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Abstract – 

An accurate, real-time monitoring of the 

occupancy state of each space is a necessity for 

applications such as energy-aware smart buildings. 

In this paper, we have studied the feasibility of using 

Doppler Radar Sensors (DRS) and Infrared Thermal 

Array Sensors (ITA) to build an effective occupancy 

detection framework. The proposed sensor types are 

cost-effective and protect the privacy of the 

occupants. We have utilized Deep Neural Networks 

(DNN) to analyze the sensor data without any need 

for specialized feature extraction that is necessary 

for classical machine learning approaches. The 

results are indicative of the feasibility and the 

reliability of using both sensor types for detection of 

the occupancy state. While a threshold-based 

approach reached an average accuracy of 84.3% and 

86% for the DRS and ITA sensors respectively, DNN 

models were able to achieve average accuracies of 

98.9% and 99.96% for the DRS and ITA sensors 

respectively, thereby demonstrating the feasibility 

and success of the proposed framework. 
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1 Introduction 

In the US, residential and commercial buildings are 

responsible for 39% of the total energy consumption [1]. 

About 8% of the total electricity consumed in residential 

and commercial buildings is used for lighting [2]. 

Heating, Ventilations, and Air Conditioning (HVAC) 

systems, being responsible for the consumption of 40% 

of total energy used by the building sector, are also 

considered to be a major consumer of energy [3]. The 

combination of these figures underlines the necessity of 

the notion of energy-aware “smart buildings”. 

The nature of the relationship between the demand 

for HVAC and lighting in the environment (e.g. a room) 

and the state of occupancy of the environment, has 

given rise to a growing demand for effective occupancy 

detection technologies. Several smart HVAC control 

frameworks rely directly on information regarding the 

occupancy state of the environment for control purposes 

[4,5]. Occupancy-based control of the lighting system 

has also been the subject of research studies [6] and has 

been widely adopted in practice. The potential for 

energy saving by enabling occupancy-based control of 

building systems has been estimated to be as high 25% 

[7] for HVAC systems and 50% [8] for lighting systems.  

A necessary condition for the realization of the true 

potential of occupancy-based smart control of building 

operations, is the development of accurate and robust 

sensing frameworks, easily deployable in a variety of 

environments. Two of the traditional sensing 

frameworks for detection of occupancy are such 

technologies as Passive Infrared sensors (PIR) [9], and 

image-based technologies [10,11]. However, the PIR 

sensing framework has been known to suffer from high 

error rates [12]. PIR sensors require an unobstructed 

view of the occupant to function and their ability to 

detect the occupant deteriorated with the increase in 

distance-to-target [13]. Moreover, the ability of PIR 

sensors to detect the occupant relies on the existence of 

a temperature contrast between the occupant and the 

surrounding environment, thereby resulting in a 

performance loss in warmer room environments [14]. 

The mechanism of detection of the occupant for PIR 

sensors relies on measuring the changes in the 

temperature contrast of the monitored area, as created 

by movements of the occupant. Thus, the performance 

of the PIR sensor is predicated on clear occupant 

movements, rendering the sensor insensitive to more 

subtle movements by occupants’ body parts. 

An alternative to PIR sensors is the image-based 

sensing technology. In particular, video-camera-based 

occupancy detection frameworks are considered to be 

an effective alternative to PIR sensors. However, 

implementation of these technologies is accompanied by 

considerable privacy concerns. As such, researchers 

have endeavored to propose alternative sensing 

technologies to address deficiencies of the traditional 

approaches while respecting occupant privacy.  

One type of sensors that we have evaluated in this 
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paper with regards to their applicability for occupancy 

detection purposes are Doppler Radar Sensors (DRS). 

DRS sensors rely on motion for detection of the state of 

the occupancy. DRS sensors can detect the existence of 

the motion by measuring the change in the frequency of 

the reflected wave as a result of target motion. However, 

unlike PIR sensors, DRS sensors are capable of 

detecting subtle movements of the body such as rotation 

of the occupants’ head, movement of the occupants’ 

hands and arms, and even pulmonary activities, thereby 

resulting in higher accuracy and reliability.  

