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Abstract – 

Construction workers are commonly subjected to 

ergonomic risks due to manual material handling that 

requires high levels of energy input over long work 

hours. Fatigue in musculature is associated with 

decline in postural stability, motor performance, and 

altered normal motion patterns, leading to heightened 

risks of work-related musculoskeletal disorders. 

Physical fatigue has been previously demonstrated to 

be a good indicator of injury risks, thus, monitoring 

and detecting muscle fatigue during strenuous work 

may be advantageous in mitigating these risks. 

Currently, few researchers have investigated how 

physical fatigue and exertion can be continuously 

monitored for practical use outside laboratory 

settings. Exercise-induced fatigue has been shown to 

impact motor control; thus, it can be measured using 

jerk, the time derivative of acceleration. This paper 

investigates the application of a machine learning 

approach, Support Vector Machine (SVM), to 

automatically recognize jerk changes due to physical 

exertion. We hypothesized that physical exertion and 

fatigue will influence motions and thus, can be 

classified based on jerk values. The motion data of six 

expert masons were collected using IMU sensors 

during two bricklaying tasks. The pelvis, upper arms, 

and thighs jerk values were used to classify inter- and 

intra-subject rested and exerted states. Our results 

show that on average, intra-subject classification 

achieved an accuracy of 94% for a five-course wall 

building experiment and 80% for a first-course 

experiment, leading us to conclude that jerk changes 

due to physical exertion can be detected using 

wearable sensors and SVMs. 
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1 Introduction 

Construction work is typically physically demanding 

and can result in a high number of accidents and injuries 

caused by fatigue. Fatigue can also have a detrimental 

impact on workers’ judgement, productivity, and quality 

of work. Although accident and injury prevention has 

become a primary area for improvement within the 

construction industry, fatigue prevention and detection 

continue to require manual observation or self-reported 

subjective assessments. The inherent subjectivity of these 

methods has prompted the introduction of biomechanical 

and physiological assessments that quantify fatigue 

levels, thereby increasing reliability while reducing the 

time and human resources needed for their 

implementation. Despite extensive research that 

confirms the validity of these assessments, they can be 

cumbersome and or intrusive because they often require 

that multiple sensors and wires be attached to the worker, 

or need external devices that work in conjunction to worn 

devices. These assessments also often require tasks that 

involve several sequential activities or motions to be 

manually segmented; this is not only a time-consuming 

process, but it eliminates the applications of these 

assessments for real-time feedback and consumer use. 

The recent advances of inertial measurement units (IMUs) 

enable the automatic collection of motion data and offer 

several advantages over the traditional assessments, for 

example, they are cost-effective, non-intrusive, and 

wireless. This research investigates the use of support-

vector machines (SVM) to automate the monitoring of 

physical exertion levels using jerk. The detection of high 

levels of exertion would allow workers to take proactive 

measures in mitigating adverse effects of fatigue.  

2 Background 

Physical fatigue refers to a decline in a muscle’s 

ability to exert force as a result of performing a task 

requiring physical effort [1], [2]. Physical fatigue has 

been shown to result in increased risks of injury that lead 

to a variety of musculoskeletal disorders including lower 

back disorders, tendinitis, and carpal tunnel syndrome [3].  

Construction work typically involves prolonged 

hours of physically demanding tasks, such that workers’ 

muscles can become fatigued, resulting in a reduction in 

muscle strength.  
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Currently, there is no standard for a fatigue 

assessment that is universally accepted in both practical 

or research settings [4]. Thus, numerous objective and 

subjective fatigue assessments have been developed for 

specific industry requirement such as construction, 

manufacturing, and healthcare. Several work-related 

studies have developed or used various subjective scales 

and questionnaires for assessing fatigue or perceived 

exertion [5]–[7]. Aside from the inherent discrepancies 

that is expected between one’s perceived fatigue and 

one’s true level of fatigue, subjective measures are also 

cumbersome to implement and are not realistic for use on 

construction sites [8].  

Previous studies have also used physiological 

measurements to assess the buildup of fatigue, including 

heart rate, oxygen consumption, and energy expenditure 

[9]. The downside to physiological measurements is that 

many factors can reduce their reliability including 

alcohol consumption, fitness level, and caffeine intake 

[10]. In laboratory settings, electromyography (EMG) is 

commonly used to predict muscle activity. Surface EMG 

(sEMG) can non-invasively assess the development of 

fatigue over time, however, it has low signal-to-noise 

ratio and are poorly correlated to fatigue for deep muscles 

such as at the lower back [11]–[13].  

