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Abstract -
To identify and fit geometric primitives (e.g., planes,

spheres, cylinders, cones) in a noisy point cloud is a challeng-
ing yet beneficial task for fields such as reverse engineering
and as-built BIM. As a multi-model multi-instance fitting
problem, it has been tackled with different approaches in-
cluding RANSAC, which however often fit inferior models
in practice with noisy inputs of cluttered scenes. Inspired by
the corresponding human recognition process, andbenefiting
from the recent advancements in image semantic segmenta-
tion using deep neural networks, we propose BAGSFit as a
new framework addressing this problem. Firstly, through
a fully convolutional neural network, the input point cloud
is point-wisely segmented into multiple classes divided by
jointly detected instance boundaries without any geometric
fitting. Thus, segments can serve as primitive hypotheseswith
a probability estimation of associating primitive classes. Fi-
nally, all hypotheses are sent through a geometric verification
to correct any misclassification by fitting primitives respec-
tively. We performed training using simulated range images
and tested it with both simulated and real-world point clouds.
Quantitative and qualitative experiments demonstrated the
superiority of BAGSFit.
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1 Introduction
The idea of decomposing a scene or a complex ob-

ject into a set of simple geometric primitives for visual
object recognition dates back as early as 1980s when Bie-
derman proposed the object Recognition-By-Components
theory [1], in which primitives were termed “geons”. Al-
though some real scenes can be more complicated than
simple combinations of “geons”, there are many useful
ones that can be efficiently modeled for the purpose of
as-built building information modeling [2,3], where man-
made structures are primarily composed of basic primi-
tives. Also, it is desirable to model individual components
in a building separately because they have different func-
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Figure 1: Primitive fitting on a simulated test range image
(top left) with BAGSFit (middle right) vs. RANSAC (top
right) [4]. Estimated normals (middle left) and ground
truth labels (bottom left) are used to train a fully convolu-
tional segmentation network in BAGSFit. During testing,
the boundary-aware and thus instance-aware segmentation
(bottom right) is predicted, and sent through a geomet-
ric verification to fit final primitives (randomly colored).
Comparing with BAGSFit, the RANSAC-based method
produces more misses and false detections of primitives
(shown as transparent or wire-frame), and thus a less ap-
pealing visual result.

tions and were built with different types of material and
construction methods. Separated components can then be
used in building information modeling systems to carry
its relevant semantic information and perform quantitative
analysis.
This primitive fitting problem is a classic chicken-and-

egg problem: with given primitive parameters, point-to-
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primitive (P2P) membership can be determined by nearest
P2P distance; and vise versa by robust estimation. The
challenge comes when multiple factors present together:
a noisy point cloud (thus noisy normal estimation), a clut-
tered scene due to multiple instances of a same or mul-
tiple primitive models, and also background points not
explained by the primitive library. See Figure 1 for an
example. The seminal RANSAC-based method [4] often
tends to fit inferior primitives that do not well represent
the real scene.
Different from existing work for this multi-model multi-

instance fitting problem, we are inspired by human visual
perception of 3D primitives. As found by many cognitive
science researchers, human “observers’ judgments about
3D shape are often systematically distorted” [5]. For ex-
ample, when looking at a used fitness ball, many people
would think of it as a sphere, although it could be largely
distorted if carefully measured. This suggests that human
brain might not be performing exact geometric fitting dur-
ing primitive recognition, but rather rely on “qualitative
aspects of 3D structure” [5] from visual perception.

Due to recent advancements in image semantic segmen-
tation using convolutional neural networks (CNN) [6,7], it
is natural to ask: whether CNN can be applied to this prob-
lem with geometric nature and find the P2P membership
as segmentation on the range image without geometric fit-
ting at all? Our answer is yes, which leads to the BAGSFit
framework that reflects this thought process.

Contributions This paper contains the following key
contributions:

• Wepresent amethodology to easily obtain point-wise
ground truth labels from simulated dataset for super-
vised geometric segmentation, demonstrate its ability
to generalize to real-world dataset, and released the
first simulated dataset 1 for development and bench-
marking.

