
36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

Employing Simulated Annealing Algorithms to Automatically

Resolve MEP Clashes in Building Information Modeling

Models

H.C. Hsu
a
 and I.C. Wu

a

aDepartment of Civil Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

E-mail: F107141125@nkust.edu.tw, kwu@ nkust.edu.tw

Abstract –

Building Information Modeling (BIM) covers the

whole lifecycle of a building and facilitates the

coordination of activities in the design, construction,

and operation stages. However, during the design

stages of pre-construction, it is time-consuming for a

BIM project team to resolve design clashes as they

integrate models finished by individual team

members into a composite master model. To

effectively overcome the issue, this study proposes a

computer programming system. Based on the

application programming interface provided by BIM

software, a simulated annealing algorithm is

employed to determine the layout modifications to

minimize the number of design clashes. In this paper,

the mechanical, electrical and plumbing (MEP)

systems in a clean room on the first floor of an

integrated circuit assembly factory are used to

validate the effectiveness of the proposed system. The

experimental results reveal the feasibility and

effectiveness of the proposed system.

Keywords –

Building information modeling; Clash resolution;

Simulated annealing algorithms

1 Introduction

As building information modeling (BIM) software

matures, BIM is gradually becoming conventional in

both design and construction practice worldwide [1]. As

first defined in the National BIM Standard–United

States®, a BIM model is a digital representation of the

physical and functional characteristics of a facility. As
such, BIM serves as a shared knowledge resource for

information about a facility, forming a reliable basis for

decisions during its life cycle from inception onward [2].

In addition to helping in the design stage, BIM provides

decision makers with the ability to make informed

decisions across the lifecycle, in the construction stage

[3], the project closeout stage [4], and the facility

management stage [5]. BIM has also become a platform

for project management teams to collaborate [6].

Through the digital portal provided by BIM software,
team members such as architects, structural engineers,

and mechanical, electrical and plumbing (MEP)

engineers can collaborate on a design and share their

knowledge of a construction development at the design,

construction, and post-construction stages [7]. During the

design stages of pre-construction, BIM models finished

by team members are integrated into a composite master

model, which is then tested to detect design clashes [8],

The design clashes defined in [6] are ‘positioning errors’,

where building components overlap each other when

original individual designer models are merged. During
the construction phase, rework caused by design clashes

undetected in the pre-construction stage is usually costly.

However, resolving these design clashes is a time-

consuming task and is imperative to project performance

[9]. Obviously, it presents a great challenge for project

team members to ensure there are no clashes in a

composite master model within a reasonably short time,

even with the use of BIM software.

In addition to the modeling functions, BIM software

provides an application programming interface (API) for

users to effectively achieve multitudinous applications of
BIM models. In previous studies, Mangal and Cheng [10]

employed a hybrid genetic algorithm (GA) and the API

provided by BIM software to develop an automatic

system for the optimization of steel reinforcement in RC

buildings. Lin and Lin [4] took advantage of API to

propose a final as-built BIM model management system

788

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

for owners to handle the inspection, modification, and

confirmation work beyond project closeout. Based on a

repetitive trial-and-error procedure, Xue and Lu [11]

presented a novel segmentation-free, derivative-free

optimization approach that translates as-built BIMs from

two-dimensional images into an optimization problem of

fitting BIM components within architectural and

topological constraints. Moreover, to evaluate the overall

thermal transfer value of the building envelope and the

cost of construction, Lim and Majid [12] developed a

BIM-GA optimization method by using the
functionalities of BIM software, Autodesk Revit, the

iterated learning of GA, and the computer programming

of PHP. In fact, their method [12] can also be achieved

by directly using the API provided by Revit.

To facilitate designer to resolve the clashes,

numerous emerging model collaboration systems, such

as EXPRESS Data Manager and BIM 360, have been

developed to make it possible to have the ability to

manage the coordinated workflow required for clash

resolution. However, this function still requires human

intervention [15].

