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Abstract – 

Laser scanning-based techniques have been 

applied for checking the dimensional tolerances of 

concrete elements. Several studies utilized 

Terrestrial Laser Scanning (TLS) for measuring 

concrete floor waviness. The results of those efforts 

have shown that accurate floor waviness information 

can be obtained using TLS. Unmanned Aerial 

Vehicles (UAVs) mounted with cameras and 3D laser 

scanning sensors, referred to as Airborne Laser 

Scanning (ALS) hereafter, have versatile 

applications in construction, such as surveying, 

progress control, 3D modelling and inspections. As-

built data collection for dimensional quality 

assessment can be a potential application of such 

technology. In particular, the application of ALS for 

assessing the waviness of concrete slabs warrants 

further exploration. This study presents the results 

of a comparative analysis of floor waviness 

measurement results obtained using ALS and TLS-

based technologies. Continuous Wavelet Transform 

(CWT) is applied to the depth map derived from 

both point cloud datasets to obtain waviness 

information. Comparable results are obtained for 

the CWT scales of 30, 60 and 75. Detailed discussions 

on how the results can be improved are presented. 

The analysis of the accuracy of results obtained 

using ALS advances its application in the field of 

dimensional quality assessment.  
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1 Introduction 

The geometric dimensions of as-built concrete 

elements often fail to comply with the tolerances 

specified in the as-designed plans [1]. The factors that 

contribute toward such discrepancies include lack of 

attention to details included in the project specifications, 

low accuracy and precision issues that occur during the 

construction of elements, and the misinterpretation of 

information provided in the project specifications. 

Consequently, increasing tolerance accumulation may 

affect the aesthetics of concrete elements, affects the 

correct placement of adjacent concrete elements and 

negatively affects the structural health of components in 

severe cases [2]. Construction quality control inspectors 

collect data related to the quality of on-going 

construction for effectively designing solutions to 

correct any defects or discrepancies that are present on 

concrete surfaces. Thus, dimensional quality assessment 

ensures that constructed elements accurately reflect the 

dimensions and locations specified in the contract 

documents. For concrete floors, this is one of the most 

significant processes constituting the overall 

construction process. For instance, constructed floors 

that do not meet appropriate flatness and waviness 

requirements negatively affect the operation of Very 

Narrow Aisle (VNA) trucks in warehouses. Furthermore, 

the undesired waviness present on the floor surface can 

affect the racking height of such vehicles, and 

consequently, the static lean which ultimately may 

cause these vehicles roll over [3–5]. 

Existing methods commonly used in the industry 

such as the Straightedge Method, the F-number method 

(ASTM E1155)[6] and the Waviness Index (WI) 

method (ASTM 1486) share the common drawback as 

they yield sparse as-built measurements. In addition, the 

data collection process is time and labor intensive, given 

that the floor surface area in warehouse construction 

projects easily exceed 4,000 m
2
 [3–5]. The method 

proposed in [3] utilizes a framework that uses lidar-

based point clouds and the Continuous Wavelet 

Transform (CWT) to overcome these disadvantages and 

provides a novel framework for measuring floor 

waviness. This framework was further developed to 

process 2D as built information in the form of depth 

maps, as opposed to 1D survey lines derived from TLS-

based point clouds to impart waviness information of 

newly constructed concrete slabs. This study focuses on 

performing a comparative analysis of the floor waviness 
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results obtained using point cloud data collected with a 

TLS and a lidar sensor mounted UAV. The method of 

comparison presented in this study uses waviness 

detection results from TLS point clouds as ground truths, 

and relies on recall and precision rates to determine the 

accuracy of waviness results obtained using ALS point 

clouds. 

2 Related Work 

Lidar technology has a wide range of applications in 

the civil engineering industry, such as quantifying 

erosion rates and surface deformation [7], to landslide 

inventorying and assessing hazards [8], structural health 

monitoring [9–12], road roughness quantification [13–

17] and survey and maintenance of historic buildings 

[18–20]. In the construction industry, lidar is primarily 

used for as-built documentation that supports progress 

tracking [3]–[7], facility management [8]–[13], 

dimensional quality control [3–5,32–34] in construction 

projects. In the area of dimensional quality control, lidar 

technology is commonly used for acquiring as-built data, 

owing to its ability to capture millions of points with 

mm-level accuracy. The acquired data is processed with 

the help of a multitude of algorithms, based on the 

desired applications. Few of the applications include 

assessing the flatness of the exterior facades using a 

color map derived from TLS point clouds [35], 

visualizing the elevation differences across a floor using 

elevation map generated from point cloud data [36] and 

assessing the dimensional compliance of concrete 

elements using BIM and TLS-based point cloud data 

[37]. Lidar-based point clouds, with the application of 

the Continuous Wavelet Transform (CWT), were also 

used in the assessment of floor waviness in [3,4]. The 

study in [3] demonstrated the efficacy of applying the 

two-dimensional CWT (2D CWT) to lidar-based point 

cloud data for assessing the waviness of concrete 

surfaces. The comparative analysis between results 

obtained using the framework and those obtained using 

the Waviness Index (WI) method showed that the 

framework accurately identifies regions on the floor 

where surface waviness of different characteristics exist. 

