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Abstract – 

In construction, unanticipated struck-by hazards 

often arise, which have resulted in a significant 

number of construction fatalities. To address this 

problem, many studies have attempted to automate 

proximity monitoring and struck-by hazard detection 

using various technologies, such as wireless sensors 

and computer vision methods. While this technology 

focuses on understanding what is happening as 

hazards arise, it is not equipped to detect future 

hazards. In impending situations, detecting current 

hazards may not provide enough time for workers to 

take evasive actions. To address this challenge this 

study develops a trajectory prediction model for 

mobile construction resources. Specifically, this study 

conducts hyper-parameter tuning of a deep neural 

network, called Social Generative Adversarial 

Network to develop a prediction model capable of 

predicting more than five seconds. Further, a test on 

a real construction operations data follows to validate 

developed models’ trajectory prediction accuracy. As 

a result, a developed model could achieve promising 

accuracy: the average displacement error and the 

final displacement error were 0.78 and 1.27 meters, 

respectively. The trajectory prediction allows for 

detecting future hazards, which will support pro-

active intervention in hazardous situations. It will 

ultimately contribute to promoting a safer working 

environment for construction workers. 
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1 Introduction 

In construction, mainly due to unstructured and limited 

workspaces, unanticipated struck-by hazards involving 

mobile vehicle or equipment often arise, contributing to 

the significant number of construction fatalities [1]. 

According to The Center for Construction Research and 

Training, United States, from 2011 to 2015, total 925 

struck-by fatalities were reported from construction [2]. 

The figure accounted for 24% of overall struck-by 

fatalities in the U.S. and was unmatched by other U.S. 

industries [2]. Notably, the number of struck-by fatalities 

rose 34% from 2010 (N=121) to 2015 (N=162) [2].  

A critical element of construction safety management 

is “a proactive, ongoing process to recognize hazards that 

are present or that could have been anticipated” [3]. 

However, such continuous monitoring has not been 

viable in practice as manual observation and inspection 

is notoriously time-consuming, labor-intensive, and 

costly [4]. 

A major research area for this issue is attuned to 

automating object localization, proximity monitoring, 

and accordingly struck-by hazard detection. Prior 

research leveraged various technologies—such as 

wireless sensors [5-9] and computer vision methods [1, 

10-11]—and made a great progress on automation of 

struck-by hazard detection. It is expected that the 

successful deployment of such technologies will allow 

for prompt feedback to involved workers, thereby 

reducing the chance of an impending collision [1, 5, 10]. 

However, there remains a critical challenge that has 

not been tackled yet: how to recognize not only current 

hazards but also the ones that will be present in the near 

future for pro-active intervention. All prior works using 

wireless sensors and computer vision are limited to 

understand what is happening. That is, these technologies 

are only capable of detecting current hazards because 

they depend on current locations of entities of interest. In 

many cases, however, letting a worker know “now you 

are in a danger” may not provide enough time for him/her 

to take a proper evasive action. Therefore, predicting 

what will happen (i.e., knowing future position of entities 

and detecting future hazards) is critical in the prevention 

of potential accidents. 

As a preliminary study to address this challenge, this 

research examines the potential of trajectory prediction 

for mobile construction resources. To this end, this study 

develops a trajectory prediction model through hyper-

parameter tuning of a deep neural network (DNN), called 

Social Generative Adversarial Network (GAN) [12], and 

conducts test on a real construction operations data to 
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evaluate the developed model’s prediction accuracy. 

2 Previous Works 

Considerable research efforts have been made to 

automate the struck-by hazard detection in construction. 

Some studies applied wireless sensors—such as Radio 

Frequency Identification (RFID) [5-6], Magnetic Field 

(MF) [7], Global Positioning System (GPS) [8], and 

Bluetooth Low Energy (BLE) [9]—to instantly detect 

hazardous proximity between entities of interest. On the 

other hand, other studies applied deep neural networks 

(DNNs)-based object detection framework—such as 

Faster R-CNN [13], R-FCN [14], and YOLO-V3 [1]—

for continuous object localization and proximity 

monitoring. 

The previous works have made large strides in 

automating struck-by hazard detection. However, 

trajectory prediction and accordingly future hazard 

detection have not been tackled yet. All prior works using 

wireless sensors and computer vision are limited to detect 

current hazards. To provide enough time for workers to 

take a prompt evasive action, to predict what will happen, 

namely recognizing future position of entities and 

detecting future hazards, is required. 

One possible solution that can address the above issue 

is to enable trajectory prediction, which stands for a task 

to predict a target’s future trajectories (a set of future 

positions) by observing the target’s moving pattern. 

Recently, the trajectory prediction has made a great 

progress with the advancement of DNNs, such as Long-

Short Term Memory (LSTM) [15], Gated Recurrent Unit 

(GRU) [16], and social pooling layers [17], and 

Generative Adversarial Network (GAN) [12]. Alahi et al. 