To automatically resolve the design clashes in a
composite master model, this study developed an

effectively system by using the API provided by Revit to

control building components and adopting a simulated

annealing (SA) algorithm [13] to implement iterated

learning to simulate coordination cycles. In consideration

of the fact that when some clashes are resolved, other

clashes may occur, the iterated learning process of the SA

algorithm is used. Heuristic optimization methods, such

as GA and SA, have been extensively applied to

searching the fittest solutions of combinatorial problems.

Single thread processing is more efficient for design
clashes resolving problem. Therefore this paper adopts

SA. The related works such like Hackl, et al. [14] utilized

SA to determine the optimal restoration programs for

transportation networks. To tackle the search issue in

BIM projects. Zeferino, et al. [16] present an efficient

simulated annealing (SA) algorithm for solving a

regional wastewater system planning model. Focusing on

MEP systems, our program detects design clashes with

their coordinates and then makes modifications to

building components, such as moving or revising them,

to gradually minimize the number of design clashes. In

the experiment, we tested our system on a real case that
occurred during the compilation of a federated BIM

model for the MEP systems in the clean room in a factory.

The new layout of the MEP systems could be taken as the

suggested prototype for the discussion of clash resolution

in the design team meeting.

The remainder of this paper is organized as follows:

Section 2 introduces the simulated annealing (SA)

algorithm. Section 3 explains the proposed system.

Section 4 addresses the experimental data and discusses

the experimental results. Finally, Section 5 provides the

conclusion to this paper.

2 Simulated Annealing Algorithm

The SA algorithm proposed by Kirkpatrick and Gelatt

[13] is an extension of the Monte Carlo (MC) method and

is widely applied to approximating the global optimum

in combinatorial problems. The name SA comes from

annealing in metallurgy, wherein the states of molecular

structures of a material are changed by heating and

cooling. Heating and cooling the material affects both the

temperature and the thermodynamic free energy. SA thus

employs MC to generate random samples to simulate the

states of a thermodynamic system. Unlike MC, which is
a completely random method, SA has a mechanism to

control the movement of molecules as the temperature

decreases to make a converged learning process. The

learning process of SA is briefly described in pseudocode

in Figure 1.

// s0: a given initial state (solution)

// itermax: the maximum iteration number

// T0: a given initial temperature

function SimAnneal(s0, itermax , T0)

s = s0; // Set current states as s0

T = T0; // Set current temperature T as T0

i=1; // Set the iteration number as 1

while (i ≤ itermax)

// Create a feasible neighbor state snew

snew = CreateOneNeighbor(s);

// The energy function which updates T according to

iteration times

T = UpdateTemperature(i, T);

// Check if accept snew under T

if Cost(s) ≤ Cost (snew)

s = snew; i++;

else

 // Giving an opportunity of accepting a worse snew

if P(Cost(s), Cost(snew), T) ≥ Random(0, 1)

s = snew; i++;

end if

end if

end loop

return s;

end function

Figure 1. The pseudocode of simulated annealing

3 The Proposed System Framework

The objective of this study was to develop an

effective programming system to automatically resolve

the design clashes of MEP systems when BIM models

finished by individual team members are integrated into

a federated BIM model. The iterated learning process of

the proposed system has five steps, as shown in Figure 2.

Through the API provided by Revit, attributes of building

components such as types, shapes, lengths, widths, and

789

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

positions (coordinates) can be controllable and revisable,

and even clash coordinates can be detected. More

information about the use of the Revit API is available on

the official Revit website(http://www.revitapidocs.com/).

Below, we will first explain the definition of the clash list

used in our system, since the clash list is the core of our

system. Then the five steps in Figure 2 will be addressed.

Figure 2. The five steps in the iterated learning process of the proposed system

3.1 Definition of Clash List

The core of our system is the clash list, which is

created by our programming through the Revit API, and
the mission is to minimize the number of detected clashes.

An example of a clash list is provided in Table 1, in which

there are three main attributes: objects, systems, and

three-dimensional coordinates.