The framework utilized TLS-derived point cloud data 

for assessing the surface waviness of concrete floors. 

Unmanned Aircraft Systems (UAVs) are 

exponentially gaining popularity for collecting as-built 

data from construction sites. UAVs mounted with 

photographic cameras, thermal cameras and lidar 

sensors or “pucks” have been widely used for survey 

data collection. Compared to TLS, UAV-mounted lidar 

sensors are capable of collecting data from large survey 

areas in a non-intrusive manner with limited occlusions 

[38,39]. For instance, a person standing in front of the 

laser scanner can create a larger obstruction during data 

collection using TLS, compared to ALS. Moreover, 

using TLS for collecting as-built data from working 

surfaces may hinder on-going operations and may 

interrupt workers on the surface. Thus, the objective of 

this paper is to compare the results of floor waviness 

obtained using point clouds derived from TLS and ALS. 

The framework proposed in [3,5] will be used for 

obtaining surface waviness results. 

3 Analysis 

3.1 Data Collection and Preprocessing 

The data was collected from a newly constructed 

floor of a lecture hall under the Magruder Hall 

Expansion project in Corvallis, OR. Figure 1. shows the 

region of interest, and its surface area was 

approximately 140 m2. The Leica P40 scanner was 

setup in two locations across the floor. After registering 

the two scans, the spatial resolution of the output point 

cloud was approximately 5 mm within a range of 10 m. 

The Riegl miniVUX was used for obtaining the ALS 

point cloud. The UAV mounted with the lidar sensor 

was flown at a constant height of approximately 60 m 

above the surface of the ground, making two passes 

over the area of interest. It is assumed that the beam 

divergence is constant throughout the flight. The spatial 

resolution of the output point cloud collected from the 

UAV system was approximately 5 cm. 

 

 

Figure 1. The region of interest is marked in 

orange. 

3.2 Data Processing 

The framework developed in [3] was used to process 

the data obtained from TLS and ALS. The obtained 

point clouds from the TLS and ALS systems were 

imported into a commercial point cloud processing 

software to remove scans corresponding to workers 
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working on the floor and various construction debris. A 

depth map is developed using triangulation-based linear 

interpolation on a grid with regular intervals of 1 cm. 

This process generated a map showing z-coordinates at 

each query point, where each query point is represented 

by the intersection of lines on the x-y plane of the grid. 

CWT, using the Mexican Hat wavelet as the mother 

wavelet, was applied to the depth map at different scales. 

To simplify the analysis, only five scales were chosen 

for the CWT: 15, 30, 45, 60 and 75. The five scales 

correspond to the five undulation periods in the WI 

method: 2, 4, 6, 8 and 10 ft, respectively. The 

correspondence between the WI index values and the 

CWT scales are shown in Table 1. 

Table 1. Waviness Index values and corresponding 

continuous wavelet transform scales [3][4] 

Characteristic 

period (T) [cm] 

CWT 

scale (a) 

Waviness Index (k 

values) 

61 15 1 

121.9 30 2 

182.9 45 3 

243.8 60 4 

304.8 75 5 

3.3 CWT Results 

The surface waviness results obtained for the TLS- 

and ALS-based point clouds, for scales 15, 30, 45, 60 

and 75, are shown in Figure 2, Figure 3, Figure 4, 

Figure 5 and Figure 6, respectively. The peaks detected 

for the CWT responses for these five scales are 

presented.  

 

 

Figure 2. The results of the CWT analysis at 

scale 15 with peak detection (red asterisk) for the 

ALS (top) and TLS point clouds (bottom) 

 

 

Figure 3. The results of the CWT analysis at 

scale 30 with peak detection (red asterisk) for the 

ALS (top) and TLS point clouds (bottom) 

 

 

Figure 4. The results of the CWT analysis at 

scale 45 with peak detection (red asterisk) for the 

ALS (top) and TLS point clouds (bottom) 
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Figure 5. The results of the CWT analysis at 

scale 60 with peak detection (red asterisk) for the 

ALS (top) and TLS point clouds (bottom) 

 
 

 

Figure 6. The results of the CWT analysis at 

scale 75 with peak detection (red asterisk) for the 

ALS (top) and TLS point clouds (bottom) 

As shown in Figure 2, Figure 3, Figure 4,Figure 5, 

and Figure 6, peak responses for the CWT coefficient 

values lie 10% below the maximum value. The location 

of these peak responses for each of the five scales are 

used for our analysis. 