• We present a novel framework for multi-model 3D
primitive fitting, which performs both qualitatively
and quantitatively superior than RANSAC-based
methods on noisy range images of cluttered scenes.

• We introduce this geometric segmentation task for
CNN with several design analyses and comparisons.

RelatedWork Constructive Solid Geometry (CSG) and
Boundary Representation (BRep) are the most com-
mon 3D representations in building information modeling
(BIM) because of their simplicity and flexibility [8]. Both
methods model a complex object with a collection of ba-
sic primitives. However, creating these models manually
can be costly and time-consuming [9], especially for as-
built modeling because the dimension of the objects are

1The dataset is available at https://github.com/ai4ce/BAGSFit.

implicitly constrained by the scanned data. In [8], as-built
modeling was separated into several auxiliary tasks, in-
cluding geometric primitive fitting, point cloud clustering,
shape fitting, and point cloud classification. The study of
primitive fitting-based as-built modeling in construction
mainly focus on the modeling of indoor scene with para-
metric planar surface [10] or industrial plant with cylin-
ders [9,11]. Such methods lack the capability to deal with
complicated buildings with planar walls, cylinder-shaped
columns, cone-shaped roofs, and so on. The remaining
of this section will investigate existing methods for multi-
model primitive fitting.

By assuming the existence of potentially multiple
classes of primitives in a scene, it is more realistic than
the previous group, and thus more challenging when a
cluttered scene is observed with noisy 3D sensors. Pre-
vious work with this assumption can be roughly grouped
further into the following categories: Segmentation: Seg-
mentation methods [12–14] segment a point cloud into
individual clusters and performs classification and fitting
either during the segmentation or afterwards.

RANSAC: Since the seminal work by Schnabel et al. [4],
the idea of selecting sampled primitive hypotheses to max-
imize some scoring functions becomes a default solution
to this problem. In this research, we chose this method
as our baseline. In practice, the 3D sensor noise is often
more structured (e.g., depth dependent noises for range
images) than uniform or Gaussian in 3D as experimented
in many of these papers. What really makes the prob-
lem difficult is that those noisy points belonging to other
partially occluded primitive instances become outliers of
the primitive to be fit at hand, causing false detections of
“ghost” primitives not existed in the real scene but still
with very small fitting errors and large consensus scores,
e.g. the ghost cones fitted with cylinder and background
points in the top right of Figure 1. More recently, prior
probabilities or quality measure of the data [15, 16] were
used to improve the probability of sampling an all-inlier
subset.

Energy Minimization: Unlike the sequential and greedy
nature of RANSAC based methods, it is appealing in the-
ory to define a global energy function in terms of P2P
membership that once minimized results in desired solu-
tion [17–20]. However most of them are only shown on
relatively small number of points of simple scenes without
much clutters or occlusions, and it is unclear how they will
scale to larger datasets due to the intrinsic difficulty and
slowness of minimizing the energy function.

2 Framework Overview

Figure 2 gives an overview of the multi-model primitive
fitting process by our BAGSFit framework. As introduced
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Figure 2: BAGSFit overview. In 2a, a proper form of a range image, e.g., its normalmap, is input to a fully convolutional
neural network for segmentation. We use the same visualization style for the CNN as in [7], where each block means
layers sharing a same spatial resolution, decreasing block height means decimating spatial resolution by a half, and
red dashed lines means loss computation. The resulting segmentation probability maps Yk (top row of 2b, darker for
higher probability) for each primitive class k are sent through a geometric verification to correct any misclassification
by fitting the corresponding class of primitives (bottom row of 2a). Finally, fitted primitives are shown in 2c. Without
loss of generality, this paper only focuses on four common primitives: plane, sphere, cylinder, and cone.