Table 1. An example of a clash list used in this study

No.
Objects System types Coordinates

(X, Y, Z) 1 2 1 2

1 297190 297263 Sanitary (pipe) Exhaust Air (duct) (x1, y1, z1)

2 297211 296580 Exhaust Air (duct) Domestic cold water (pipe) (x2, y2, z2)

3 296221 296869 Cable rack (tray) Fire Protection (pipe) (x3, y3, z3)

… … … … … …

n 297512 297532 Fire Protection (pipe) Domestic cold water (pipe) (xn, yn, zn)

1. The “objects” attribute shows a pair of building

components whose geometric shapes intersect. The

values of the objects are the identifiers (id) given by

Revit.

2. The “systems” attribute lists the MEP systems to

which the two intersected objects belong.

3. The “coordinates” attribute is the three-dimensional

position of the clash between object 1 and object 2,

plotted in three values of X-axis, Y-axis, and Z-axis.

Based on a clash coordinate and the shape profiles of

the two objects, our program can revise an object or
decide on a moving distance of an object, or the

whole system, from the original coordinates to a new

position to avoid the clash.

3.2 The Operation Principles

The operation principles are used to determine which

of the two objects should be modified and what revision

options can be selected in a clash instance. There are two

principles, the priority of systems and the available

revision options. It is notable that these principles can be
experience-based, case-based, or country-based.

According to the case examined in this study, the

contents of the two principles are briefly described as

follows:

1. Based on [13], the priority order of MEP systems

and the reasons are listed in Table 2, in which parts

of the system names have been revised to be

consistent with the words used in Revit. For example,

Step 1. Randomly choose a clash Step 2. Decide the modified object

Duct

Pipe

Step 4. Modify object and create a clash list

Revit API programming

Step 5. Update energy function

() (number of clashes)f x n=

Run times

Step 3. Make a revision

Move
Upward

Detour
Downward

Leftward RightwardOr

…

var collector = new

FilteredElementCollector(doc)

.WhereElementIsNotElementType();

var listTemp = new List<string>();

foreach (Element e in collector) {

var geomEle = e

.get_Geometry(new Options());

if (geomEle = = null)

continue;

…

No.
Objects System types Coordinates

(X, Y, Z)1 2 1 2

1 297190 297263 Sanitary (pipe) Exhaust Air (duct) (x1, y1, z1)

2 297211 296580 Exhaust Air (duct) Domestic cold water (pipe) (x2, y2, z2)

3 296221 296869 Cable rack (tray) Fire Protection (pipe) (x3, y3, z3)

… … … … … …

n 297512 297532 Fire Protection (pipe) Domestic cold water (pipe) (xn, yn, zn)

Pipe

List of clashes

790

http://www.revitapidocs.com/

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

if the systems of object 1 and object 2 are “Fire

Protection (pipe)” and “Domestic cold water (pipe)”,

respectively, object 2 should be chosen for revision,

rather than object 1.

2. The revision options for MEP objects are defined in

Table 3, in which the circles denote the action

options available for an object. For instance,

“Sanitary pipe” has two possible revision actions,

“Moving” and “Sloping”, while “Duct” only has the

“Moving” action. Note that only the revision action

“Moving” is available when our system determines
to execute a revision on a whole MEP system to

which object 1 or object 2 belongs. Moreover, a brief

description of the three revision actions are

summarized in Table 4.