Another sensor type that has been subject to 

investigation in the present paper is the Infrared 

Thermal Array (ITA) sensor. While ITA sensors have 

been prevalently present in the market, until recently 

there was a gap in the production resolution of these 

sensors and the users had to choose between an 

affordable sensor resolution of up to 64 pixels (8×8 or 

4×16) or opt for high resolution sensors at an 

approximate cost of $200 [15] per sensor. However, in 

early months of 2018, mid-resolution (32×24) ITA 

sensors (e.g. model name: MLX90640 [16]) at an 

affordable cost of under $50 have been introduced to the 

market. These sensors present a unique opportunity for 

utilization in an occupancy detection framework as the 

resolution/cost balance has become reasonable enough 

to allow for such applications. While our original 

intention was to build a framework that would utilize 

both sensors simultaneously to reduce individual error-

rates, the high accuracy of each individual sensor 

convinced us to evaluate them separately. 

For the proposed sensing setup to be operationally 

feasible, the framework must be augmented with an 

effective data analysis algorithm. By defining a binary 

state of occupancy for the room, the problem of 

occupancy detection becomes one of binary 

classification. Within the multitude of well-established 

classification algorithms, we have opted to utilize a 

Deep Neural Network (DNN) model for analysis of 

sensor data. Utilization of DNN models will allow us to 

obviate the need for feature-extraction step thereby 

resulting in an autonomous data analysis framework. 

2 Literature Review 

Given the growing demand for energy-efficient smart 

buildings, researchers have endeavored to propose a 

multitude of occupancy monitoring frameworks 

consisting of various sensor types and data-analysis 

strategies. 

One of the well-studied sensor types for indoor 

occupancy monitoring are Passive Infrared (PIR) 

sensors. PIR sensors measure the infrared light emitted 

from the object and detect the movements of the source 

of emission. However, these sensors are not sensitive to 

subtle and slow movements, which diminishes their 

capacity to perform as a presence sensor. As such, 

researchers have endeavored to rectify the 

aforementioned limitation by means of algorithmic 

developments and augmentation with other sensor types. 

For instance Pedersen, et al. [17] have augmented PIR 

sensors with additional noise, CO2, Volatile Organic 

Component (VOC), humidity, and temperate sensors to 

monitor the state of occupancy of a room. In another 

study, Dodier, et al. [18] have proposed a belief network 

approach to analyze the data coming from a network of 

PIR sensors. 

Video cameras have also been used for occupancy 

detection (mostly occupancy counting) and monitoring. 

For instance, Hoover and Olsen [10] and Fleuret, et al. 

[19] have used video cameras to enable tracking of 

occupied spaces within a room. While implementations 

of camera-based occupancy detection methods have 

proven to be accurate [20], utilization of cameras is 

accompanied by privacy considerations. As such, 

researchers have endeavored to propose sensing 

frameworks that are both accurate and compliant with 

privacy expectations.  

Doppler Radar Sensors (DRS) have been studied by 

researchers as an alternative to traditional occupancy 

detection frameworks. Like PIR sensors, DRS sensors 

also detect the motions in their field of view, however, 

their ability to detect very subtle movements such as 

those created by pulmonary activities, allows DRS 

sensors to circumvent some of the important limitations 

of PIR sensors. Lurz, et al. [21] have demonstrated the 

feasibility of using DRS sensors for occupancy 

detection in an experiment that emulated human 

respiration by means of a linear stage at a distance of 2 

m from the sensor. Yavari, et al. [22] have used DRS 

sensors to detect occupancy by relying on extraction of 

pulmonary and cardiovascular signatures in the DRS 

signal while the occupant was either at rest or was 

moving at different activity levels. One limitation of 

their study was the constant 1.5 m distance between the 

radar and the occupant. In the present paper, we have 

sought to extend the investigation of the capability of 

DRS sensors to measure occupancy throughout the 

room without preset conditions such as restricting 

occupant distance from the sensor to enable room-level 

service. We have used wide-angle DRS sensors, 

installed at the ceiling to monitor the state of occupancy 

in a typical office room. 