2016 [17] first presented social pooling layers-embedded 

LSTM architecture (called Social LSTM), which showed 

remarkable progress in trajectory prediction. This work 

demonstrated the Social LSTM can learn not only each 

entity’s moving pattern, but also social behaviour of 

human in crowded settings (e.g., collision avoidance). 

The interconnected use of individual and social features 

in turn showed a great performance in trajectory 

prediction: predicted trajectories by the Social LSTM 

only had 0.72 meter displacement error on average, 

compared to the ground truth trajectories. 

Encouraged by this progress, Gupta et al. 2018 [12] 

more improved the Social LSTM [17] by using GAN. 

This work developed unique generator and discriminator 

by integrating LSTM encoder-decoder and social pooling 

layers (Figure 1, please refer to Gupta et al. 2018 [12] for 

detailed information). Consequently, the strict 

supervision by the discriminator successfully improved 

the model’s prediction performance: the displacement 

error on average was 0.58 meters. 

Despite the promise, applying the trajectory 

prediction DNN (i.e., Social GAN) to our problem 

involves another challenge: how to modify the original 

network so that it can predict longer time-steps. Note that 

the published Social GAN model has 2.64 s prediction 

length. To provide a worker in a danger with enough time 

for evasive action, longer prediction and accordingly 

more early notice are needed.    

3 Research Objective and Framework 

With this background, this study conducts hyper-

parameter tuning of the Social GAN [12] to develop a 

trajectory prediction model for mobile construction 

resources. In essence, the longer prediction is needed for 

more pro-active hazard detection. This study sets five 

seconds as the target to predict with the assumption that 

it would be enough for workers to take prompt evasive 

actions. Further, tests on real construction operations data 

are conducted so as to demonstrate the developed 

model’s potential in real-world applications. This study 

follows the below framework to achieve these aims 

(Figure 1). 

• Data collection: for the purpose of hyper-parameter 

tuning, ETH [18] and UCY [19] dataset widely used 

for trajectory prediction are used. In addition, a real 

construction operations data that captures 

interactions between construction resources is 

collected for the test purpose.    

• Hyper-parameter tuning: training the Social GAN 

[12] with multiple hyper-parameter scenarios is 

conducted to develop trajectory prediction models 

capable of predicting more than 5 seconds. 

• Test on a real construction operations data: the 

trained models then are tested on a real construction 

operations data for evaluation. 

4  Data Collection 

The more extensive data is used for training, the higher 

performance of a model can be reached. For the hyper-

parameter tuning purpose, this study thus benchmarked 

two sets of human trajectory data, ETH [18] and UCY 

[19], which are the most widely used dataset in trajectory 

prediction studies [12,17]. In total, the two datasets 

captures four different crowded scenes and contains 

1,536 human trajectories. The trajectories reflect various 

human-human interactions, including (i) crossing each 

other; (ii) collision avoidance, (iii) group forming; and 

(iv) dispersing [17] (A in Figure 1).  

In addition, this study collected a real construction 

operations data for the purpose of test. UAV captured 

construction site videos were collected. Of these, the total 

of 916 sequential frames were sampled that captures 

interactions between a worker, an excavator, and a wheel 

loader (B in Figure 1). Each trajectory (i.e., a set of x-y 

coordinates) of the three entities were manually 

annotated over the whole frames and a complete 
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Figure 1. Research framework 

5 Hyper-Parameter Tuning 

To develop a long-term trajectory prediction model for 

construction mobile resources, this study conducted 

hyper-parameter tuning of the Social GAN [12]. 

The Social GAN has around 40 hyper-parameters that 

might need to be considered for successful training:  

batch size, number of iteration, number of epoch, model 

dimensions, observation length, and prediction length, to 

name a few. A small change in each hyper-parameter 

might be able to affect training and a trained model’s 

final performance; however, examining all possible 

combinations is not viable as training a model with a 

graphical processing unit (GPU, e.g., Tesla K40c) in 

general takes more than five days. Hence, this study 

selected two important hyper-parameters, prediction and 

observation length, as tuning targets with the following 

reasons: 

• Prediction length: the prediction length is the most 

important hyper-parameter that literally determines 

how many time-steps the model will predict. To 

achieve the prediction model capable of predicting 

more than five seconds, this study changed the 

prediction length from the default value (8 time-

steps, 2.64 s) to 16 time-steps (5.28 s). 

• Observation length: the observation length was 

selected as the second important hyper-parameter 

that needs to be tuned. The major input consumed for 

inferring a set of future trajectory in the Social GAN 

is a set of observed trajectory. The length of 
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observation is therefore bound to have a significant 

impact on a trained model’s prediction performance. 