Recent advancements of wearable sensors with 

processing and communication capabilities, have 

expanded the applications of existing assessments 

beyond laboratory settings. Schall et al. assessed the IMU 

system in field-based occupational settings over an eight-

hour work shift and suggested that the IMU system can 

achieve reasonably good accuracy and repeatability 

compared to the gold standard, optical motion capture 

systems [14]. Moreover, the light-weight and portability 

of wearable IMUs compared to external sensors, make 

them easy to attach to workers such as on construction 

vests, gloves, or helmet. IMUs, which combine 

accelerometers, gyroscopic and magnetic sensors, have 

been used by researchers to monitor ergonomically safe 

and unsafe postures during construction activities [15]–

[18]. Among inertial sensors, accelerometers have been 

used extensively for activity recognition and studied with 

different body locations, number of sensors, classifiers, 

and feature sets [19]. Valero et al. developed an IMU 

system to detect unsafe postures of construction workers 

from motion data [20]. Ryu et al. used a single wrist-worn 

accelerometer-embedded activity tracker for automated 

action recognition [21], [22]. However, the use of 

wearable sensors to monitor physical exertion or fatigue 

during physically demanding tasks has not been studied 

extensively.  

Physical fatigue and its impact on motor control and 

jerk has not been widely studied outside of clinical 

research. One reason is because prior to the advent of 

IMUs, motion capture systems that collect body segment 

positions must be differentiated three times in order to 

obtain jerk, resulting in a low signal-to-noise ratio. Jerk, 

the time derivative of acceleration, is typically used as a 

measure of motor control. In the short-term, fatigue can 

result in reduced motor control and strength capacity [23]. 

Fatigue is also manifested in increased tremor and 

changes in the recruitment of muscles, affecting both 

gross and fine motor skills. During lifting, high jerk 

values or a sudden change in acceleration can be felt as 

the change in force on the body and result in 

biomechanical damages over time. Two studies are 

notable and relevant to the current research. Maman et al. 

used IMU-collected motion data during simulated 

manufacturing tasks to determine acceleration- and jerk-

based features that are predictive of fatigue occurrence 

[24]. Similarly, Zhang et al. used support vector 

machines (SVMs) to classify the occurrence of lower 

extremity muscle fatigue of gait [25]. These methods, 

however, have not assessed the feasibility of using 

machine learning techniques to recognize changes in jerk 

values during construction work. 

Several methods have been used to classify human 

movement. Supervised classification techniques include 

k-Nearest Neighbour (k-NN), Support Vector Machines 

(SVM), Gaussian Mixture Models (GMM), and Random 

Forest (RF), and unsupervised classification techniques 

include k-means, Gaussian mixture models (GMM) and 

Hidden Markov Model (HMM). The focus of this work 

is to classify with SVM.  Many studies with SVM have 

been reported in the field of activity recognition, 

although they do not focus on the study of fatigue.  

In our previous work [26], we found that jerk may 

be used as an indicator of loss of motor control caused by 

physical exertion. However, the tasks were manually 

separated to ensure that jerk values were compared 

between the same action types, for examples, the motion 

data collected during each lifting action (pick up – 

transport – lay down) were segmented out from other 

motions such as spreading mortar. Manual segmentation 

of the data prevents this method from being used for real-

time assessments. In this paper, we conducted two sets of 

analyses: 1) we tested the feasibility of analyzing jerk 

values using continuous motion data collected from our 

previous study to monitor changes in motor control, and 

2) we conducted a second experiment that evaluates 

changes in jerk values between two identical bricklaying 

tasks following a series of exhausting exercises. 

Continuously monitoring jerk is investigated in the 

present study using IMU sensors and SVMs, which have 

been used extensively to classify human motion patterns 

and activities [17], [27]. Given that rested and exerted 

states can create unique jerk signal patterns, machine 

learning algorithms using motion data may be used to 

monitor the development of physical exertion in real-

time for practical applications. 
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3 Methodology 

3.1 Participants 

The experiment was conducted at the Canadian 

Masonry Design Center (CMDC) indoor training facility 

in Mississauga, Ontario. Six male bricklayers with an 

average of 22 years of masonry experience were recruited 

for the experiment. The participants’ mean (SD) stature 

and body mass were 179.0 (5.0) cm, 89.3 (14.1) kg, 

respectively. The study was approved by the Office of 

Research Ethics at the University of Waterloo. 