Another sensor type that has presented a potential 

for occupancy detection is the Infrared Thermal Array 

Sensor (ITA). Beltran, et al. [7] utilized an ITA sensor 

with the resolution of 8×8 to monitor room occupancy 

state and then used the knowledge of occupancy to more 

efficiently control the HVAC system operations thereby 

achieving an annual energy saving rate of 25%. The 

1099



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

algorithms utilized in the aforementioned study [7] for 

the interpretation of the ITA sensor outputs are K-

Nearest Neighbor (KNN), Linear Regression, and an 

Artificial Neural Network. In another study, Tyndall, et 

al. [23] used an ITA sensor with the resolution of 4×16 

to estimate the state of occupancy inside the room. The 

algorithms used for analysis of data consist of a number 

of standard classification algorithms such as Support 

Vector Machine, and KNN [23].  

Recent industry advancements have given rise to 

semi-high resolution ITA sensors at an affordable price 

of approximately $50 (e.g. MLX90640 [16] with a 

resolution of 32×24). This development could result in 

an increased potential for utilization of ITA sensors for 

non-intrusive occupancy-monitoring applications. As 

such, in this paper we have evaluated the performance 

of the MLX90640 [16] sensor for real-time monitoring 

of the occupancy state in a typical office room 

environment. Additionally, by implementing a Deep-

Learning solution for the analysis of sensor data we 

have eliminated the feature extraction step, thereby 

rendering the data analysis step autonomous. 

3 Methodology 

Presented in this section is the discussion of two 

aspects of the occupancy detection framework. In the 

first part we have discussed the overview of the sensing 

framework. In the subsequent section, the data analysis 

and occupancy inference approach have been discussed. 

3.1 Sensing System Setup and Data 

Acquisition 

As noted, in this study, we have investigated the 

potential of two distinct sensor types for occupancy 

detection applications. The first sensor type is the 

Doppler Radar Sensor (DRS). We have used the 

RFBeam K-LC3 [24] wide angle doppler transceiver. 

With dimensions of 25×25 mm and a weight of 5 g the 

K-LC3 DRS sensor is a cost-effective and practical 

solution for occupancy detection. Another desirable 

feature of the selected sensor model is the wide field of 

view (132º×138º), which allows for coverage of larger 

areas, compared to other sensor models with narrower 

fields of view. In Figure 1, the coverage area for the 

DRS sensor (as well as the ITA sensor) that has been 

installed in a typical US office room (7.5×4 m) is 

presented. The sensor is assumed to have been installed 

on the ceiling with the height of 2.75m (9ft) which is 

typical in the US. The coverage area has been calculated 

such that it at least captures the parts of the occupant’s 

body at or under the desk level (0.8 m from the floor), 

i.e. occupant’s hands, lower torso, and legs. As seen in 

Figure 2., we have installed the DRS sensor on the 

ceiling close to the air-vent. The DRS sensor has been 

connected to a SR 560 preamplifier [25] to amplify the 

output signal by a gain factor of 5×104. The amplifier 

also filters out the frequency content above 1kHz since 

the frequency content above that threshold is highly 

unlikely to have been generated due to the motions of 

the human subject. This sampling rate also helps avoid 

aliasing error due to possible presence of high-

frequency signals associated with the existing 

equipment in the room (e.g. computer fans and HVAC). 

