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Abstract – 

Remoteness, although a subjective concept, has 

indispensable consequences. It can support decision-

makers in quantifying risks and feasibilities of 

developing newly discovered mineral deposits, 

resilience planning and evaluation of accessibility 

challenges of remote communities, or support agency 

budget allocations for much-needed services. 

Developing a remoteness index typically involves 

merging spatial and temporal data from a variety of 

incompatible sources such as topographical, census, 

and travel cost and duration. This paper presents a 

novel method for generating a measure of remoteness 

for any geographical location based on the nighttime 

satellite imagery. This continuous measure, herein 

referred to as Nighttime Remoteness Index (NIRI), is 

generated using machine learning-based models that 

link the intensity and statistical features of nighttime 

lights to remoteness; the predictive model is trained 

and validated using the nighttime satellite imagery 

and the Accessibility Remoteness Index for Australia 

(ARIA). This method does not require local data; 

hence, it is not limited by political jurisdictions or 

geographic boundaries. The NIRI is developed by 

using multivariate adaptive regression splines, and 

support vector machines regressions, after examining 

several other machine learning techniques. The NIRI 

maps of Australia and North America are developed 

based on the validated models. 
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1 Introduction 

Remoteness is a relative term. It is defined as 

“situated far from the main centers of population; distant” 

[1]. Remote could be used to refer to the fringes of a 

megacity that have sparse access to public transit or 

medical aid or to an uninhabited corner of the earth that 

has rarely seen human activity. Remoteness can be highly 

subjective, and its labeling can be controversial as it 

might have social, economic, technical, or political 

implications associated with it. These challenges may 

result in inherent biases that can hamper the objective 

measurement of remoteness.  

The quantification of remoteness can assist decision 

makers in many domains, including 1) risk quantification 

for construction and industrial projects; 2) the resiliency 

assessment for communities and their underlying 

infrastructure; 3) policy making and research regarding 

resource allocation, public projects, and accessibility to 

essential services. 

First, quantifying remoteness helps in risk 

assessments of large construction projects. The choice of 

location is particularly crucial for industrial projects due 

to their specific demands for skilled labor, material, and 

equipment [2]. The prevalence of remote projects is on 

the rise due to several factors. For natural resources 

projects, the depletion of conventional and accessible 

deposits has urged explorations in ever distant areas. 

Infrastructure projects are proposed to connect 

inaccessible communities and emerging markets to 

population hubs and open waters. Renewable energy 

projects such as hydroelectric dams and wind farms are 

built to harness clean but distant potentials. Quantifying 

the remoteness risk is an important step in assessing the 

overall risk of such projects, and in determining their 

development feasibility. Remote projects suffer from 

cost overrun, schedule slippage, and operability problems 

respectively 30%, 29%, and 70% more [3]. The distance 

to economic hubs represents access challenges to skilled 

trades and determines the safety and productivity 

implications of shift rotations that have employees work 

for several weeks followed by weeks-long leaves. 

Remoteness also affects access to raw materials, the most 

suitable modes of transportation, and access to markets 

or downstream treatments for the products of such remote 

projects. In this context, remoteness is a measure of 

vulnerability in adhering to the schedule and budget that 

make such developments economically feasible. 

Second, with ever-growing implications of climate 
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change and extreme weather effects, understanding 

remoteness is crucial in creating expert systems for 

resiliency assessment and planning for remote 

communities and infrastructures. Physical remoteness is 

an inherent quality of cities, townships, and communities 

and plays a major role in assessing their resiliency and 

vulnerability [4]. A quantification of remoteness can 

benefit mitigation strategies and response plans for 

natural disasters. For example, remoteness can function 

as an input to regional multi-severity casualty estimations 

[5] or similar vulnerability functions.  

Third, accessibility is the inverse of remoteness and 

while distinct in their perspective, the two are highly 

correlated [6]. Accessibility reflects the proximity to 

population centers that have the capacity to provide 

healthcare, education, and other essential services. 

Quantifying remoteness and accessibility is essential in 

policy making and budget allocation for public projects, 

including public health, education, and infrastructure 

projects. For example, a measure of remoteness was used 

to guide the eradication of malaria in Lao People’s 

Democratic Republic. The study’s success prompted its 

extension for achieving similar disease eradication goals 

and improving overall health in Vanuatu, and the 

Solomon Islands [7]. 