above, the front-end of this framework (Figure 2a) mim-
ics the human visual perception process in that it does
not explicitly use any geometric fitting error or loss in the
CNN. Instead, it takes advantage of a set of stable features
learned by CNN that can robustly discriminate points be-
longing to different primitive classes. The meaning of a
pixel of the output probability map (top row of Figure 2b)
can be interpreted as how much that point and its neigh-
borhood look like a specific primitive class, where the
neighborhood size is the CNN receptive field size.
Such a segmentation map could already be useful for

more complex tasks [21], yet for the sake of a robust
primitive fitting pipeline, one cannot fully trust this seg-
mentation map as it inevitably contains misclassification,
just like all other image semantic segmentations. Fortu-
nately, by separating pixels belonging to individual primi-
tive classes, our originalmulti-model problem is converted
to an easier multi-instance problem. Following this seg-
mentation, a geometric verification step based on efficient
RANSAC [4] incorporates our strong prior knowledge, i.e.,
the mathematical definitions of those primitive classes, to
find the parametric models of the objects for each type
of primitives. Note that RANSAC variants using prior
inlier probability to improve sampling efficiency are not
adopted in this research, because 1) they are orthogonal to
the proposed pipeline; and 2) the robustness of primitive
fitting is highly dependent on the spatial distribution of
samples. Different from spatial consistency based meth-
ods [22, 23] mainly dealing with homography detection,
in our 3D primitive fitting task, samples with points very
close to each other usually lead to bad primitive fitting
results [4]. Thus the potential of using the CNN predicted
class probabilities to guide the sampling process, while be-
ing interesting, will be deferred for future investigations.
The advantage for this geometric segmentation task is

that exact spatial constraints can be applied to detect cor-
rect primitives even with noisy segmentation results. One

could use the inliers after geometric verification to cor-
rect the CNN segmentation results, similar to the CRF
post-processing step in image semantic segmentation that
usually improves segmentation performance.

3 Ground Truth from Simulation
Before going to the details of our segmentation CNN,

we need to first address the challenge of preparing training
data, because as most state-of-the-art image semantic seg-
mentation methods, our CNN needs supervised training.
To our best knowledge, we are the first to introduce such a
geometric primitive segmentation task for CNN, and there
is no existing publicly available datasets for this task. For
image semantic segmentation, there have been many ef-
forts to use simulation for ground truth generation. Yet it is
hard to make CNNs trained over simulated data generalize
to real world images, due to intrinsic difficulties of tun-
ing a large number of variables affecting the similarities
between simulated images and real world ones.
However, since we are only dealing with geometric data,

and that 3D observation is less sensitive to environmen-
tal variations, plus observation noise models of most 3D
sensors are well studied, we hypothesize that simulated
3D scans highly resemble real world ones such that CNNs
trained on simulated scans can generalize to real world
data. If this is true, for this geometric task, we can get
infinite number of point-wise ground truth almost for free.
Although saved from tedious manual labeling, we still

need a systematic way of generating both random scene
layouts of primitives and scan poses so that simulated scans
are meaningful and covers true data variation as much as
possible. Due to the popular Kinect-like scanners, which
mostly applied in indoor environment, we choose to fo-
cus on simulating indoor scenes. And note that this dose
not limit our BAGSFit framework to only indoor situa-
tions. Given a specific type of scenes and scanners, one
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Figure 3: A simulated Kinect scan of a random scene.
Black dots represents the scanned points.

should be able to adjust the random scene generation pro-
tocols similarly. Moreover, we hypothesize that the CNN
is less sensitive to the overall scene layout. What’s more
important is to show the CNN enough cases of different
primitives occluding and intersecting with each other.
Thus, we choose to randomly generate a room-like scene

with 10 meters extent at each horizontal direction. An ele-
vated horizontal plane representing a table top is generated
at a random position near the center of the room. Other
primitives are placed near the table top to increase the
complexity. Furthermore, empirically, the orientation of
cylinder/cone axis or plane normal is dominated by hor-
izontal or vertical directions in real world. Thus several
primitive instances at such orientations are generated de-
liberately in addition to fully random ones. For planes,
two additional disk shaped planes are added to make the
dataset more general. Tomake the training set more realis-
tic, two NURBS surfaces (class name “Other” in Figure 1)
are added, representing objects not explained by our prim-
itive library in reality.

