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Abstract –  

The design of rebar in reinforced concrete (RC) 

structures is a mandatory stage in building 

construction projects. Due to the large number and 

complicated arrangement rules of rebar in each 

design code, it is impractical, labor-intensive and 

error-prone for designers to avoid all clashes (i.e., 

collisions and congestion) manually or partial 

automation by using computer software. Therefore, 

the building information modeling (BIM) technology 

has been employed in the present architecture, 

engineering, and construction (ACE) industry for 

clash free rebar design. However, it is worth noting 

that most of existing BIM based approaches are using 

optimization algorithms for moving components, 

which can only be applied for regular shaped RC 

structures. In particular, shapes of rebar are fixed 

which means the optimized path of rebar cannot bend 

to avoid the obstacle in current studies. Furthermore, 

most of the existing studies cannot meet design 

constraints after avoiding clash, lack automatic and 

intelligent identification and resolution of rebar clash 

for complex RC joints and frame structures. 

Therefore, we present a framework towards 

automatic rebar design in RC frame without clashes 

via multi-agent reinforcement learning (MARL) 

system with BIM. In particular, by treating each 

rebar as an intelligence reinforcement learning (RL) 

agent, we propose to model the rebar design problem 

as a path-planning problem of multi-agent system. 

Next, by employing FALCON (A fusion architecture 

for learning, cognition, and navigation) with 

immediate evaluative feedback as the reinforcement 

learning engine, we design particular form of state, 

action, and rewards for reinforcement MARL for 

automatic rebar design. In addition, the design of 

rewards and some strategies in MARL are presented 

for build-ability constraints. Comprehensive 

experiments on one-story RC building frame have 

been conducted to evaluate the efficacy of the 

proposed framework. The obtained results confirmed 

that the proposed framework with MARL is effective 

and efficient. 
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1 Introduction 

Rebar design is a mandatory and important stage in 

reinforced concrete (RC) structures construction projects. 

According to Chinese design codes for RC members 

design (GB50010-2010), the design of rebar has to meet 

the seismic and the bearing capacity requirements of RC 

members. Besides, rebar design needs to be constructed 

easily, safe and cost effective. Since the rebar are densely 

located and the arrangement rules for rebar are extremely 

complex as per design codes, it is impractical, labor-

intensive and error-prone for the designers to manually 

avoid all collisions (hard clash) or congestions (soft clash) 

in the RC structures even using computer software [1]. In 

addition, current clash detection software like Autodesk 

Navisworks Manage and Solibri Model Checker, have 

realized detection and visualization of the clash members 

[2]. However, the current software mainly focuses on the 

clash identifications of construction members after the 

design stage. It cannot automatically avoid the clash of 

the rebar or offer implementation resolution for solving 

clashes, which thus are lack of automatic arrangement in 

rebar design.  

Recently, building information modeling (BIM) has 

been widely in the current Architecture, Engineering and 

Construction (AEC) industry. BIM technology allows us 

to represent the detailing of rebar digitally and transfer 

the detailing information to structural analysis software 

[5]. However, automated resolution of rebar clashes is 

lacking in the existing BIM software packages. Therefore, 

developing a framework for solving the problem of clash 

detection and resolution for automated design of rebar 

connects with the exiting BIM technology will be 
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significant value in the AEC industry. 

Various researchers in the past have tried to solve the 

problem of the clash detection and resolution for 

automated design of rebar with the aid of BIM 

technology, in the literature, Park [3] developed a BIM-

based simulator to determine the sequence of rebar 

placement, and the clashes of rebar were identified by a 

developed application programming interface. 

Nevertheless, it focused on the simulation of the 

placement sequence and the spatial clash has to be solved 

manually. Next, Radke et al. [4] proposed an 

identification and resolution for mechanical, electrical 

and plumbing (MEP) systems. The offered resolution 

was moving one of the two clash entities to solve spatial 

conflicts.  In fact, design constraints were not verified 

after moving one object. Besides, it provided manual 

resolution for resolving limited types of clashes. 