 

In our previous work, experienced masons displayed 

statistically significant inter-subject differences between 

the rested and exerted jerk values over the duration of a 

bricklaying task. The statistically significant differences 

between experienced masons was attributed to greater 

inter-subject similarities compared to unexperienced 

masons in their learned technique and work pace. In this 

work, we examine both the inter- and intra-subject 

differences of experienced workers.  

3.2 Instrumentation 

The segment kinematics of the participants were 

collected using a wearable IMU-based motion capture 

suit, Noitom Perception Neuron [28]. The sampling rate 

of the IMUs is 125 frames per second. The full-body suit 

is composed of seventeen IMUs located at the pelvis, 

sternum, head, and both shoulders, upper arms, lower 

arms, hands, upper legs, lower legs, and feet. Although 

not all IMUs were used, all seventeen IMUs were active 

during the experiment due to the suit configuration. Each 

IMU sensor is comprised of a three-axis accelerometer, a 

three-axis gyroscope, and a three-axis magnetometer. 

Motion data was transmitted between the suit and a 

laptop via Wi-Fi. The sensor locations are shown in 

Figure 1.  

3.3 Experimental Procedure 

In the bricklaying experiment, jerk analysis was 

carried out on five body segments, namely the pelvis, the 

dominant and non-dominant upper arms and thighs since 

lifts involve whole-body work. We hypothesized that the 

three distinct body segments are suitable for fatigue 

monitoring since bricklaying requires large ranges of 

motion, forceful contractions, high precision from the 

upper and lower limbs, and frequent bending at the torso. 

IMU sensors have been used to study human motion in 

several locations. However, some studies have found that 

the torso is the best location to analyze movements since 

it reflects major motions and is close to the human body 

center of mass [29]. The selected body segments may 

also be the most suitable areas for sensor placement since 

they are far from external impact and from subject 

protective equipment.  

Prior to the experiment, a calibration session was 

carried out to allow the Axis Neuron software to detect 

the placement and orientation of the sensors on the 

participant. The sensor-to-segment calibration was 

obtained using three standard postures including the A-

pose, T-pose, and S-pose. Two sets of analyses were 

conducted. First, we tested the feasibility of analyzing 

jerk values using continuous motion data to monitor 

changes in motor control with data collected from a 

previous study which required workers to complete a 

wall building experiment. Second, we conducted an 

additional experiment to evaluate changes in jerk values 

between two identical bricklaying tasks following a 

series of exhausting exercises. The participants were 

given an hour break between the two experiments.   

 

Figure 1. IMU sensor locations  

3.4 Wall Building Experiment 

To investigate the feasibility of using continuous 

motion data as an input to train SVM, we first analyzed 

data from our previous study [26]. Each participant was 

instructed to complete a pre-built lead wall shown in 

Figure 2(a), using forty-five concrete masonry units 

(CMUs) from the second to the sixth course. Each course 

is defined as a layer of CMUs. The CMUs were Type 1 

blocks weighing 16.6 kg as detailed in Table 1. The 

blocks were placed in three piles approximately one 

meter away from the pre-built lead wall, and two panels 

of mortar were placed between the three block piles. The 

use of mortar and the requirement to meet alignment 

tolerances reflected field-work conditions. After the 

experiment, the participants were given a one-hour break 

before commencing the second experiment. Figure 3 

shows the timeline of the tasks completed by the 

participants and the corresponding level of intensity 

measured in kg of laid CMU per minute.  
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Table 1. CMU block properties 

Block Weight [kg] Dimensions [mm x mm x mm] 

Type 1 16.6 390 x 190 x 100 

Type 2 23.6 290 x 390 x 190 

Type 3 36.1 290 x 390 x 190 

 

Figure 2. Experimental setup for wall building 

experiment   

 

Figure 3. Timeline of task duration and intensity 

level in kilograms per minute    

3.5 First Course Experiment 

The purpose of the second experiment was to 

compare the jerk values of two identical tasks performed 

before and after an exhausting set of exercises. Each 

participant was instructed to build the first course of a 

wall using seven CMUs. The first course was selected 

because it imposes the greatest loading on the lower back 

[30]. The CMUs were Type 1 blocks weighing 16.6 kg. 

The blocks were placed in one pile approximately one 

meter away from the work space. Figure 4 shows a 

participant completing the bricklaying task. 

After completing the first course, the participants 

were asked to carry out three bricklaying activities: 1) 

complete a wall individually using Type 2 CMUs, 2) 

complete a wall collaboratively using Type 2 CMUs, and 

3) complete a wall collaboratively using Type 3 CMUs. 