An existing scanner simulator, Blensor [24], was used
to simulate VGA-sized Kinect-like scans, where class and
instance IDs can be easily obtained during the virtual scan-
ning process by ray-tracing. For each scene, we obtain a
total number of 192 scans with varying view directions
surrounding the scene. Totally 20 scenes were generated
following this protocol. 18 scenes, i.e. 3456 scans, were
split for training, and the other 2 scenes, i.e. 384 scans,
were used for validation. Figure 3 shows the screenshot
of such a scan. The test set is generated through a similar
protocol, containing 20 scenes (each with 36 scans). Note
that invalid points were converted to the zero-depth point
avoiding computation issues.

4 Boundary Aware Geometric Segmenta-
tion

Our segmentation network (Figure 2a) follows the same
basic network as described in [7], which is based on the
101-layer ResNet [25] with minor modifications to im-
prove segmentation performance. While the semantic

segmentation CNN architecture is actively being devel-
oped, there are several design choices to be considered to
achieve the best performance on a given base network for
our new task.
Position vs. Normal Input. The first design choice

is about the input representation. Since we are dealing
with 3D geometric data, what form of input should be
supplied to the CNN? A naive choice is to directly use
point positions as a 3-channel tensor input. After all,
this is the raw data we get in reality, and if the CNN
is powerful enough, it should be able to learn everything
from this input form. However, it is unclear howorwhether
necessary to normalized it.
A second choice is to use estimated per-point unit nor-

mals as the input. This is also reasonable, because we
can almost perceive the correct segmentation by just look-
ing as the normal maps as shown in Figure 2a. Plus it
is already normalized, which usually enables better CNN
training. However, since normals are estimated from noisy
neighboring points, one might have concerns about loss
of information compared with the previous choice. And
a third choice is to combine the first two, resulting in a
6-channel input, through which one might hope the CNN
to benefit from merits of both.
Separate vs. Joint Boundary Detection. When multi-

ple instances of a same primitive class occlude or intersect
with each other, even an ideal primitive class segmenta-
tion can not divide them into individual segments, leaving
a multi-instance fitting problem still undesirable for the
geometric verification step to solve, which discounts the
original purpose of this geometric segmentation. More-
over, boundaries usually contains higher noises in terms of
estimated normals, which could negatively affect primitive
fittings that use normals (e.g., 2-point based cylinder fit-
ting). One way to alleviate the issue is to cut such clusters
into primitive instances by instance-aware boundaries. To
realize this, we also have two choices, 1) training a sep-
arate network only for instance boundary detection, or 2)
treating boundary as an additional class to be segmented
jointly with primitive classes. One can expect the former
to have better boundary detection results as the network
focuses to learn boundary features only, although as a less
elegant solution with more parameters and longer run-
ning time. Thus it is reasonable to trade the performance
a bit for the latter one. Note that with such a step, we
could already move from category- to boundary- and thus
instance-aware segmentation by region-grow after remov-
ing all instance-aware boundaries.
Handling of Background Class. When generating

random scenes, we added NURBS modeling background
points not explained by the four primitive classes, for a
more realistic and challenging dataset. Thus we need to
properly handle them in the CNN. Should we ignore back-
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ground class when computing the loss, or add it as an
additional class?
For all of the above design questions, we will rely on

experiments to empirically select the best performing ones.

5 Geometric Verification and Evaluation
5.1 Verification by Fitting

Given the predicted probability maps {Yk}, we need to
generate and verify primitive hypotheses and fit primitive
parameters of the correct ones to complete our mission.
One direct way of hypothesis generation is to simply

binarize the BAGS output {Yk} by thresholding to pro-
duce a set of connected components, and fit only one k-th
class primitive for a component coming from Yk . How-
ever, when the CNN incorrectly classify certain critical
regions due to non-optimal thresholds, two instances can
be connected, thus leading to suboptimal fittings or miss
detection of some instances. Moreover, a perfect BAGS
output may bring another issue that an instance gets cut
into several smaller pieces due to occlusions (e.g., the top
left cylinder in Figure 2a). And fitting in smaller regions
of noisy scans usually result in false instance rejection or
lower estimation accuracy. since the core contribution of
this paper is to propose and study the feasibility of BAGS-
Fit as a new strategy towards this problem, we leave it as
our future work to develop more systematic ways to better
utilize {Yk} for primitive fitting.
In this work, we simply follow a classic “arg max” pre-