 

Figure 1. Space covered by each sensor type 

 

Figure 2. Sensors installed (ITA sensor on the 

left and DRS sensor on the right) 

For data acquisition, we used a National Instrument 

USB-6001 Multifunction I/O Device [26] to record the 

amplified signal at a sampling rate of 1kHz. The signal 

was processed through a zero-phase notch filter to 

remove the frequency harmonic contents, associated 

with powerline-noise (i.e. 60 Hz, 120 Hz, …). These 

frequencies in the signal are usually generated due to 

the existence of AC powerlines (60 Hz) in the vicinity 

of the setup. 

The second sensor type is the MLX90640 [16] 

Infrared Thermal Array (ITA) sensor. This ITA sensor 

has a field of view of 110º×75º divided into 32×24 

pixels respectively, where each pixel reads the average 
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temperature of the objects, covered in the view-window 

of that pixel. We have used a Raspberry Pi 3 [27] 

computer for data acquisition from the ITA sensor 

through the I2C serial protocol. We have installed the 

ITA sensor on the ceiling, close to the air vent as can be 

seen in Figure 2. The transfer of sensor readings to the 

on-site computer is done through wire-less connection. 

3.2 Occupancy Inference Framework 

Each data-point, acquired through our experiments, 

consists of a 10-second DRS signal @1kHz and a single 

ITA sensor temperature reading. The DRS data is 

represented as a time-series and the ITA sensor output is 

a 2D thermal image. Additionally, each data-point has a 

binary label (0,1) that determines the state of the 

occupancy during the 10 second interval associated with 

each data-point. Through this description, the task of 

occupancy detection has become one of binary 

classification (i.e. unoccupied, occupied). 

In this study, we have investigated two different 

occupancy inference methods for the classification 

problem. In pursuit of an unsupervised method of 

inference, similar to methods commonly used for PIR 

sensors, the first approach is a threshold-based decision 

tree method, that has been used to establish a base-line. 

Thus, if at any point in time, the DRS time-series 

exceeds a certain threshold (regardless of the signal 

amplitude sign), the model will output a positive 

occupancy state for the room and vice versa. Similarly, 

if the temperature reading at any of the ITA sensor’s 

output pixels exceeds a certain threshold, the model will 

output a positive occupancy state for the room and vice 

versa. The threshold has been selected by using a 

decision tree of depth 1. The implementation of the 

decision tree was performed by utilizing the Scikit-

Learn [28] library in python 3.65. 

As the second class of inference method, we have 

proposed and evaluated a Deep Neural Network (DNN) 

solution for the task of occupancy inference based on 

sensor data. Utilization of a DNN model brings about a 

number of advantages. Firstly, by utilizing the Deep 

Learning model, we obviate the need for specialized 

feature extraction, because the task of feature extraction 

in a DNN model is performed automatically by the 

initial layers. Moreover, combining information of 

fundamentally different nature (in our case a DRS time 

series and an ITA 2D temperature array) is a relatively 

effortless task to achieve using DNN models, and it 

does not require further feature engineering. The 

structure of the DNN, used for analysis of the DRS time 

series is as presented in Table 1. Given the high number 

of trainable parameters in DNNs, there is often a need 

for a large training data-set to facilitate training and 

avoid overfitting. However, in some real-world 

applications such as ours, the size of the data-set is 

limited. As such, we have opted to use two Dropout 

layers with a dropout rate of 50% to help avoid 

overfitting of the model to the training data. The loss 

function used for training of the model is the ‘binary 

cross-entropy’ measure, which is a common choice for 

binary classification problems. 

Table 1. DNN structure for analysis of DRS data with 

223,481 trainable parameters. 