The waviness results obtained from the TLS-based 

point clouds are used as ground truth for measuring the 

performance of the ALS-based point clouds for 

generating the waviness results. The convention of true 

positives (TP), true negatives (TN), false positives (FP) 

and false negatives (FN) that applies to the peak 

detection problem in our study is shown in Table 2. The 

number of true positives, true negatives, false positives 

and false negatives are shown in Table 3.  

 

Table 2. Convention of the true positive, true negative, 

false positive and false negative for peak detection 

 Peak present 

(TLS) 

Peak absent 

(TLS) 

Peak detected 

(ALS) 

TP FP 

Peak not 

detected (ALS) 

FN TN 

Table 3. Total number of true positives (TP), true 

negatives (TN), false positives (FP) and false negatives 

(FN) 

Scales TP TN FP FN Actual 

number of 

peaks (TLS 

based) 

15 1 0 0 2 3 

30 2 0 0 0 2 

45 1 0 1 0 1 

60 1 0 0 0 1 

75 1 0 0 0 1 

In the TLS based results, for scale 15, the ground 

truth shows that there are 3 peaks that correspond to 

undulations having a characteristic period of 61 cm. 

Only one of those peaks are detected in the waviness 

results derived from the ALS point cloud. For scale 30, 

two peaks that correspond to the characteristic period of 

121.9 cm were detected in both the TLS and ALS based 

results. At scale 45, one peak corresponding to 182.9 cm 

was obtained in the TLS and two peaks in the ALS 

based results. Similarly, for scales 60 and 75, 1 peak 

corresponding to the characteristic period of 304.8 cm 

was detected in both the TLS and ALS based results. 

Table 4 shows the correspondence between the 

waviness detection results obtained using TLS and ALS 

using precision and recall rates for the five scales 

selected in this study. 

Table 4. Recall, precision and accuracy rates 

Scales 15 30 45 60 75 

Recall 33% 100% 100% 100% 100% 

Precision 100% 100% 50% 100% 100% 
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Accuracy 33% 100% 100% 100% 100% 

F-Score 0.5 1 0.67 1 1 

The surface waviness results for scales 60 and 75 

using the TLS and ALS based point clouds are 

comparable. For scale 45, a false positive was detected 

near [1283 cm, 481 cm]. The same region near the TLS 

was inspected and no peak was found. The CWT 

response at that region for the ALS based results was 

0.8816, and 0.1674 for the TLS. This discrepancy might 

be attributed to the difference in the z-values shown in 

the depth maps of the TLS and ALS point clouds. The 

TLS based depth map shows the elevation at [1283 cm, 

481 cm] to be approximately 2.8 cm and the ALS based 

depth map shows 1.75 cm. Although the TLS and ALS 

scans were collected almost simultaneously, there were 

workers actively working on the work surface. This may 

be due to dynamic changes resulting from moving 

objects or debris on the floor surface. Another reason 

may be due to the low resolution of the ALS point cloud. 

For scale 15, the results are not comparable to each 

other. A possible reason could be that using TLS-based 

high-resolution point cloud helped detect undulations of 

a lower characteristic period (61 cm) accurately. The 

lower resolution ALS-based point cloud may have 

failed to capture those undulations. While generating the 

depth map, the z-coordinates are smoothed out to a 

higher degree if there were fewer neighbouring points 

present around the query points.  

4 Discussions and Conclusions 

The efficacy of using ALS-derived point clouds for 

detecting surface waviness of concrete floors was 

examined. Using the UAV mounted with lidar can help 

quality control inspectors to non-intrusively collect as-

built point cloud from concrete slabs. The analysis of 

the CWT results show that the surface waviness 

detection results are not comparable for scales 15 and 

45. The analysis showed comparable results for 

detecting the undulations corresponding to scales of 30, 

60 and 75. In summary, one of the possible reasons for 

discrepancies in the two results is the difference in the 

resolution of both point clouds. The resolution of the 

TLS based point cloud was approximately 10 times 

better than that of the ALS based point cloud. The other 

reason could be due to the misalignment of both point 

clouds. The targets placed on the ground were visible in 

the TLS data, but were not clearly visible in the ALS 

point clouds. Two solutions are proposed: 1) Flying the 

UAV closer to the ground: The lower the aircraft flies, 

the smaller the lidar footprint diameter will be, which 

results in a higher density of points per scanning area. 

Decreasing the lidar footprint is essential for detecting 

small changes in elevation across the surfaces. A good 

option would be flying under 15 m. 2) Increase the 

number of passes: An increase in the number of passes 

will improve the resolution quality of the point cloud.  

Future work will focus on examining the number of 

passes required to obtain a point cloud resolution that is 

comparable to that obtained using a TLS. In addition, 

the impact of the altitude difference for obtaining the 

desired resolution and capturing the small changes in 

elevation across the floor will be examined. 

Furthermore, the differences in the z-coordinates of the 

depth map resulting from the application of other 

interpolation methods will be evaluated. 
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