Moreover, Wang et al. [2] carried out a knowledge 

representation for spatial conflict coordination of MEP 

systems. The clash knowledge representation included 

description, context, evaluation and management details. 

However, the developed presentation pattern only 

provided a documentation to store clash information 

without any clash resolution strategy for identified 

clashes. Mangal and Cheng [5] proposed a framework 

based on BIM and genetic algorithm (GA) to realize 

rebar design and avoid clash at RC beam-column joints. 

However, the proposed framework only offered clash 

resolution strategy for moving components by using GA 

and can only applied for regular shaped RC structures. In 

particular, the optimized path of rebar cannot bend to 

avoid the obstacles, which thus limits its practicability in 

real-world complex RC joints. The main drawbacks of 

existing approaches can be summarized as follows: (1) 

Due to the complex design codes of rebar, most of the 

above studies cannot meet design constraints after 

avoiding clash by moving one object. (2) Most of the 

above studies lack automatic and intelligent 

identification and resolution of rebar clash for real-world 

complex RC joints and frame structures. 

In machine learning, in light of its strength, RL 

algorithms have achieved many important achievements 

in the field of complex adaptive systems such as mobile 

robot path planning. What’s more, a MARL system can 

lead to greater level of adaptivity and effective problem-

solving [6]. Furthermore, the clash detection and 

resolution problem for the rebar design can be treated as 

a path planning of multi-agents in order to achieve 

automatic arrangements and bending of rebar to avoid 

obstacles. The similarity between the path planning of 

multi-agent and the arrangement of rebar, enlightens our 

work in this paper. Therefore, we propose a framework 

via a MARL system with BIM for automatically and 

intelligently provide clash resolution of rebar design in 

RC frames. To the best of our knowledge, this is the first 

modeling clash detection and resolution problem for the 

rebar design as a path-planning of multi-agent in the 

literature. 

In particular, the three-dimensional coordinate 

information of the clash free rebar is then obtained by 

collecting the traces of the agents, considering 

longitudinal tensile, longitudinal compressive and shear 

rebar. To evaluate the efficiency and effectiveness of the 

proposed MARL, comprehensive experiments about 

one-story RC building frame having RC beams, columns, 

beam-column joints and beam-beam joints, including 63 

RC beams and 23 RC columns with 1120 longitudinal 

rebars. Lastly, the obtained results including the success 

rates confirm that the proposed system is effective and 

efficient. 

The contributions of the present study can then be 

summarized as follows:(1) To the best of our knowledge, 

this is the first modeling clash detection and resolution 

problem for rebar design as a path-planning problem of 

multi-agent in the literature. (2) To achieve automatic 

rebar design in complex RC joints, by employing 

FALCON as the reinforcement learning engine, we 

design the particular form of state, action, and rewards 

for the reinforcement MARL. (3) Comprehensive 

experiments on one-story RC building frame are 

performed to verify the effectiveness of the proposed 

framework. 

2 Preliminary  

Section 2.1 introduces the basic module of 

reinforcement learning. In Section 2.2, we describe the 

formulation of multi-agent path planning for rebar clash 

problem at RC beam-column joints. Section 2.3 presents 

rebar spacing requirements for RC members.  

2.1 Introduction to Reinforcement Learning 

Agent

Environment

action 

At 
reward 

Rt

state 

St

 Rt+1

 St+1

  

Figure 1. Basic Module of Reinforcement 

Learning 

A multi-agent reinforcement learning (MARL) 

system [6] can be developed as effective tools for path 

planning problem-solving. RL is a natural learning 

paradigm to both single-agent and multiagent-agents. It 

creates an autonomous agent that learns and then adjusts 

its behavior through the action feedback (punishment and 
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reward) from the environment, instead of explicit 

teaching. Following the framework of a Markov decision 

process (MDP), a RL agent performs learning through 

the cycle of sense, action and learning [6]. In each cycle, 

the agent obtains sensory input from its environment 

representing the current state (S), performs the most 

appropriate action (A) and then receives feedback in 

terms of rewards (R) from the environment. It is 

important to note that how to turn a real-world 

environment into digital environment with clear reward 

signals is a key point to carry out RL. 