diction on {Yk} over each point, and get K groups of
hypothesis points associated to each of the K primitive
classes. Then we solve K times of multi-instance prim-
itive fitting using the RANSAC-based method [4]. Note
this does not completely defeat the purpose of BAGS.
The original RANSAC-based method feed the whole point
cloud into the pipeline and detect primitives sequentially
in a greedy manner. Because it tends to detect larger ob-
jects first, smaller primitives close to large ones could
often be missed, as their member points might be in-
correctly counted as inlier of larger objects, especially
if the inlier threshold is improperly set. BAGS can allevi-
ate such effects and especially removing boundary points
from RANSAC sampling is expected to improve its per-
formance.

5.2 Primitive Fitting Evaluation

It is non-trivial to design a proper set of evaluation
criteria for primitive detection and fitting accuracy, and we
are not aware of any existingwork or dataset that does so. It
is difficult to comprehensively evaluate and thus compare
different primitive fitting methods partly because 1) as
mentioned previously, due to occlusion, a single instance

are commonlyfitted intomultiple primitives, both ofwhich
may be close enough to the ground truth instance; and 2)
such over detectionmight also be caused by improper inlier
thresholds on a noisy data.
Pixel-wise average precision (AP) and AP of in-

stances matched at various levels (50∼90%) of point-wise
intersection-over-union (IoU) are used for evaluating im-
age based instance segmentation problems [26]. However,
this typical IoU range is inappropriate for our problem.
More than 50% IoUmeans at most one fitted primitive can
be matched for each true instance. Since we don’t need
more than 50% of true points to fit a reasonable primi-
tive representing the true one, this range is over-strict and
might falsely reject many good fits: either more than 50%
true points are taken by other incorrect fits, or during ob-
servation the true instance is occluded and split into pieces
each containing less than 50% true points (see Figure 5 for
more examples). After all, a large IoU is not necessary for
good primitive fitting.
Thus, the IoU is replaced by intersection-over-true (IoT)

in this problem. It indicates the number of true inliers of
a predicted primitive over the total number of points in
the true instance. Thus, a predicted primitive and a true
instance is matched iff 1) IoT>30% and 2) the predicted
primitive having the same class as the true instance. This
indicates that one instance can have at most 3 matched
predictions.
Based on the above matching criteria, a matched in-

stance (if exists) can be identified for each predicted prim-
itive. On the contrary, each true instance may have several
best matching prediction candidates. To eliminate the
ambiguity, the candidate that has the smallest fit error is
selected as the best match. To be fair and consistent, fit-
ting error is defined as the mean distance to a primitive
by projecting all of the points in the true instance onto the
predicted primitive. After the matches are found, primi-
tive average precision (PAP) and primitive average recall
(PAR) are used to quantify the primitive detection quality.

PAP = Np2t/Np, PAR = Nt2p/Nt, (1)

where Np2t is the number of predictions having a matched
true instance, Np the total number of predicted primitives,
Nt2p the number of true instance with a best prediction,
and Nt the total number of true instances, all counted over
the whole test set.

6 Experiments and Discussion
6.1 Geometric Segmentation Experiments

Network Short Names. To explore answers to the
questions raised in section 4, we designed several CNNs
and their details with short names are listed as follows:
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Table 1: Geometric segmentation evaluation. Red highlights the best along a column, and magenta for the top 3 best.