Approaches to the development of remoteness and 

accessibility indices are data intensive, mostly based on 

census and transportation data that takes a long time to 

collect and require specific strategies based on the range 

of their policy implications. Therefore, their applicability 

and scope are usually limited to certain spatial or 

temporal contexts due to the restricting nature of their 

input data and its level of aggregation. For example, an 

index developed to facilitate policy making on a national 

level may not be valid at the community level due to the 

loss of resolution. Remoteness indices are also typically 

developed for a specific jurisdiction, ranging from local 

to national, but rarely crossing national borders due to 

data ownership and compatibility. Even adjoining 

countries have difficulty comparing accessibility indices 

since there exists no standard method for their 

development.  

As such, a universal continuous remoteness index, 

developed from a readily available source of data, that is 

applicable to different geographical, spatial, and 

temporal contexts can be utilized in a multitude of 

situations and be of utmost value. 

 Objective and Scope 

Nighttime satellite imagery is an independent and 

readily available data source, and it can be used to 

understand the distribution and the growth of populations 

over time. The objective of this paper is to examine the 

potential of nighttime satellite imagery to measure 

remoteness and to build a continuous remoteness index 

that can be calculated for any location, and for any time. 

Sections 2 and 3 review the related efforts on 

quantifying remoteness and elaborate on the nighttime 

satellite data used for the development of the remoteness 

index introduced in this work. Section 4 discusses the 

methodology used to develop the proposed nighttime 

remoteness index (NIRI), while sections 5 and 6 discuss 

the results, their validity, and finally the conclusions. 

2 Approaches to Quantifying Remoteness 

The proximity of human settlements to economic 

hubs is an important factor for countries with large land 

masses and only moderate populations as they strive to 

provide essential services to their residents. Two such 

countries are Canada and Australia who rank 222nd and 

228th respectively out of 233 countries with respect to 

population density in 2018 [8].  

Australia is a global leader in the study of proximity 

for practical purposes. One of the earliest of such studies 

was an index to distinguish the remoteness of rural areas 

created by associating population data with grid sections 

of the national map [9]. The index was based on the 

distance of the center of each grid to the center of the 

nearest populated grid. A contour map was drawn 

reflecting discrete categories of remoteness and 

accessibility. The remoteness index was later upgraded 

and named as the Australian rural, remote & metropolitan 

areas (RRMA) classification [6]. Both indices were 

criticized due to the subjectivity and the effect of the grid 

layouts on the index values assigned to specific regions.  

In 1998, the continuous Accessibility Remoteness 

Index for Australia (ARIA) was created using census data 

to define population centers [10]. Travel times were 

incorporated in ARIA by overlaying the ground 

transportation network of roads and highways. This 

allowed the index to classify a region’s accessibility to 

general practitioners, pharmacies, cardiovascular 

services, scientific grants, and urban infrastructure. As 

the index is linked to government funding policies, there 

was some concern about the fairness and reliability of 

some of the classifications. Although ARIA was 

calculated as a nominal index, the published version 

summarized it as discrete contour maps comprising five 

remoteness categories. In this way, the impact of moving 

a line could appear tremendous for communities on or 

near those boundaries. 

A set of indices for remoteness and accessibility was 

developed for Canadian townships to measure and 

compare their accessibility to health, retail, and financial 

services [6]. It largely followed the ARIA methodology 

but instead of using the driving distance, the indices were 

scaled by the most affordable mode of transportation to 

reach the fundamental services. This accounted for the 

lack of year-round road networks and the local practices 
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of using travel modes that better suited the region.  

3 Nighttime Satellite Imagery 

Satellite images are breathtaking and pique our 

imagination. They contain immense data and have great 

potential to provide us with valuable information. At first 

glance, the images can estimate electrification rates if 

coupled with population data [14]. More generally, they 

serve as a proxy for human development. Images can be 

compared over time to understand growth patterns in 

locations around the world [14]. 

Economic growth can be seen as the expansion of 

lighted centers, reductions in the dark spaces between 

centers, and as the increased intensity of lights in highly 

urbanized centers. Where reliable statistical data are 

unavailable, using nighttime imagery to estimate 

economic indicators [15] and socio-economic factors has 

proved accurate and effective [16].  

Development can also be viewed as a measure of 

economic equality. With this perspective, the Night Light 

Development Index (NLDI) [16] measures the intensity 

of nighttime lights and their distribution and forms a Gini 

coefficient versus the distribution of the population. In 

effect, the resulting Gini coefficient interprets the 

comparative wealth of the neighborhoods without the use 

of monetary measures of wealth. Significant correlations 

were found between the NLDI and other data-intensive 

development factors such as the Human Development 

Index (HDI), Human Security Index (HSI), and 

electrification rates. While NLDI provides a spatial 

depiction of development in a country, it does not reflect 

an area’s proximity to developed centers. 