Layer Type Layer Size / 

Drop Rate 

Filter Size Activation 

Function 

Conv1D 128 7 Relu 

MaxPool1D - 2 - 

Conv1D 64 6 Relu 

MaxPool1D - 2 - 

Conv1D 32 5 Relu 

MaxPool1D - 2 - 

Conv1D 16 4 Relu 

MaxPool1D - 2 - 

Conv1D 8 4 Relu 

MaxPool1D - 2 - 

Flatten - - - 

Dropout 50% - - 

Dense 64 - Relu 

Dropout 50% - - 

Dense 32 - Relu 

Dense 1 - Sigmoid 

As shown in Table 1, the initial layers consist of 

relatively large 1D convolutional layers with larger 

filter sizes. The concatenation of convolutional layers 

with a shrinking size through the depth results in a 

phenomenon, through which the first layers are trained 

to perform generic feature extraction with lesser 

relevance to the data labels and more relevance to the 

input data itself. Conversely, the subsequent layers have 

more and more relevance to the label information. As 

such, after training the model, one could freeze the 

initial feature extraction layers, and reuse them for other 

models, thereby reducing the computational cost of 

training the new models. This is another helpful feature 

of DNNs that allows multiple models to share a 

common body of knowledge. This is an important 

feature of the model toward generalizability. In 

occupancy detection, unsupervised models with high 

accuracy and reliability are preferred. 

In Table 2, the structure of the DNN used for 

analysis of ITA sensor output has been presented. 

Similar to the previous model, we have utilized Dropout 

layers to avoid overfitting to the training data. The 

initial layer of this model can also be used for transfer-

learning purposes to obviate the need to re-train feature-

extraction layers in a new DNN model. Similarly, the 

loss function has been chosen to be ‘binary cross-

entropy’. 
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Table 2. DNN structure for analysis of ITA data with 

70,433 trainable parameters 

Layer Type Layer Size / 

Drop Rate 

Filter Size Activation 

Function 

Conv2D 64 (3,3) Relu 

MaxPool2D - (2,2) - 

Conv2D 32 (3,3) Relu 

MaxPool2D - (2,2) - 

Flatten - - - 

Dropout 50% - - 

Dense 64 - Relu 

Dropout 50% - - 

Dense 32 - Relu 

Dense 1 - Sigmoid 

Both models have been implemented by utilizing the 

Keras [29] library with the TensorFlow [30] backend. 

Before feeding the data to the model, we have 

subtracted the mean from the ITA sensor readings. This 

has been done in order to stabilize the model and also to 

break possible time dependent relationships among 

data-points, since data-points that have been recorded 

close to each other could have a similar mean 

temperature reading. Thus, the ITA readings become 

temperature differentials rather than actual temperature 

readings. An example of these readings has been 

presented in Figure 3. 

 

(a) The room is occupied 

 

(b) The room is unoccupied 

Figure 3. Temperature differentials (°C) 

As can be seen in Figure 3, in both the occupied and 

unoccupied case, the upper left corner is warmer than 

the average. This is due to the presence of a personal 

computer at the corresponding location, which serves as 

a thermal noise. In Figure 4 an example of DRS sensor 

readings has been presented.  

 

Figure 4. DRS sensor reading 

Given that DRS sensor readings for both occupied 

and unoccupied cases were mostly in the [-1,1] range, 

no normalization was deemed necessary. 

4 Results 

In order to train the model to detect the state of 

occupancy in the environment, we need to provide the 

model with a data-set that includes both occupied and 

unoccupied states. The data associated with an 

unoccupied state, have been collected during the 

weekend. As for data associated with a positive state of 

occupancy, the human subject has sat at two different 

locations within the field of view of the ITA sensor. 

The acquired dataset for this study consists of 1000 

data-points, where each data-point contains an ITA 

sensor reading and 10 seconds of DRS signal (but only 

one sensor’s reading will be given to each model, i.e. 

either DRS or ITA). In 500 of these cases, the room was 

unoccupied and in the other 500 cases the room was 

occupied. The evaluation of the models was performed 

through a 3-fold cross-validation. As noted, a simplified, 

threshold-based model was initially used to establish a 

baseline against which the performance of the DNN 

model is to be compared. In training of all models, the 

loss function has penalized equally against both false-

positive and false-negative error types. In future studies, 

the loss function should be modified so as to take into 

account the relative importance of the two error types 

for the intended application. 