Table 2. The priority order for sequential

comparison process (source [13] and revised in this

paper)

System Priority/special notes

Exhaust Air (duct) Usually first due to large size of

components

Supply Air (duct) Follows HVAC Dry due to

interdependence of these systems

Sanitary (pipe) Design criteria for slope essential for

system performance

Process piping Takes the first priority if critical to

manufacturing process

Fire Protection (pipe) Most flexible routing, especially small

diameter pipe

Domestic hot/cold water (pipe) Lower priority because less difficult to re-

route

Cable rack (tray) Flexible routing within safety and

architectural requirements

Control systems Flexible routing but must limit bend

radius for pneumatic tubes

Telephone/Data

communications
Flexible routing but must limit bend

radius for fiber optic cables

Table 3. The revision options for MEP objects

Actions
Sanitary

pipe
Duct Cable rack Other pipes

Moving ○ ○ ○ ○

Revising ○ ○

Sloping ○

Table 4. The descriptions of revision actions

Actions Descriptions

Moving Move an object or a system upward, downward,

leftward, or rightward to avoid clashes.

Revising Make a pipe or a cable rack take a roundabout way to

avoid clashes.

Sloping Adjust the slope of a sanitary pipe to avoid clashes.

The minimum acceptable ratios of slopes are defined

as 1:100 in USA and 2:100 in Japan. This revision

action is only applicable to sanitary pipe.

3.3 The Learning Steps

In this subsection, we present the five steps in Figure

2, which are an iterated learning process in our system.

Below, the details of the five steps are explained.

Step 1. Randomly select a clash instance from the clash

list as a start of the current iterated learning.

Suppose that the No. 2 instance in Figure 2 is

chosen.

Step 2. For the selected clash instance, decide which of
object 1 and object 2 should be chosen for

modification according to the priority order of

their systems, as mentioned in section 3.2. For

the No. 2 instance, for example, since the

systems of object 1 and object 2 are “Exhaust

Air (duct)” and “Domestic cold water (pipe)”,

respectively, object 2 should be chosen for

revision.

Step 3. Revise the object or its system as decided in Step

2 through Revit API. Here, we define a
parameter [0, 1]  as the criterion to

determine whether the revision is executed on

an object or its whole system. Moreover, we also

define a random seed (rs) drawn from a uniform

distribution [0, 1] as a tester. The revision action

that will be taken depends on the following

conditions:

1. When rs  , the modification will be

made on the object. According to Table 3

and the object’s system, randomly choose

an action to make the modification. For

example, the candidate actions for object 2

(a pipe) are “Moving” and “Revising”.

2. When >rs  , the modification will be

made on the object’s system. Our system

will then move the whole system.

After deciding to revise an object or its system, the

proposed system will compute the spatial information of

the object as a reference for the decision on revision

actions. The spatial information is the available distance

aggregated in the four directions (up, down, left, and right)

of the object. First, our system calculates the minimum
moving distances based on the geometric parameters of

object 1 and object 2, such as the widths, lengths, and

heights, and the clash coordinates obtained from the

Revit API. In the example shown in Figure 3, it is better

to move the pipe upward or downward rather than

leftward or rightward. Then our system will compute the

distances between an object and the objects of the other

systems in its neighborhood and the limit of vertical

clearance. In Figure 4 (a), for example, there is a grey

pipe under the black pipe. If the black pipe were moved

downward to avoid the original clash, a new clash
between the two pipes would occur, as shown in Figure

4 (b). Accordingly, the black pipe should move farther to

791

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

avoid the new possible clash. The direction having the

minimum aggregated distance is adopted for movement,

and a construction tolerance (five cm in this study) is

added to the aggregated distance to prevent an imprecise

construction collision from being caused by insufficient

distance. In this study, the action “Revising” is only

applicable when the direction is determined to be up or

down. Note that once an object is moved, parts of the

objects in the same system, such as its branches or the

object from which it branches, would need to be

accordingly moved and corresponding lengths added or
subtracted.

The steps from Step 1 to Step 3 are actually the content

in the function CreateOneNeighbor in SA in Figure 1.

The pseudo code of the function CreateOneNeighbor is

provided in Figure 5.

Figure 3. An example of a clash between a duct

and a pipe.