In total, each participant carried approximately 1000 kg 

over an average of 50 minutes to complete all three 

bricklaying tasks. Lastly, the participants were asked to 

complete the first course again. Figure 5 shows the 

experiment sequence schematically.  

 
 

 

Figure 4. Experimental setup for first course (top) 

and series of exhausting bricklaying tasks (bottom)  

992



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

Figure 5. Building sequence for first course 

experiment 

4 Data Analysis 

Body segment accelerations collected from the 

IMU accelerometers were imported into MATLAB for 

computations. For each of the five IMU sensors, the 

resultant acceleration data were calculated from the 

Cartesian components collected from the IMU 

accelerometers. High frequency noise was removed 

using a low-pass Butterworth filter with a 10Hz cut-off 

frequency. Jerk was calculated as the time-derivative of 

the acceleration magnitude as shown in Table 2.  

Table 2. Jerk calculations from Cartesian components of 

acceleration 

 Formula 

Acceleration 𝐴𝑥, 𝐴𝑦, 𝐴𝑧 

Resultant acceleration 𝑅 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 

Resultant jerk 𝐽 =
𝑑𝑅

𝑑𝑡
 

Jerk cost 𝐽 = ∫ |
𝑑𝑅

𝑑𝑡
|
2𝑇2

𝑇1

𝑑𝑡 

 

The classification is performed using predefined 

MATLAB functions. SVM is a supervised learning 

algorithm for pattern recognition and classification. 

Given labelled training data, the algorithm outputs an 

optimal hyperplane that define decision boundaries 

which it can then use to categorize new data points. 

Linear, polynomial, and Gaussian kernels were employed 

in the SVM classifier. During the wall building 

experiment, the motion data collected during the second 

course was labelled as ‘rested’ and those collected during 

the sixth course was labelled as ‘exerted’. Likewise, 

during the first course experiment, the motion data 

collected during the first course completed at the 

beginning of the task was labelled as ‘rested’ and those 

collected at the end of the task was labelled as ‘exerted’. 

Figure 6 shows the schematic to bypass the requirement 

for manual task segmentation. 

 

 

Figure 6. A schematic diagram of data processing 

for automatic fatigue detection  

 

The selection of a window size has a significant 

impact on the classification accuracy. Wang et al. 

[31] conducted tests on different sliding-window 

sizes for activity recognition and found that 

accuracy decreases as window size increases. The 

optimal window size, however, is also dictated by 

what the classifier is required to classify such that 

the segment length is adequate to distinguish 

between unique signal patterns. Using a sliding 

window approach, multiple window sizes were 

tested and an overlap size of 50% was used. The 

window size for optimal recognition was 15 s. 

Features were extracted from the segmented data 

and characterised in both the time and frequency 

domains. The feature set was based solely on jerk 

measured in g/s and includes the following: 1) 

mean, the average value of acceleration data over 

the window; 2) standard deviation of acceleration 

values over the window; 3) maximum; 4) 

minimum; 5) jerk cost, an important measure to 

estimate the energy economy described by the 

area under squared jerk curve; and 6) dominant 

frequency – Fast Fourier Transform (FFT) over 

the window. The classification accuracies are 

based on all features and for all five body 

segments. 

5 Results & Discussion 

In our experiments of classifying rested and exerted 

states of six subjects, we considered jerk-based features 

extracted from five IMU sensor body locations, namely 
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the pelvis, and dominant and non-dominant upper arms 

and thighs. In the classification stage, we applied several 

classifiers using MATLAB.  On comparing the average 

classification accuracy, the analysis showed that the 

SVM classifiers had the highest average value for both 

experiments, as reported in Table 3 and Table 4. A five-

fold cross-validation scheme was used to evaluate the 

SVM classification algorithms, providing an indication 

of how well the learner will do when it is repeated using 

new data. Thus, the reported accuracy is the average 

accuracy over five iterations.  

As expected, the SVM classification results 

demonstrated a significantly higher intra-subject 

rested/exerted classification than the inter-subject 

classification. For the wall completion experiment, the 

polynomial kernels (94%) performed better than the 

linear kernel (91%) to identify intra-subject 

rested/exerted states. For the first course experiment, the 

linear kernel performed similarly (80%) to the 

polynomial kernel (79%). The lower classifier accuracy 

for the first course experiment may be explained by the 

fact that it was completed following the first experiment. 