This work considered seven different observation 

lengths: from 8 time-steps (2.64 s) to 20 time-steps 

(6.6 s) with 2 time-steps interval (0.66 s). 

Considering the above two hyper-parameters, total 

seven different tuning scenarios were established and 

applied in training (Table 1). 

Table 1. Hyper-parameter tuning scenarios 

Scenarios 

Hyper parameter 

Observation length Prediction length 

Time- 

steps 
Seconds 

Time- 

steps 
Seconds 

#1 8 2.64 16 5.28 

#2 10 3.30 16 5.28 

#3 12 3.96 16 5.28 

#4 14 4.62 16 5.28 

#5 16 5.28 16 5.28 

#6 18 5.94 16 5.28 

#7 20 6.60 16 5.28 

6 Test Result and Discussion 

To evaluate the trajectory prediction accuracy of the 

trained models on real construction settings, a test on a 

real construction operations data is conducted. As 

evaluation metrics, this study applied average 

displacement error (ADE) and final displacement error 

(FDE) that are commonly used metrics in trajectory 

prediction studies [12,17]. 

• ADE: average L2 distance (i.e., mean square error) 

between ground truth and prediction over all 

predicted time-steps [12,17]. 

• FDE: distance between the predicted final 

destination and the ground truth destination at the 

end of the prediction period [12,17]. 

Table 2 summarizes the ADE and FDE of each 

trained model on the test dataset. Overall, all seven of the 

trained models showed promising accuracy in this test: 

the ADEs and FDEs for all the models were less than one 

meter (avg. ADE=0.88 meters) and 1.6 meters (avg. 

FDE=1.51 meters), respectively. Given a set of 

observation, predicting position of far time-step is 

naturally more challenging than close one. Accordingly, 

it was shown that the FDEs are 0.6 meters higher than the 

ADEs on average. 

In this test, it was revealed that longer observation 

length does not necessarily guarantee higher accuracy. 

Longer observation means that the trajectory of less 

relevant time-steps are more consumed in the prediction. 

For example, in the scenario #7, not that all 20 time-steps 

observation are closely relevant to the future time-steps 

positions. The first several time-steps observation may 

have less relevancy to the future trajectory than the last 

several ones, which can be noises and have a negative 

impact on the model’s prediction performance. In actual, 

the ADEs and FDEs slightly increased as observation 

length increased (Table 2). 

It turned out that the best model for 16 time-steps 

prediction (5.28 s) is the one with 8 time-steps (2.64 s) 

observation (Table 2). This model consumes the shortest 

observation in the prediction, which however has the 

highest relevancy to the future trajectory. Consequently, 

this model outperformed the others and showed the most 

promising result: ADE=0.78 meters and FDE=1.27 

meters (Table 2). Figure 2 illustrates the best model’s 

prediction performance. Note that in this figure, green, 

blue, red lines stand for predicted trajectory of the worker, 

wheel loader, and excavator, respectively. And white 

circles stand for their ground truth position. As shown in 

Figure 2, the ground truth position of each entity well 

follows the predicted trajectory in process of time. This 

fact visually verifies validity of the predicted trajectories.  

The developed model also demonstrated that it can 

continuously update the trajectory prediction at every 

0.33 s without significant time-lag. With the use of a 

GPU (i.e., Tesla K40c), the model predicts three sets of 

trajectories for 5.28 s (16 time-steps) within 0.12 s. Then, 

at the next time step, 0.21 s later after completing the 

previous prediction, it predicts new sets of trajectories 

with the latest observation. That is, the model can 

continuously provide trajectory prediction for 5.16 s 

(5.28 s – 0.12 s) at every 0.33 s.       

This test shows the great potential for the developed 

model in predicting construction mobile resources’ 

trajectories. However, there is still room for further 

improvement. This study only focuses on hyper-

parameter tuning, not considering fine-tuning with 

augmented construction data. Once an extensive dataset 

for construction resources’ trajectory is available, this 

work will have another chance that can likely improve 

the prediction performance.  

Table 2. Test result 

Scenarios 
Observation 

length 

ADE 

(meters) 

FDE 

(meters) 

#1 80 0.78 1.27 

#2 100 0.87 1.48 

#3 120 0.84 1.42 

#4 140 0.89 1.53 

#5 160 0.89 1.54 

#6 180 0.98 1.80 

#7 200 0.91 1.57 
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Figure 2. Predicted trajectory vs. ground truth positions
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7 Conclusion 

To support the pro-active struck-by hazard detection in 

construction, this study developed a trajectory prediction 

model for construction mobile resources. Specifically, 

this study conducted hyper-parameter tuning of a deep 

neural network, called Social GAN and developed a 

prediction model capable of predicting target’s trajectory 

more than five seconds. 

As a result, the best model (i.e., scenario #1) could 

achieve promising prediction accuracy: the ADE of 0.78 

meters and the FDE of 1.27 meters. However, there still 

remain critical opportunity to improve the prediction 

accuracy—such as the fine-tuning with augmented 

construction training dataset. 