2.2 Formulating Rebar Design as Path 

Planning of Multi-agent System 

 

Figure 2. Problem formulation for RC beam-

column joint 

In particular, by treating each rebar as an intelligence 

reinforcement learning agent, we propose to model the 

rebar design problem as a path-planning problem of 

multi-agent system. It can be further modeled with a team 

of agents tasked to navigate towards defined targets 

safely across a RC beam-column joint that is gradually 

filled with obstacles which are rebars generated in the 

previous steps. available. In this task, the unmanned 

vehicle can choose one of the five possible actions, 

namely, up, down, forward move, left, and right at each 

discrete time step. The task or objective of the agent is to 

navigate successful through the joint towards assigned 

targets within the stipulated time, without hitting any 

obstacle. With the proposed MARL, the three-

dimensional coordinates of the clash free rebar design are 

then obtained by collecting the traces of the agents.  

Specifically, the process of rebar design in the RC 

beam-column joint is divided into three phases as 

illustrated in Figure 1: (1) In the first phase, the 

longitudinal rebars in the column are regarded as a group 

of agents from the origins navigating to the targets across 

the column and beam-column joint 3D environment. And 

there are no other obstacles (rebars) at the joint area in 

the first phase. (2) In the second phase, x direction beam 

longitudinal rebars are regarded as a group of agents and 

column rebars including longitudinal and shear rebars are 

regarded as obstacles. (3) In the third phase, y direction 

beam longitudinal rebars are regarded as a group of 

agents and rebars of column and x direction are regarded 

as obstacles. 

2.3 Formulating Steel Rebar Spacing 

Requirements for RC Members and 

Origins and Targets for Agents 

 

Figure 3. Spacing between rebar in an RC beam 

In order to pour concrete easily and ensure the 

compactness of concrete around rebar, the spacings 

between longitudinal rebar are determined as per the 

provisions of GB50010-2010 (Figure 2). 𝑆ℎ𝑐is horizontal 

compressive spacing for longitudinal compressive rebar, 

which is specified as 𝑆ℎ𝑐 ≥ 30 and ≥ 1.5𝑑𝑐,𝑚𝑎𝑥 . In 

addition, 𝑆ℎ𝑡 is horizontal tensile spacing for longitudinal 

tensile rebar, which is specified as 𝑆ℎ𝑡 ≥ 25 and ≥
𝑑𝑡,𝑚𝑎𝑥.  

𝑁𝑡  denotes the total number of tensile rebars, and 

𝑛𝑡,𝑚𝑖𝑛 ≤ 𝑁𝑡 ≤ 𝑛𝑡,𝑚𝑎𝑥.  

𝑛𝑡,𝑚𝑖𝑛 = (𝑏 − 2 × 𝑐)/ 𝑆ℎ𝑡,𝑚𝑎𝑥   (1) 

𝑛𝑡,𝑚𝑎𝑥 = (𝑏 − 2 × 𝑐)/ 𝑆ℎ𝑡,𝑚𝑖𝑛 (2) 

Where 𝑏  denotes the width of RC beam, and 𝑐 

denotes the concrete cover. 𝑆ℎ𝑡,𝑚𝑎𝑥  and 𝑆ℎ𝑡,𝑚𝑖𝑛  are the 

maximum and minimum spacing between tensile rebars, 

respectively. Further, 𝑆ℎ𝑡,𝑚𝑎𝑥  and 𝑆ℎ𝑡,𝑚𝑖𝑛 are used in 

MARL to decide the origins of agents in each mission. 

Similar to the longitudinal tensile rebar, spacing 

demands for compressive rebar are straight forward and 

require no explanation. 

The calculations of spacing demands in RC column 

design are similar to those in RC beam design and require 

no explanation. The spacings between longitudinal steel 

reinforcement bars 𝑆ℎ  are decided as per the provisions 

of GB50010-2010(Figure 3), and 50mm≤ 𝑆ℎ≤ 300mm. 

