ , 3 4⁄ , 1.25, and 1.5), thus 
increasing the volume of the training data 5- fold (4-fold 

augmented data plus raw training data). Table 1 

summarizes the number of instances of each of the 

activity in raw and augmented dataset in the case study. 

 

 
For example, Scooping activity happened total 78 

times during data collection, 39 of them were separated 

for testing, and 39 for training. 39 training instances were 
used for 4-fold WW augmentation, generating total 195 

training instances for Scooping. Next, two supervised 

classifiers (i.e., ANN, and KNN) were trained for 9 

classes of activities using combined 5-fold training data. 

Finally, the models were tested using the 50% raw test 

Table 1. No. of instances of raw and augmented data 
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data. 

Figure 3 and Figure 4 illustrates the effect of WW 

data augmentation by comparing the use of 1-fold raw 

training data vs. 5-fold combined training data. From 

both the figures, we see that training the models with 5-

fold augmented data improves their performance 

substantially from just training with raw training data. 

For example, the accuracy, precision, recall, and F-1 

score of KNN improves from 51.7% to 97.9%, 49.5% to 

96.4%, 44.2% to 96.8%, and 45.6% to 96.6% 

respectively by training the model with augmented data. 
It can also be observed that, improvement in the 

performance indices (i.e., accuracy, precision, etc.) is 

higher for KNN than ANN.  

Figure 3. Performance measures of KNN 

 

Figure 4. Performance measures of ANN 

Next, a sensitivity analysis was conducted using 

different volume of training dataset (e.g., 1-fold, 2-fold, 

etc.) for the model training. KNN was trained with raw 

training data (i.e., 1-fold), 2-fold, 3-fold, 4-fold, and 5-

fold augmented training data. Figure 5 illustrates that F-

1 score of KNN increases with the volume of augmented 

training data. We see that KNN performs best for 5-fold 

training data, and worst for 1-fold training data.   

Figure 6, and Figure 7 are confusion charts of KNN 

with 1-fold, and 5-fold training data, respectively. The 

confusion charts are generated to explore the 

improvement of inter-class confusion of the trained  

 

Figure 5. Performance of KNN for different 

volume of training data 

 

Figure 6. Confusion chart of KNN with 1-fold 

training data 

 

Figure 7. Confusion chart of KNN with 5-fold 

training data 
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model before and after data augmentation is implemented. 

Training the model without any augmented data (Figure 

6) results in significantly higher percentages of error. 

Moreover, the KNN confuses in predicting activities with 

similar type of signal patterns such as, Moving Forward 

and Moving Backward, Swing Empty and Swing Full, 

Scooping and Ground Levelling, Dumping and Ground 

Levelling etc. On the other hand, error of the model 

decreases significantly while augmented data is used for 

the training (Figure 7). Also, the KNN can successfully 

identify similar kind of activities.    

5 Conclusions and Future Work 

Automated and accurate recognition of construction 

equipment’s activity can help to improve productivity, 

safety, fuel use, and overall management and monitoring 

of the construction operations. To this end, this study 

presents an activity recognition framework for 

construction equipment using multiple IMUs. Moreover, 
as machine learning algorithms performs better for large 

volume of training data, a time series data augmentation 

technique, window-warping (WW) is proposed to 

generate synthetic training data. The methodology was 

validated using a comprehensive dataset collected from 

an excavator from a real construction site. The result of 

this study shows significant improvement in classifier’s 

performance while using augmented training data. 

Specifically, data augmentation results in 51% and 16.2% 

increase in F-1 score for KNN, and ANN respectively. 

This indicates the potential of adopting data 

augmentation methods in equipment activity recognition 
which eliminates the necessity of collecting large volume 

of data from the field.   

Future works of this study include testing the 

methodology for multiple types of equipment, such as 

loader, hauler, dump truck etc. Moreover, other types of 

time series data augmentation techniques will be 

explored to see their effect on the classification 

algorithms. Deep learning methods such as, 

convolutional neural network (CNN), recurrent neural 

network (RNN) will also be explored to analyse time 

series sequences for higher accuracy.   
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