(a)

(b)

Figure 4. The diagrams of two clashes, (a) an

original clash and (b) a new clash caused when the

black pipe is moved downward to avoid the

original clash

// s: a given list of clashes in the form of Table 1

function CreateOneNeighbor(s)

c; // a randomly selected clash instance from s

D; // the direction (up, down, left, or right)

d; // the minimum aggregated distance

g; // the limit of vertical clearance

o; // the object or system that needs to be revised in c

θ; // the criterion to decide to revise an object or a system.

t; // the construction tolerance

α; // the criterion to decide moving or revising

while

c = GetOneRandomClashInstance(s);

o = DetermineRevisingObject(c, ɵ);

// in some case, d does not exist because of g

if IsMinDistanceExist(o, t, g, ref D, ref d);

if D is up or down and o is object

if Random(0, 1) ≥ α

Move(o, D, d);

else

Revision(o, D, d);

end if

else

Move (o, D, d);

end if

return false;

end if

end loop

end function

Figure 5. The pseudocode of creating a neighbor

solution for SA

Step 4. According to the revision action decided in Step

3, a revision is executed on an object or its

system and then a new list of clashes is output
through our program and Revit API. This step is

the function Cost in SA in Figure 1.

Step 5. Record the number of clashes and update the

energy function to decrease temperature.

According to the operation in SA, when temperature

is higher, the algorithm has a higher probability to accept

a worse solution to escape from the current local area.

Nevertheless, as iteration times increase, it becomes less

likely that a worse solution will be accepted.

4 The Experiment

In this section, we will briefly introduce the profile of

the proposed case and then discuss the experimental

results.

4.1 The Proposed Case

 The proposed case is the MEP systems in a clean room

on the first floor of an integrated circuit (IC) assembly

factory, as shown in Figure 6. The clean room has four

MEP systems, as listed in Table 5, and the four MEP

systems have a total of 50 Revit elements (excluding

fittings). When the first MEP design models finished by

team engineers were integrated into a federated BIM

model, 20 clashes were detected (red circles in Figure 6).

792

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

The 20 clashes and their clash coordinates are listed in

Table 6. Below, the two places marked 1 and 2 in Figure

6 are presented as examples in Figures 7 and 8,

respectively, to show the clash status.

Figure 6. The floor plan of the first floor of the factory

Table 5. The MEP systems in the proposed case

Systems System types

Supply Air Mechanical/ Duct

Sanitary Plumbing/ Pipe

Fire Protection (water) Plumbing/ Pipe

Electrical Electrical/ Cable Tray

Table 6. The clashes and their coordinates in the proposed case

No.
Objects System types

Clash coordinates (X, Y, Z)
1 2 1 2

1 367903 371380 Sanitary (pipe) Cable rack (tray) (41.819132952, 22.539205146, 10.170603675)

 (41.819132952, 23.100470191, 10.170603675)

2 370451 367722 Fire Protection (pipe) Cable rack (tray) (-22.859319532, -8.881478564, 10.006561680)

 (-22.661402865, -8.881478564, 10.006561680)

3 370473 367722 Fire Protection (pipe) Cable rack (tray) (-8.216683959, -8.881478564, 10.006561680)

 (-8.018767292, -8.881478564, 10.006561680)

4 370618 367722 Fire Protection (pipe) Cable rack (tray) (7.923771212, -8.881478564, 10.006561680)

 (8.121687878, -8.881478564, 10.006561680)

5 370639 367722 Fire Protection (pipe) Cable rack (tray) (22.447435371, -8.881478564, 10.006561680)

 (22.645352037, -8.881478564, 10.006561680)

6 370660 367722 Fire Protection (pipe) Cable rack (tray) (35.638009583, -8.881478564, 10.006561680)

 (35.835926250, -8.881478564, 10.006561680)

7 370681 367722 Fire Protection (pipe) Cable rack (tray) (48.197120136, -8.881478564, 10.006561680)

 (48.395036803, -8.881478564, 10.006561680)

8 367101 367903 Supply Air (duct) Sanitary (pipe) (-2.216012647, 22.460462668, 9.514435696)

 (6.595010975, 22.460462668, 9.690656168)