Specifically, when the width of column is more than 

400mm, the spacings between longitudinal rebars 𝑆ℎ 

must to be less than 200mm [1]. 

The origins of agents in each mission are decided by 

923



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

the 𝑆ℎ𝑡,𝑚𝑎𝑥 and 𝑆ℎ𝑡,𝑚𝑖𝑛, meanwhile the targets of agents 

in each mission are also decided by the 𝑆ℎ𝑐,𝑚𝑎𝑥  and 

𝑆ℎ𝑐,𝑚𝑖𝑛  as per the provisions of GB50010-2010, as 

illustrated in subsection 2.3. 

 

Figure 4.Spacing between rebar in an RC column 

3 Proposed MARL system with BIM 

Solving the Path-Planning Problem for 

Clash Free Rebar Design 

The presented framework for clash free rebar design 

is based on Mangal and Cheng [5] framework. The 

framework consists of 4 modules named (a) BIM Model 

Extraction, (b) Structural Analysis, (c) Structural Type 

Analysis, (d) Multi-Agent Reinforcement Learning 

System shown in Figure 5. The first three modules are 

clearly clarified in Mangal and Cheng [5] framework. 

The last module is explained in the following subsection. 

 

   

Figure 5. The presented framework for clash free rebar design via MARL with BIM.

3.1 Environment Information Pre-processing 

of RC Members  

In addition, the RC members have to be transformed 

into a digital environment that is suitable for MARL 

system. Furthermore, we transform the BIM model of RC 

member into tessellated mesh environments 

approximating the geometry of the RC members with 

known boundary conditions, as illustrated in Figure 6. 

Then in tessellated mesh environment, a team of agents 

tasked to navigate towards defined targets safely.  

Each tessellated mesh dimension 𝐷𝑖 of environment 

is the dimension of a single square mesh, which can be 

calculated as: 

𝐷𝑖 = min (𝑑𝑐  𝑎𝑛𝑑 𝑑𝑡  )  (3) 

Where 𝑑𝑐  denotes the diameter of longitudinal 

compressive rebar, and 𝑑𝑡  denote the diameter of 

longitudinal tensile rebar.  

Therefore, the size of tessellated mesh environment 

𝑆𝑧 depends on 𝐷𝑖 and the dimension of RC members, 

𝑆𝑧 = 𝑓𝑙𝑜𝑜𝑟(𝐷/𝐷𝑖)  (4) 

Where D denotes the dimension of RC members, 

which can be length, width and height of RC members, 

and 𝑓𝑙𝑜𝑜𝑟() denotes the integer rounding down function 

in order to limit the range of 𝑆𝑧.  
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Figure 6. Environment information pre-processing of RC members 

3.2 Neural Network Architecture of Each 

Agent 

The architecture of each agent takes the form of 

FALCON [6], which has a three-channel neural network 

architecture (Figure 7), consisting of three modules: (1) 

State: a sensory field  𝐹1
𝑐1  for saving and representing 

current agent states, (2) Action: a motor field 𝐹1
𝑐2

 for 

representing available actions, and (3) Reward: a 

feedback (reward) field 𝐹1
𝑐3

 for representing the internal 

states of an agent, as well as external feedbacks from the 

environment. It has a cognitive field 𝐹2   where agents 

calculate the maximum expected future rewards for 

action at each state, which encodes a relation among the 

patterns in the three input channels. 

 

Figure 7. Neural network architecture of each 

agent 

3.2.1 State Module 

Figure 8. Illustration of states in 2D 

MARL system involves numbers of agent equipped 

with a set of sonar sensors that has a 180° forward view. 

Meanwhile, input attributes of sensory (state) vector 

consist of obstacle (path of other agent) detection, other 

agent position detection and the bearing of the target 

from the current position. Therefore, without a priori 

knowledge of the three-dimensional coordinate 

information of the obstacle and targets, each agent is 

equipped with a localized view of its environment.  