Shifts in economic activity have also been identified 

using nighttime imagery. The discovery of minerals in 

one area in Madagascar was made evident by the 

dramatic appearance and growth of nighttime lights in the 

area over a period of 5 years. The lights resulted from the 

development of mining facilities, local commerce, and 

communities to support workers. The mine was also 

identified to be the cause of the dimming of light intensity 

and slowed economic activity at a town further away [17]. 

Although the use of satellite nighttime imagery has 

many successes, some shortcomings have been 

discovered. In mapping global economic activities, 

satellite nighttime imagery methods were unable to 

account for activity that did not generate light, such as 

agriculture [19]. Along the same theme, regional cultural 

or operational practices, such as restricting the use of 

outdoor lights at night, can affect the results if the 

analysts are not aware of local practices. Although 

nighttime satellite lights are a reliable source for 

comparative analysis within similar regions, methods to 

validate findings are helpful in identifying such 

shortcomings. 

4 Nighttime Remoteness Index (NIRI) 

This work uses machine learning techniques to 

develop a predictive model linking the intensity and 

statistical features of the nighttime satellite data to 

remoteness. A model is trained to map a feature vector 

extracted from the nighttime satellite data (i.e., the 

predictor, or the independent variable) to the ARIA 

remoteness values (i.e., the target, or the dependent 

variable). The predictions of this model are further used 

to develop a continuous remoteness index, herein 

referred to as the nighttime satellite imagery (NIRI) for 

any given geographical location. NIRI maps the degree 

of remoteness to a nominal scale between 0 to 100, with 

   
(a)                                    (b) 

Figure 1: a) The target variable: ARIA Map of Australia for 2011 [11,12]. b) The predictor: Average stable 

nighttime lights from satelite imagary of Australia in 2011  [13]. (both figures are reconstructed). 
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0 being the least remote, and 100 being the most remote 

point in the spatial context where NIRI is developed. The 

NIRI is independent of national boundaries and the data 

collection and integration challenges often related to 

local jurisdictions. Using the satellite data available for 

different time periods, NIRI can be automatically 

adjusted to reflect remoteness for a given temporal 

context, and it can be utilized to study changes in 

remoteness over time.  

The majority of work was done in R programing 

language by taking advantage of Raster library. The maps 

are developed using ArcGIS® software. The following 

sections respectively elaborate on 1) the nature and the 

format of the input nighttime data; 2) the feature 

engineering and the choices regarding the mathematical 

representation of the input data in formulating the 

predictor variables; 3) calculating the target variable; 4) 

the predictive modeling process, mapping the predictors 

to target variables; and 5) the generation of NIRI based 

on the prediction results. 

 

 Predictor Variable: Nighttime Satellite 

Imagery 

National Oceanic and Atmospheric Administration’s 
National Geophysical Data Center (NOAA) published 

nighttime satellite imagery data annually from 1992 to 

2013. Two data sets are available. The average lights data 

are calculated as the average readings during the year. 

Readings affected by clouds, moonlight, sunlight, aurora, 

and glare are excluded. The average stable lights data are 

further adjusted to exclude temporary light effects caused 

by, for example, wildfires and visual background noise. 

The data are available in 8-bit quantized georeferenced 

tagged image file format (GeoTIFF) as 30-arc-second 

resolution maps from -180 to 180 degrees Longitude and 

-65 to 75 degrees Latitude. GeoTIFF is an image file 

embedded with metadata, such as the reference 

coordinate system and pixel resolution, and spatial or 

georeferenced data in the form of pixel parameters [20] 

[20].  

 Feature Engineering  

  For any location on the map, a feature vector is 

generated for the purpose of training and testing the 

predictive models; a series of statistical features and 

summary statistics are extracted from the nighttime 

satellite data and in the neighborhood of a given location. 

This neighborhood is defined by a radius, the size of 

which can have important implications on the final index. 

The perceived remoteness of a location will vary 

depending on the region size and the distance in the 

context of major construction projects. For example, a 

site located more than 200km from a populated area can 

be considered remote in North America but perceived as 

relatively less remote in Africa [3]. A continuous 

remoteness index shall be sensitive to absolute distance 

from populated areas.  

Therefore, this paper uses multiple neighborhood 

sizes to calculate the feature vector; individual feature 

vectors are calculated for four different influence radii of 

100km, 300km, 500km, and 1000km, and they are 

concatenated together. The feature extraction process is 

further adjusted to reflect the proximity of open waters, 

ensuring that the model is expressive to the coastlines. 