Precision Recall IoU F1 AccuracyBND PLN SPH CYL CON AVE BND PLN SPH CYL CON AVE BND PLN SPH CYL CON AVE BND PLN SPH CYL CON AVE
N+BO 0.944 0.820 0.781 0.877 0.964
P 0.915 0.811 0.867 0.642 0.809 0.971 0.620 0.715 0.664 0.743 0.891 0.599 0.655 0.488 0.658 0.939 0.664 0.762 0.611 0.744 0.871
N 0.979 0.915 0.934 0.727 0.889 0.988 0.884 0.788 0.829 0.872 0.968 0.860 0.752 0.633 0.803 0.983 0.894 0.826 0.734 0.859 0.924
PN 0.978 0.913 0.919 0.710 0.880 0.984 0.868 0.806 0.797 0.864 0.962 0.847 0.758 0.601 0.792 0.980 0.882 0.838 0.711 0.853 0.920
N+BAGS 0.868 0.963 0.908 0.926 0.756 0.888 0.849 0.976 0.874 0.833 0.821 0.871 0.752 0.941 0.848 0.790 0.654 0.797 0.858 0.969 0.884 0.859 0.755 0.865 0.918
N5 0.980 0.917 0.940 0.744 0.895 0.979 0.877 0.809 0.808 0.868 0.960 0.854 0.776 0.642 0.808 0.979 0.889 0.844 0.741 0.863 0.940
N5+BAGS 0.847 0.966 0.906 0.932 0.728 0.883 0.804 0.970 0.873 0.808 0.812 0.853 0.702 0.939 0.845 0.769 0.630 0.777 0.825 0.968 0.883 0.842 0.732 0.850 0.921

Figure 4: BAGSFit (N5+BAGS) on real Kinect scans. Top: RGB image of the scanned scene. Middle: segmentation
results. Bottom: fitted primitives (randomly colored) rendered together with real scans.

• P/N/PN. Basic networks, using position (P), normal
(N), or both (PN) as input, trained with a multino-
mial loss function, outputting a 4-channel mutual-
exclusive class probability maps (i.e., each pixel’s
probabilities sum up to one, K = 4). Background
class points, the NURBS, are ignored for loss com-
putation.

• N+BAGS. Network trained with normal input and
BAGS labels (i.e., instance-aware boundary as an ad-
ditional class jointly trained, K = 5).

• N5. Same as basic network N except treating the
background class as an additional class involved in
loss computation (K = 5).

• N5+BAGS. Same asN+BAGS except trained using a
multi-binomial manner (i.e., boundary and NURBS
are two additional classes jointly trained, K = 6).

• N+BO. Same as N except only trained to detect
boundary (i.e., a binary classifier, K = 2).

Implementation Details. We implemented the
geometric segmentation CNNs using Caffe [27] and
DeepLabv2 [6]. Normals were estimated by PCA using
a 5 × 5 window. We use meters as the unit for networks
requiring position input. Instance-aware boundaries were
calculated if not all pixels belong to a same instance (or
contain invalid points) in a 5 × 5 window. Input data
size was randomly cropped into 440 × 440 during train-
ing time, while full VGA resolution was used during test
time. All of our networks were trained with the following
hyper-parameters tuned on the validation set: 50 training
epochs (i.e. 17280 iterations), batch size 10, learning rate

0.1 linearly decreasing to zero until the end of training,
momentum 0.9, weight decay 5e-4. The networks were
trained and evaluated on several NVIDIA TITANXGPUs
each with 12 GBmemory, with a 2.5Hz testing frame rate.
Discussions. Evaluation results of all 12 networks on

the test set of 720 simulated scans are in table 1.
1. Comparing the P/N/PN rows, we found that normal

input turned out to be the best, and interestingly out-
performing combination of both normal and position.
This may be caused by the difficulty in normalizing
position data for network input.

2. Comparing the N with N+BAGS, we found that
adding additional boundary detection to the segmen-
tation only have very small negative influences to the
segmentation performance. This is appealing since
we used a single network to perform both segmenta-
tion and boundary detection. Further comparing the
N+BAGS with N+BO, we found that BAGS in fact
increases the boundary recall comparing to N+BO
that only detects boundaries.

3. Comparing the N5 with N, we found that the effect
of ignoring background class is inconclusive in terms
of significant performance changes, which however
suggests the benefit of jointly training the background
class, as this enables the following steps to focus only
on regions seemingly explainable by the predefined
primitive library.

Just for reference, we tried SVMusing neighboring 7×7 or
37 × 37 normals or principal curvatures for this task, and
the highest pixel-wise accuracy we obtained after many
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Table 2: Primitive fitting evaluation. Red highlights the best along a column, while magenta highlights the top 3 best.