3.2.2 Action Module 

In MARL system, the agent can choose one of the five 

possible actions (left, forward move, right, up and down 

at each discrete time step).  

 

Figure 9. Illustration of five possible actions  

3.2.3 Reward Module 

In MARL, the design of reward, punishment and 

some specific strategies are presented for build-ability 

constraints. In particular, the reward and punishment 

strategies are described in Table.1: 

Table 1. Reward and punishment strategies for agents. 

Reward and Punishment Strategies 

Reach targets without hitting obstacles +1.0 

The distance between agents and targets 

decreases 

+0.4 

Hit obstacles (paths of other agents) -1.0 

Hit other agents -1.0 

  
 

0 0 1 0 0 
 

0 1 0 0 0 
 

0 0 0 1 0 
 

Obstacle Detection Agent Detection Target Bearing 

2 

1 

3 4 

5 

7 

6 

8 9 

10 
11 

12 
13 

14 

15 
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Within the range of other agents’ paths -1.0 

Run out of time -1.0 

Take actions (left, right, up and down) -0.5 

Take action (forward move) 0 

A reward of +1 is given when the agent reaches the 

target without hitting obstacles and running out of time. 

A reward of +0.4 is given when the agent takes action 

that can get close to the target to encourage agents search 

for defined targets. A punishment of -1 is given when the 

agent hits an obstacle (paths of other agents), collides 

with another agent or runs out of maximum time in order 

to avoid clash of rebar. A punishment of -1 is given when 

the agent moves into the specified range ( 1.5 × diameter 

of rebar) of paths or positions of other agents, therefore 

the spacing demand of rebar is satisfied. A punishment of 

-0.5 is given when the agent takes actions including left, 

right, up and down in order to make sure agent to move 

as straight as possible, therefore the layout of rebar is 

most likely to be a straight line unless obstacles are 

encountered. A reward of 0 is also assigned when the 

agent moves forward and does not find the target in the 

maximum allowable time. 

 

Figure 10. Illustration of multi-agent path 

planning including reward, punishment and 

mission endings in 2D 

3.3 FALCON in MARL 

The architecture of FALCON based on 3-channel 

Adaptive Resonance Associative Map (multichannel 

ARAM) [6], an extension of predictive Adaptive 

Resonance Theory (ART) networks (Figure 7).  

Input vectors: Let {S,A,R} denote the input vector, 

where S = (𝑠1, 𝑠2, . . . , 𝑠𝑛) denotes the state input, and 𝑠𝑖 

indicates the value of sensory input 𝑖 ; A = 

(𝑎1, 𝑎2, . . . , 𝑎𝑛)  denotes the action vector, and 𝑎𝑖 

indicates a possible action 𝑖; R = (𝑟) denotes the reward 

vector, and 𝑟 ∈ [−1,1]is the reward signal value.  

Activity vectors: Let 𝑥𝑐𝑘 denote the 𝐹1
𝑐𝑘activity vector. 

Let 𝑦𝑐 denote the 𝐹2
𝑐 activity vector. 

Weight vectors: Let 𝑤𝑗
𝑐𝑘 denote the weight vector 

associated with the 𝑗th node in 𝐹2
𝑐for learning the input 

representation in 𝐹1
𝑐𝑘 . Initially, all 𝐹2

𝑐 nodes are 

uncommitted, and the weight vectors contain all 1’s. 

Parameters: The FALCON’s dynamics is determined by 

choice parameters 𝛼𝑐𝑘 > 0  for 𝑘 = 1, … , 𝐾 ; learning 

rate parameters 𝛽𝑐𝑘 ∈ [0;  1] for = 1, … , 𝐾; contribution 

parameters 𝛾𝑐𝑘 ∈ [0;  1]  for = 1, … , 𝐾 ; and vigilance 

parameters 𝜌𝑐𝑘 ∈ [0;  1] for = 1, … , 𝐾. 