9 367107 370627 Supply Air (duct) Fire Protection (pipe) (9.595010975, -1.361906094, 10.006561680)

 (12.219682891, -1.361906094, 10.006561680)

10 367130 370639 Supply Air (duct) Fire Protection (pipe) (22.546393704, -7.677522892, 10.006561680)

 (22.546393704, -6.037102945, 10.006561680)

11 367130 370660 Supply Air (duct) Fire Protection (pipe) (35.736967916, -7.677522892, 10.006561680)

 (35.736967916, -6.037102945, 10.006561680)

12 367130 370681 Supply Air (duct) Fire Protection (pipe) (48.296078469, -7.677522892, 10.006561680)

 (48.296078469, -6.037102945, 10.006561680)

13 367191 370451 Supply Air (duct) Fire Protection (pipe) (-22.760361198, -7.677522892, 10.006561680)

 (-22.760361198, -6.037102945, 10.006561680)

14 367191 370473 Supply Air (duct) Fire Protection (pipe) (-8.117725625, -7.677522892, 10.006561680)

 (-8.117725625, -6.037102945, 10.006561680)

15 369883 370599 Supply Air (duct) Fire Protection (pipe) (18.605084296, 12.252387737, 10.006561680)

16 369883 370700 Supply Air (duct) Fire Protection (pipe) (31.106234416, 12.252387737, 10.006561680)

17 369883 371780 Supply Air (duct) Fire Protection (pipe) (31.106234416, 12.516579798, 9.820465021)

18 369883 371812 Supply Air (duct) Fire Protection (pipe) (18.605084296, 12.516579798, 9.820465021)

19 369891 367695 Supply Air (duct) Cable rack (tray) (9.595010975, 15.232694664, 9.514435696)

 (12.219682891, 15.232694664, 9.514435696)

20 369908 367903 Supply Air (duct) Sanitary (pipe) (36.007371265, 22.819837668, 10.278903374)

 (37.648508636, 22.819837668, 10.311726121)

1

2

793

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

Figure 7. The clash between a duct and a sanitary

pipe

Figure 8. Two clashes between a duct and two

pipes

4.2 The Experimental Results

The objective of the proposed system was to resolve

the MEP clashes listed in Table 6. The strategy of this

study was to set moving as the first priority, i.e., α in

Figure 5 is 0.95. The experimental results are

summarized in Table 7 and drawn in Figure 7.

Table 7. The details of experimental results

Runs Clash Numbers Time (Seconds)

1 14 4.410

2 10 5.822

3 8 5.757

4 2 5.916

5 1 5.788

6 0 5.746

 33.440

Figure 9. The trend of experimental results

As shown in Figure 9, the clashes were resolved very

quickly, in 33.44 seconds. In the first run, six of the

twenty clashes were resolved. Although the proposed

case is rather simple, it indicates that the proposed system

can provide BIM team members an initial reference for
further discussions on clash resolution. For comparison

with the two examples in Figures 7 and 8, the automatic

resolutions are shown in Figures 10 and 11.

Figure 10. Automatic resolution of a clash

between a duct and a sanitary pipe

Figure 11. Automatic resolution of two clashes

between a duct and two pipes

14

10

8

2
1

0
0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

N
u

m
b

e
r

o
f

c
la

s
h

e
s

Experimental runs

794

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

5 Conclusion

During the design stages of pre-construction, it is
time-consuming for a BIM project team to resolve design

clashes as they integrate models finished by individual

team members into a composite master model. To

automatically resolve design clashes, we designed a

programming system by employing SA and API

provided by Revit. In this paper, a real case of the MEP

systems in a clean room in an IC-Assembly factory was

employed. In the case, twenty design clashes were

detected when the BIM models were merged. The case

was used to evaluate the effectiveness and feasibility of

the proposed system. The experimental results showed
that the twenty design clashes were automatically

resolved within a very short time. The revised BIM

model can serve as a reference for team members in

discussions of how to resolve design clashes. Although

the experimental results indicated that design clashes can

be automatically resolved in this way, the proposed

system still needs more specific guidelines to ensure

suitable revisions of building components, rather than

random revisions.