This is intended to take into account the effect of open 

waters on the summary statistics of a given location; for 

example, while two locations may have similar readings 

on the nighttime satellite data, their corresponding 

remoteness indices can differ based on proximity to open 

waters.   

 Target Variable  

In the next step, the target variables are calculated. 

Because Australia has established a robust and long-term 

record of indexing remoteness and accessibility, ARIA 

was used for this purpose. ARIA is published as contour 

maps, dividing Australia into five classes based on the 

measure of remoteness (see Figure 1) [11]. For any 

location, the target variable can be considered as either, 

first, the remoteness class (e.g., “very remote”, that can 

be extracted from the ARIA map), or second, the actual 

nominal value of remoteness (ranging from 0 to 15 in the 

case of ARIA). The former formulates a classification 

problem that links the predictor variable (i.e., readings 

from the nighttime satellite images, see section 4.2) to 

their corresponding class of remoteness. This does not 

allow for introducing a continuous index that accounts 

for the gradient changes in remoteness. The latter choice 

results in a regression problem; and hence, allows the 

development of NIRI as a continuous index. However, 

nominal ARIA values are only known for the classes’ 

borders from the overall map. The latter was used in this 

paper. 

 Predictive Modeling  

The feature vectors and the target variables are passed 

to a machine learning model; several algorithms from 

regression-based modeling techniques were used for the 

purpose of predicting the target variable using the 

predictors, including the linear regression, the 

multivariate adaptive regression splines (MARSplines), 

the support vector machines regression (SVR), and the k-

nearest-neighbor regression. Several validity tests were 

performed on the prediction results including the 

stratified random resampling and a non-random 

geographic split test. The residuals were carefully 

investigated to avoid overfitting and modal behaviors. 
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Moreover, an iterative model tuning campaign was 

carried forward to optimize the behavior of the models 

based on various definitions of cost parameters.  

 NIRI Development  

The predictive models map the intensity and the 

statistical features of the nighttime data to the ARIA 

index. In this step, the model predictions are normalized 

across the geographical context for which the NIRI maps 

are being developed (e.g., across the entire map of 

Australia). The normalization allows for the resulted 

NIRI to specify the remoteness of any point at a value 

between 0 and 100, reflecting the relative remoteness of 

that location within its spatial context. This also allows 

for comparison of NIRI values between geographical 

locations, and it makes NIRI applicable to all regions.  

When expanding the use of NIRI to other regions, the 

index shall be normalized based on the context of the 

region in question. It must be separately developed for 

countries with major cultural and geographic differences. 

This is due to the different mechanism of illuminating 

cities and population settlements across the globe, the 

geographic and cultural differences, among others [17].  

5 Validation and Discussion 

To train and test the predictive models, more than 

7000 data points were selected on the region borders of 

the ARIA map (i.e., where the nominal value of 

remoteness is known). The feature vectors were 

calculated for all these locations using the process 

described in section 4.2.  

The accuracy of the models is established by 

performing several validity tests, including the geospatial 

half split test; the ARIA map is split in two halves; the 

models are trained on one half, and they are used to 

predict the remoteness values in the other half. The best 

performing model is used to predict remoteness and 

develop the NIRI maps based on the normalization steps 

described in Section 4.5. 

 Results 

Among the trained models, the SVR achieved the 

highest coefficient of determination, R2=0.94 while, 

MARSplines produced similar results with R2=0.93. 

Both models performed reliably in terms of the residuals. 

The non-random geographic split test, using Eastern 

Australia data to train and Western Australia data to test 

posed the highest challenge to coefficients of 

determination, however, it resulted in R2=0.85 and 

R2=0.84 for SVR and MARSplines, respectively. The 

SVR produced slightly less normally distributed 

residuals for the geographic split test in comparison to 

MARSplines, and hence, MARSplines is less prone to 

overfitting and more appropriate for these data. Therefore, 

MARSplines is chosen as the best performing model and 

is used hereafter to create the NIRI maps using the 

procedure described in section 4.5.  

Figure 2 and 3 show the NIRI maps of Australia and 

North America, generated using MARSplines model and 

the nighttime satellite data of 2011. Figure 4 shows the 

superimposition of NIRI contours (iso-remote lines), on 

the average stable lights of North America for 2011. NIRI 

envelopes the light clusters normal to the direction of 

remoteness gradient from population centers to remote 

areas with great accuracy. 