3.3.1 From Sensory to Action 

Given the state vector S, the system performs code 

competition and selects an action based on the output 

activities of action vector A. The detailed algorithm is 

presented below. 

Code activation: Given activity vectors 𝑥𝑐1, 𝑥𝑐2 ,…,  𝑥𝑐𝐾
 

for each 𝐹2
𝑐

 node 𝑗, the choice function 𝑇𝑗
𝑐

 is computed as 

follows: 

𝑇𝑗
𝑐 = ∑ 𝛾𝑐𝑘

|𝑥𝑐𝑘 ∧ 𝑤𝐽
𝑐𝑘|

𝛼𝑐𝑘 + |𝑤𝐽
𝑐𝑘|

𝐾

𝑘=1

 (5) 

Code competition: All 𝐹2
𝑐

 nodes undergo a code 

competition process. The winner is indexed at 𝐽where 

𝑇𝐽
𝑐 = max {𝑇𝑗

𝑐: for all 𝐹2
𝑐  node 𝑗} (6) 

Action selection: The chosen 𝐹2
𝑐  node 𝐽  performs a 

readout of its weight vector to the action field 𝐹1
𝑐2such as 

𝑥𝑐2 =  𝑤𝐽
𝑐2  (7) 

The chosen action 𝑎𝐼 is then determined by 

𝑥𝐼
𝑐2 = max {𝑥𝑖

𝑐2: for all 𝐹1
𝑐2 node 𝑖} (8) 

3.3.2 From Feedback to Learning 

Upon receiving a feedback from its environment after 

performing the action 𝑎 𝐼, the system adjusts its internal 

representation based on the following principles. Given a 

reward (positive feedback), the agent learns that an action 

executed in a state will result in a favorable outcome. 

Therefore, the system learns to associate the state vector 

S, the action vector A, and the reward vector R. 

Template matching: Before code 𝐽  can be used for 

learning, a template matching process checks that the 

weight templates of code 𝐽 are sufficiently close to their 

respective input patterns. Specifically, resonance occurs 

if for each channel k, the match function 𝑚𝑗
𝑐𝑘 of the 

chosen code 𝐽 meets its vigilance criterion: 

𝑚𝑗
𝑐𝑘 = |𝑥𝑐𝑘 ∧ 𝑤𝐽

𝑐𝑘| /|𝑥𝑐𝑘| ≥ 𝜌𝑐𝑘 (9) 

Learning then ensues, as defined below. If any of the 

vigilance constraints is violated, mismatch reset occurs in 

which the value of the choice function 𝑇𝐽
𝑐

 is set to 0 for 

the duration of the input presentation. The search process 

repeats to select another 𝐹2
𝑐  node 𝐽  until resonance is 

achieved. 

Template learning: Once a node 𝐽 is selected for firing, 

for each channel 𝑘, the weight vector 𝑤𝐽
𝑐𝑘is modified by 

the following learning rule: 
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𝑤𝐽
𝑐𝑘(𝑛𝑒𝑤)

= (1 − 𝛽𝑐𝑘)𝑤𝐽
𝑐𝑘(𝑜𝑙𝑑)

+ 𝛽𝑐𝑘|𝑥𝑐𝑘

∧ 𝑤𝐽
𝑐𝑘(𝑛𝑒𝑤)

| 

(10) 

3.4 Proposed MARL System 

Algorithm 2 Pseudo Code of MARL System 

Initialization: Generate the initial m agents 

While (a mission ending conditions are not satisfied) 

For each agent  

If (agent dose not fail or not arrive the target)  

Perform FALCON algorithm 

Else  
Stop training 

End If  

End For  

End While 

The basic steps of the proposed MARL system are 

outlined in Algorithm 2. In the first step, a population of 

m agents is initialized. An agent fails when hitting 

obstacles, exceeding 30 sense-act-learn cycles (running 

out of time). A mission ends when all agents fail or 

arrives at the target successfully. A mission will also be 

deemed to have failed if an agent collides with another, 

as depicted in Figure 10. 