Since a sufficient amount of time is required for muscle 

recovery following exercise, the participants may not

 

Table 3. Wall completion experiment – SVM classification accuracy [%], mean, and standard deviation 

SVM Kernel Function 
Intra-subject Inter-subject 

W1 W2 W3 W4 W5 W6 MeanSD All workers 

Linear 98.0 84.1 87.0 91.1 84.6 100.0 90.86.8 78.5 

Quadratic 98.0 87.0 89.1 95.6 94.2 100.0 94.05.1 79.2 

Cubic 98.0 87.0 91.3 97.8 90.4 100.0 94.15.2 76.5 

Fine Gaussian 62.7 69.6 58.7 66.7 63.5 56.7 63.04.8 60.1 

Medium Gaussian 96.1 85.5 80.4 93.3 86.5 100.0 90.37.4 78.8 

Course Gaussian 72.5 69.6 63.0 66.7 63.5 100.0 72.613.9 71.3 

 

 

Table 4. First course experiment – SVM classification accuracy [%], mean, and standard deviation 

SVM Kernel Function 
Intra-subject Inter-subject 

W1 W2 W3 W4 W5 W6 MeanSD All workers 

Linear 75.4 74.0 69.1 76.6 84.6 100.0 80.011.0 62.0 

Quadratic 72.3 71.4 68.1 76.6 87.2 97.1 78.811.2 63.0 

Cubic 72.3 67.5 68.1 76.6 84.6 100.0 78.212.4 63.3 

Fine Gaussian 52.3 59.7 61.7 51.9 56.4 60.0 57.04.2 57.6 

Medium Gaussian 80.0 71.4 67.0 68.8 89.7 94.3 78.511.4 65.9 

Course Gaussian 50.8 59.7 61.7 67.5 71.8 71.4 63.88.1 59.4 

 

have fully recovered from the first experiment before 

moving onto the second experiment. Thus, the 

participants may have begun the second experiment in an 

exerted state. The participants might have also recruited 

an alternate group of muscles for the two collaborative 

lifting tasks compared to the individual lifting tasks 

during the first course experiment. Thus, fatigue may 

have built up for a different group of muscles that were 

not all utilized in laying the first courses. Another 

explanation could be that the level of intensity as 

measured in kilograms per minute could have affected 

the exertion levels developed by the participants. The 

intensity level was higher during the wall building 

experiment compared to the first course experiment; 

however, the series of fatiguing tasks conducted in 

between the two sets of first course block laying was 

higher in intensity.  

6 Limitations and Future Work  

Conclusions provided in this study should be 

considered in context of the limitations. First, there was 

no secondary measure of fatigue, thus we cannot be 

certain that experiments induced sufficient fatigue. Since 

we know that the participants had indeed exerted 

themselves in performing the bricklaying tasks, the 

classification accuracy reflects the extent to which 

fatigue was developed. Second, we did not consider 

masons with other experience levels other than expert 

masons. Third, due to the fact that physical exertion 

levels may last for several hours following physical 

activity, the break in between the first and second 

experiments may not have been sufficient for the 

participants to return to a rested state.  
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The placement of the sensors is of high importance 

because it can potentially affect the recognition between 

rested and fatigued states. Thus, future work involves a 

feature selection method to identify the most significant 

motion changes after fatigue and determine the optimal 

number and placements of the sensors to improve the 

utility of the method.  

7 Conclusions 

In the construction industry, fatigue can impair 

workers ability to safely and effectively perform their 

duties which negatively impacts their well-being, reduces 

productivity and the quality of their work, and elevates 

workers’ compensation costs. Current workload and 

fatigue assessment methods, including subjective, 

physiological, and biomechanical assessments, can be 

unreliable, cumbersome, or require extensive post 

processing, which render them impractical for real-time 

assessment.  

This research investigated the use of SVMs to 

automatically recognize changes in jerk values due to 

physical exertion. Motion data were collected during two 

bricklaying activities using IMU sensors to obtain jerk 

input to SVM classifiers. Inter- and intra-subject 

classification of rested and exerted states of six expert 

masons were carried out using the jerk values of the 

pelvis, upper arms, and thighs.  

We found that changes in jerk values due to the 

development of fatigue can be classified by supervised 

machine learning techniques. On average, intra-subject 

classification achieved an accuracy of 94% for the wall 

building experiment and 80% for the first course 

experiment. The difference between the classification 

accuracy for the two experiments may be attributed to 

differences in task sequence and intensity level resulting 

in lower classification accuracy in the first-course 

experiment compared to the wall experiment.  

The results lead us to conclude that jerk changes 

resulting from exertion can be assessed by wearable 

sensors and SVMs. The investigated method holds 

promise for continuous monitoring of physical exertion 

and fatigue which can help in reducing work related 

musculoskeletal injuries or other fatigue-related risks. 
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