 Discussion 

The spacing of the corresponding grid to build the 

index determines the resolution of the ultimate NIRI map 

and has an immediate effect on its accuracy as well as the 

computation time. The triangulation error increases as the 

resolution of the grid increases, subjecting the 

corresponding maps to both random and systematic 

errors. More importantly, larger grids mean that each 

point represents a larger area. This increases the 

occurrence of index locations that do not represent their 

areas. To examine the sensitivity of the grid size on the 

accuracy of the map, analysis was performed to identify 

the potential systematic and random impacts on the 

results. Figure 5 plots the average and standard deviation 

of NIRI for a region in the southeast of Australia 

encompassing Sydney and Melbourne for four grid sizes 

ranging from 0.2 to 1.2 degrees. The random error 

disappears as the average and the standard deviation of 

the index start to converge in grid sizes below 0.8 degrees. 

Therefore, depending on the size of the coverage area, the 

desired resolution, and the computational power 

available, a grid size of 0.8 degrees or smaller produces 

reliable results. 

Because NIRI is a continuous index, it allows 

establishing remoteness contours at any interval and for 

any region. Once the models are built to link the 

nighttime satellite imagery to remoteness as the target 

variable based on Australia data, the same models can be 

used to compute NIRI for other regions of the world. This 

extends the use of the index to a variety of applications. 

Once the model is run, the relative remoteness difference 

between any two points can be measured for risk 

assessment and other purposes. 

NIRI can be used to better understand and quantify 

the resiliency of communities and their underlying 

infrastructure. In the case of infrastructure resiliency, 

NIRI can be used as an additional factor to improve 

mitigation strategies for natural disasters [21]. 

Combining an understanding of remoteness and 

accessibility with casualty estimations can optimize the 

use of the limited resources in the face of natural disasters 

such as earthquakes, tsunamis, and hurricanes.  
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Figure 2: NIRI Map of Australia for 2011 

 

 
 

Figure 3: NIRI Map of North America for 2011 

 

Figure 4: NIRI Contours (Iso-Remoteness Lines) Superimposed on Average Stable Nighttime Lights of 

North America for 2011 
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Regional remoteness indices were directly utilized in 

vulnerability analysis of road networks for south east 

Australia [22], such frameworks and programs can be 

expanded to any other part of the world by utilizing NIRI. 

Several models are proposed to forecast damage and 

severity for seismic events. For instance, NIRI can be a 

direct input to regional multi-severity casualty 

estimations [5] and Earthquake vulnerability functions 

[23] to calibrate those models for physical location 

characteristics. Previous studies have linked remoteness 

to both resiliency and vulnerability of communities and 

proposed adaptation pathways to consequences of 

climate change and extreme weather events to those 

communities [4]. NIRI can quantify remoteness for 

implementation of such strategies. 

Moreover, NIRI can help in research applications at a 

variety of economic and social sciences’ fronts. Satellite 

data in general [24], and nighttime satellite imagery in 

particular [15~19] have been effectively used in several 

studies to explore various economic outcomes including 

poverty. Separate studies have established links between 

the prevalence of poverty and remoteness characteristics 

of communities [25]. NIRI can be utilized effectively as 

an input to such models to better understand similar 

phenomena. 

6 Conclusions 

Remoteness is hard to measure, yet it is a crucial 

factor in determining the success and feasibility of large 

international projects and assessing the resiliency and 

vulnerabilities of remote communities. The existing 

means of quantifying remoteness require extensive data 

collection and are based on the integration of multiple 

data sources. A global measure of remoteness is needed 

that is not limited in terms of its applicability to different 

geographical contexts and time periods. This paper 

proposes a novel method that exploits the readily 

available nighttime satellite data for developing a 

continuous measure of remoteness that is not limited to 

local jurisdictions or certain borders. While most 

research on nighttime satellite imagery has been focused 

on the characteristics of illuminated clusters and its 

relationship with human development, this paper links 

the lack of such light clusters to remoteness. 

In this study, the nighttime satellite imagery proved 

to accurately predict a multidimensional composite index 

of remoteness. The nighttime data is used as a predictor 

of remoteness and to create a continuous remoteness 

index, NIRI, that describes remoteness and its directional 

gradient with great accuracy for a variety of risk and 

resiliency assessment tasks.  

NIRI can be developed across different regions and 

as well in time. Although this paper only used 2011 data 

to establish the predictive model, the index can be 

developed using nighttime satellite imagery of other 

points in time. This allows NIRI to measure the changes 

of remoteness not only across regions but also across 

time.   
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