No. Primitives Fitted (Np) No. Matched Instance(Nt2p) N all
t2p

N all
p

Primitive Average Precision (PAP) Primitive Average Recall (PAR) Fitting Error (cm)
PLN SPH CYL CON ALL PLN SPH CYL CON ALL PLN SPH CYL CON ALL PLN SPH CYL CON ALL PLN SPH CYL CON ALL

ERANSAC 4596 1001 2358 3123 11078 2017 542 942 879 4380 0.395 0.453 0.541 0.402 0.286 0.403 0.500 0.432 0.403 0.443 0.456 0.915 0.324 0.766 0.954 0.810
P 5360 621 2242 2037 10260 2448 591 1219 944 5202 0.507 0.470 0.952 0.549 0.468 0.516 0.607 0.471 0.521 0.476 0.541 0.936 0.248 0.931 0.519 0.759
N 4617 961 2789 2492 10859 2565 870 1456 1254 6145 0.566 0.571 0.905 0.532 0.507 0.576 0.636 0.693 0.623 0.633 0.640 0.903 0.403 1.229 0.657 0.866
PN 4537 888 3172 2133 10730 2522 859 1498 1197 6076 0.566 0.572 0.967 0.480 0.570 0.577 0.625 0.684 0.641 0.604 0.632 0.903 0.397 1.196 0.628 0.852
N+BAGS 3893 845 2299 2108 9145 2279 796 1453 1149 5677 0.621 0.594 0.942 0.637 0.548 0.626 0.565 0.634 0.621 0.580 0.591 0.765 0.363 1.144 0.587 0.768
N5 3701 863 1874 1876 8314 2490 859 1458 1226 6033 0.726 0.693 0.995 0.793 0.663 0.740 0.617 0.684 0.624 0.619 0.628 0.841 0.395 1.163 0.617 0.815
N5+BAGS 3500 804 1765 1730 7799 2254 804 1397 1129 5584 0.716 0.654 1.000 0.796 0.658 0.723 0.559 0.640 0.598 0.570 0.581 0.742 0.367 1.096 0.555 0.740

Figure 5: BAGSFit (N5+BAGS) on simulated test scans. Top: Ground truth labels. Middle: segmentation results.
Bottom: fitted primitives (randomly colored) rendered together with real scans.

parameter tuning is only 66%.
Generalizing to Real Data. Even though we did not

tune the simulated scanner’s noise model to match our real
Kinect scanner, Figure 4 shows that the network trained
with simulated scans generalizes well to real world data.

6.2 Primitive Fitting Experiments

For fitting primitives, we used the original efficient
RANSAC implementation [4] both as our baseline method
(short name ERANSAC) and for our geometric verifica-
tion.
Experiment Details. We used the following parame-

ters required in [4] for all primitive fitting experiments,
tuned on the validation set in effort of maximizing ER-
ANSAC performance: min number of supporting points
per primitive 1000, max inlier distance 0.03m, max inlier
angle deviation 30 degrees (for counting consensus scores)
and 45 degrees (for final inlier set expansion), overlook-
ing probability 1e-4. The simulated test set contains 4033
planes, 1256 spheres, 2338 cylinders, 1982 cones, and in
total 9609 primitive instances.
Discussions. Using respective network’s segmentation

as input to the geometric verification, the primitive fitting
results were evaluated on the simulated test set and sum-
marized in table 2 together with the ERANSAC baseline.
1. ERANSAC performance is significantly lower than

most variants of BAGSFit, in accordance with our
qualitative evaluation.

2. N5 related experiments receives highest PAP scores,
which is reasonable due to the recognition and re-
moval of background classes that greatly reduce the

complexity of scenes.
3. In terms of average fitting error, N+BAGS < N,

N5+BAGS < N5 which strongly supports the ben-
efit of BAGS as mentioned in section 5.1.

4. N5+BAGS gets the lowest fitting error, benefiting
from both background and boundary removal.

More results. Figure 5 shows more testing results.

7 Future Work

Our next step is to compare BAGSFit with MaskR-
CNN [28], quantitatively evaluate it on real scans, and
apply it in as-built BIM generation. We also plan to extend
the network so it can directly predict primitive parameters.
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