With such refinement, an updated model would likely 

result in a more robust and accurate prediction on real 

construction operations data. The proposed trajectory 

prediction allows for detecting hazards that will be 

present in the near future, which will support pro-active 

intervention in hazardous situations. It will ultimately 

contribute to promoting a safer working environment for 

construction workers. 

8 Acknowledgement 

The work presented in this paper was supported 

financially by a National Science Foundation Award (No. 

IIS-1734266, ‘Scene Understanding and Predictive 

Monitoring for Safe Human-Robot Collaboration in 

Unstructured and Dynamic Construction Environment’). 

Any opinions, findings, and conclusions or 

recommendations expressed in this paper are those of the 

authors and do not necessarily reflect the views of the 

National Science Foundation. Lastly, the authors wish to 

specially thank Weston Tanner and John McGlennon 

from WALSH Construction Co. for their considerate 

assistance in collecting onsite data. 

References 

[1] Kim, D., Liu, M., Lee, S., and Kamat, V.R. Remote 

proximity monitoring between mobile construction 

resources using camera-mounted UAVs. 

Automation in Construction, 99(2019):168–182, 

2019. 

[2] CPWR, Struck-by injuries and prevention in the 

construction industry. The Center for Construction 

Research and Training, 2017. 

[3] OSHA, Recommended Practices for Safety & 

Health Programs in Construction. Occupational 

Safety and Health Administration, 2017. 

[4] Bahn, S. Workplace hazard identification and 

management: The case of an underground mining 

operation. Safety Science, 57(2013):129-137, 2013. 

[5] Teizer, J., Allread, B.S., Fullerton, C.E., Hinze, J. 

Autonomous pro-active real-time construction 

worker and equipment operator proximity safety 

and alert system. Automation in Construction, 

19(2010):630-640, 2010. 

[6] Marks, E. and Teizer, J. Proximity sensing and 

warning technology for heavy construction 

equipment operation. Construction Research 

Congress 2012, West Lafayette, IN, USA, 2012  

[7] Teizer, J. Wearable, wireless identification sensing 

platform: Self-monitoring alert and reporting 

technology for hazard avoidance and training 

(smarthat). Electronic Journal of Information 

Technology in Construction, 20:295-312, 2015  

[8] Ruff, T.M. Monitoring blind spots: A major 

concern for haul trucks. Engineering and Mining 

Journal, 202(12):17-26, 2001. 

[9] Park, J.W., Marks, E., Cho, Y.K., and Suryanto, W. 

Performance test of wireless technologies for 

personnel and equipment proximity sensing in work 

zones. Journal of Construction Engineering and 

Management, 142(1): 04015049, 2016 

[10] Kim, D.H., Yin, K., Liu, M., Lee, S.H., and Kamat, 

V.R. Feasibility of a drone-based on-site proximity 

detection in an outdoor construction site. IWCCE 

2017, Seattle, WA, USA, 2017 

[11] Kim, H.J., Kim, K.N., and Kim, H.K. Vision-based 

object-centric safety assessment using fuzzy 

inference: Monitoring struck-by accidents with 

moving objects. Journal of Computing in Civil 

Engineering, 30: 04015075, 2016 

[12] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. and 

Alahi, A. Social GAN: Socially Acceptable 

Trajectories with Generative Adversarial Networks. 

IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2018. 

[13] Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, 

T.M., and An, W. Detecting non-hardhat-use by a 

deep learning method from far-field surveillance 

videos. Automation in Construction, 85(2018):1-9, 

2018. 

[14] Kim, H.J., Bang, S.D., Jeong, H.Y., Ham, Y.J., and 

Kim, H.K. Analyzing context and productivity of 

tunnel earthmoving process using imaging and 

simulation. Automation in Construction, 

92(2018):188-198, 2018. 

[15] Gers, F.A., Schmidhuber, J. and Cummins, F. 

Learning to forget: Continual prediction with 

LSTM. 1999. 

[16] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. 

Empirical evaluation of gated recurrent neural 

networks on sequence modeling. arXiv preprint 

arXiv:1412.3555, 2014. 

[17] Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., 

Fei-Fei, L. and Savarese, S. Social lstm: Human 

trajectory prediction in crowded spaces. 

987



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition,  961-971, 2016. 

[18] Pellegrini, S., Ess, A., and Van Gool, A. Improving 

data association by joint modeling of pedestrian 

trajectories and groupings. Computer Vision–ECCV 

2010, 452–465, 2010. 

[19] Leal-Taix´e, L., Fenzi, M., Kuznetsova, A., 

Rosenhahn, B., and Savarese, S. Learning an 

image-based motion context for multiple people 

tracking. IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2014. 

 

988