References

[1] Liu, Y., van Nederveen, S. and Hertogh, M.

Understanding effects of BIM on collaborative

design and construction: An empirical study in

China. International Journal of Project
Management, 35(4), 686-698, 2017.

[2] States), N. N. B. S.-U. An Authoritative Source of

Innovative Solutions for the Built Environment,

2015.

[3] Love, P. E. D., Liu, J., Matthews, J., Sing, C.-P. and

Smith, J. Future proofing PPPs: Life-cycle

performance measurement and Building

Information Modeling. Automation in Construction,

56, 26-35, 2015.

[4] Lin, Y.-C., Lin, C.-P., Hu, H.-T. and Su, Y.-C.

Developing final as-built BIM model management
system for owners during project closeout: A case

study. Advanced Engineering Informatics, 36, 178-

193, 2018.

[5] Wetzel, E. M. and Thabet, W. Y. Utilizing Six

Sigma to develop standard attributes for a Safety for

Facilities Management (SFFM) framework. Safety

Science, 89, 355-368, 2016.

[6] Pärn, E. A., Edwards, D. J. and Sing, M. C. P.

Origins and probabilities of MEP and structural

design clashes within a federated BIM model.

Automation in Construction, 85, 209-219, 2018.

[7] Ciribini, A. L. C., Mastrolembo Ventura, S. and
Paneroni, M. Implementation of an interoperable

process to optimise design and construction phases

of a residential building: A BIM Pilot Project.

Automation in Construction, 71, 62-73, 2016.

[8] Bhagwat, P. and Shinde, R. Clash Detection: A

New Tool in Project Management. International

Journal of Scientific Research in Science,

Engineering and Technology, 2(4), 193–197, 2016.

[9] Lee, G. and Kim, J. W. Parallel vs. Sequential

Cascading MEP Coordination Strategies: A

Pharmaceutical Building Case Study. Automation

in Construction, 43, 170-179, 2014.

[10] Mangal, M. and Cheng, J. C. P. Automated
optimization of steel reinforcement in RC building

frames using building information modeling and

hybrid genetic algorithm. Automation in

Construction, 90, 39-57, 2018.

[11] Xue, F., Lu, W. and Chen, K. Automatic Generation

of Semantically Rich As-Built Building

Information Models Using 2D Images: A

Derivative-Free Optimization Approach.

Computer-Aided Civil and Infrastructure

Engineering, 33(11), 926-942, 2018.

[12] Lim, Y. W., Majid, H. A., Samah, A. A., Ahmad,

M. H., Ossen, D. R., Harun, M. F. and Shahsavari,
F. BIM and Genetic Algorithm Optimisation for

Sustainable Building Envelope Design.

International Journal of Sustainable Development

and Planning, 13(1), 151-159, 2018.

[13] Korman, T. M. and Tatum, C. B. Development of a

Knowledge-Based System to Improve Mechanical ,

Electrical , and Plumbing Coordination. Paper

presented at the Technical Report No. 129, Centre

for Integrated Facility Engineering, Stanford

University, CA, 2001.

[14] J. Hackl, B.T. Adey, N. Lethanh, Determination of
Near-Optimal Restoration Programs for

Transportation Networks Following Natural Hazard

Events Using Simulated Annealing, Computer-

Aided Civil and Infrastructure Engineering 33 (8)

(2018) 618-637.

[15] M.T. Shafiq, J. Matthews, S.J.J.o.I.T.i.C. Lockley,

A study of BIM collaboration requirements and

available features in existing model collaboration

systems, 18 (2013) 148-161.

[16] J.A. Zeferino, A.P. Antunes, M.C. Cunha, An

Efficient Simulated Annealing Algorithm for

Regional Wastewater System Planning, 24 (5)

(2009) 359-370.

795