The threshold-based model used to analyze the DRS 

signal has achieved an average accuracy of 84.3%. By 

contrast, the DNN model used for the analysis of the 

DRS signal has achieved an average accuracy of 98.9%. 

The training process of the model consisted of 10 
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epochs (batch size of 10) with a total elapsed time of 8 

minutes on an Intel Xeon E5-1620 V4 CPU [31]. 

The threshold-based model for the analysis of the 

ITA sensor resulted in an average accuracy of 86%. By 

contrast, the DNN model has been able to reach an 

average accuracy of 99.96%. Training of DNN model 

used for analysis of ITA sensors consisted of 15 epochs 

(batch size of 10) with a total elapsed time of 6 seconds 

on an Intel Xeon E5-1620 V4 CPU [31]. 

In order to investigate the performance of the DNN 

model used for analysis of ITA sensor data, we retrieved 

the activation values of each layer (on the trained model) 

when the data-point associated with Figure 3.(a) was 

passed to the model. The filters in a convolutional layer 

seek to learn a pattern within the input data, and the 

activation values associated with each filter layer 

represents the level of a match that exists between a 

given input data and the pattern that the particular filter 

has learned. If the pattern of interest for that particular 

filter exists in certain areas of the data, the activation 

values for those areas will be higher. In Figure 5, we 

have presented the activation outputs for two of the 

filters in the third layer of the DNN model used for 

analysis of ITA data, i.e. the Conv2D layer with the size 

of 32. 

 
(a) 

 
(b) 

Figure 5. Activation outputs from two filters in 

the third layer of the DNN model (i.e Conv2D 

with the layer size of 32) 

By comparing Figure 5.(a) with Figure 3.(a), it 

becomes apparent that the filter associated with these 

activation values has been trained to exclusively extract 

the thermal signatures of a human occupant since the 

activation values are high at the area associated with the 

location of the occupant. Interestingly, comparison of 

Figure 5.(b) with Figure 3.(a) reveals that the filter 

associated with these activation values has been trained 

to exclusively learn the thermal signature of the 

environmental noises (in this case the heat emissions 

from a personal computer in the environment). The 

mechanism of learning to detect both the noise and the 

actual occupant-related signatures in the data could be 

responsible for the high accuracy of the DNN model. 

5 Limitations and Future Work 

One limitation of this study was the limited size of 

the train and test data-sets. Moreover, the results are 

limited to experiments under a single environmental 

setting (i.e. one room and one occupant). In our future 

research we will evaluate the potential of the proposed 

framework under a multitude of experimental settings. 

Moreover, we will be investigating the potential of the 

proposed framework to count the number of occupants 

within each room. 

Another line of research which will be the subject of 

our future studies is the potential to jointly learn from 

multiple sensor types to achieve synergistic 

combinations. For instance, in a room with occasionally 

high thermal noise, the DRS data could help reduce the 

possible errors in the performance of the ITA-based 

system. Similarly, if the degree of non-occupant related 

activities increases to a level that it would affect the 

performance of the DRS sensor, the information from 

ITA sensor could compensate for the possible increase 

in the DRS-based occupancy detection system’s error 

rate. 

6 Conclusion 

A reliable and accurate occupancy detection 

framework is in high demand for realization of such 

applications as smart buildings. In this paper, we have 

proposed a framework for the detection of indoor 

occupancy based on cost-effective Doppler Radar 

Sensors (DRS) and cost-effective high-resolution 

Infrared Thermal Array Sensors (ITA). We have 

presented a Deep Neural Network solution for the 

analysis of the sensor data. We have further evaluated 

the performance of the framework by conducting real-

work experiments in a typical office room. In order to 

establish a base-line for the performance of the 

proposed framework, we utilized a simplified threshold-

based approach. The threshold-based approach achieved 
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an average accuracy of 84.3% and 86% for the DRS and 

ITA sensors respectively. The proposed DNN 

framework has demonstrated an accuracy of 98.9% via 

the DRS sensor and 99.96% via the ITA sensor. 
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