4 Empirical Study 

4.1 The Example of Training Process in RC 

Beam-Column Joint by MARL 

In the initial stage of mission as shown in Figure 11, 

agents are encouraged to explore new possibilities and try 

to reach defined targets without hitting obstacles or 

running out of time, therefore the paths of the agents 

looks messy, cluttered or indirect in trial 10 and 100. In 

the late stage of mission such as trial 500 and 1000, 

agents converge gradually to the global optimum and find 

the optimum paths for the clash free rebar design. 

Furthermore, along with the experimental training, the 

paths of agents have also gone from chaos to the gradual 

and orderly process of development. Finally, the global 

optimum of the agents’ path will be selected to generate 

the clash free rebar design. 

                    
(Trial 10)                                                                         (Trial 100) 

                      
(Trial 500)                                                                       (Trial 1000) 

Figure 11. The training process in beam-column joint by MARL 

4.2 The Example of RC Frame 

 

Figure 12. one-story frame 

In this section, the empirical study is established to 

study the effectiveness of the proposed model. One 

illustrative example about one-story frame as shown in 

Figure 12 will be used to test the proposed model. In this 

tested frame, there are 63 RC beams and 23 RC columns 

with 1120 longitudinal rebars.  

An agent having reached the target without hitting 

obstacles or running out of time is defined as a success. 

The success rate 𝑆𝑟  can be calculated by Eq. 1:  

𝑆𝑟  = =  
 1

𝑁𝑚
 × ∑

 𝑁𝑡
𝑖

 𝑁𝑡

𝑁𝑚

𝑖=1

 ×  100% (7) 

where 𝑁𝑚  denotes the number of total missions,  𝑁𝑡 

denotes the total number of participating agents and 𝑁𝑡
𝑖 

stands for the number of agents that reach the targets 

successfully in mission 𝑖 without hitting obstacles. 

We analyzed the averaged success rate 𝑆𝑟  on 40 
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simulations on the proposed MARL. The averaged 

success rates 𝑆𝑟  presented in Figure 13 indicate that the 

proposed MARL successfully solving the path planning 

problem of rebar design after training. The design of 

reward, punishment and some specific strategies can 

satisfy build-ability constants.  

 

Figure 13. The success rates of MARL system 

The automated 3D BIM outputs of the rebar in RC 

frame are given in Figure 14 and 15. Design of rebars of 

the RC frame are based on the result of the proposed 

system. It can be observed that there is no rebar clash in 

RC beam-column joints and frame by clash detection of 

the 3D BIM output. 

 

Figure 14. The simulation result of considered 

one-story RC frame 

 

Figure 15. The simulation result of considered 

one-story RC frame 

5 Conclusions and Future Research 

In this paper, we model the clash detection and 

resolution problem for clash free rebar design as a path 

planning problem of multi-agents in order to achieve 

automatic arrangements and bending of rebar to avoid 

obstacles. Therefore, a framework via MARL system 

with BIM has been proposed to identify and avoid rebar 

spatial clash in complex RC frames. The three-

dimensional coordinate information of the clash free 

rebar including bending of rebar is then obtained by 

collecting the traces of the agents. The design of reward, 

punishment and some specific strategies for build-ability 

constants are also put forward in MARL. Next, according 

to FALCON, the agent selects the suitable action and 

reaches the defined targets without hitting obstacles or 

running out of time. Subsequently, agents converge 

gradually to the global optimum along with the 

experimental training. Finally, the paths of agents are 

extracted to BIM model generating the rebar design. The 

simulation study in terms of the success rate have shown 

the effectivity and efficiency of the proposed system on 

the design of rebar in one-story RC frame. 

However, the proposed framework via MARL system 

with BIM still has a few limitations. (1) It only applied 

for regular RC beams, columns, beam-column joints and 

beam-beam joints. (2) Furthermore, the system only 

considered the design codes GB50010-2010. Therefore, 

extending the system for more complex RC members or 

fabricated RC members and other design codes will be 

considered in the future work. 
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