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Abstract –  

A vehicle-mounted video camera, which is one of 

low-cost off-the-shelf devices, can be used 

economically for pavement crack monitoring. The 

pavement frames obtained by the video camera can 

be merged to form a mosaic image, from which road 

distress information can be extracted. However, 

quality of crack detection in the frames is different 

from one another. The different level of crack 

detection quality should be considered for accurate 

construction of crack mosaic. This paper proposes a 

new pavement crack mosaicking method based on 

quality of crack detection in each frame. A 

convolutional neural network is suggested as a way to 

evaluate the quality of crack detection in the video 

frames. The proposed method showed a promising 

mosaicking performance compared to other existing 

methods.  
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1 Introduction 

Cracking is an important factor in evaluating 

pavement surface condition [1]. A crack can allow water 

to enter the pavement and cause potholes to develop. 

Because potholes can damage vehicles [2], it is crucial to 

perform pavement monitoring and timely maintenance 

[3]. Pioneering studies were conducted for automatic 

crack detection in 1990s [4,5,6]. Ever since, various 

inspection devices have been used for automatic 

pavement crack detection research, including a ground 

penetrating radar (GPR) [7], an unmanned aerial vehicle 

(UAV) [8], laser scanners [9], infrared spectrometers 

[10], and a red green blue depth (RGB-D) sensor [11]. 

Low-cost off-the-shelf devices have also been used for 

pavement crack detection research; examples include 

smartphones [12,13,14] and vehicle-mounted cameras 

[15,16,17].  

There are several advantages to using a vehicle-

mounted video camera, which is one of the low-cost off-

the-shelf devices, for pavement monitoring. By using a 

device already installed in a general vehicle, it is not 

necessary to purchase an additional experimental device 

for data acquisition. Obtaining data with multiple 

vehicles can allow large areas to be observed in a short 

time. A pavement that is too long to be covered by a 

single image can be observed by making a mosaic from 

successive video frames [18,19]. However, quality of 

crack detection is different frame by frame. For 

generation of the mosaic from video data, the different 

level of crack detection quality should be considered.  

In this paper, we propose a new pavement crack 

mosaicking method based on crack detection quality in 

images. A convolutional neural network plays a major 

role to evaluate the crack detection quality of each frame. 

The methodology and experiments are explained in 

Chapters 2 and 3, respectively, followed by conclusions 

in Chapter 4. 

2 Proposed Methodology 

Convolutional neural network (CNN), which has 

shown encouraging performance in recent years [20], 

was used for image data processing in this paper. An 

encoder-decoder network based on ResNet [21], which is 

the winner of ImageNet Large Scale Visual Recognition 

Challenge 2015 (ILSVRC2015), was used for the pixel-

wise crack detection; the network was the preprocessing 

step for this study. An input image size for the crack 

detection network was 1920 x 1080. Input images were 

collected from a vehicle-mounted camera. The dataset 

consisted of 427 and 100 images for training and testing, 

respectively. Ground truth crack binary images were 

made by manual labelling. Pre-trained weights learned 

with ImageNet data were used as the initial weights of 

the crack detection network.  
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2.1 Crack Detection Quality Prediction 

The core of the proposed method is a crack detection 

quality prediction network (CDQ-Net). The CDQ-Net 

calculates a crack detection quality (CDQ) of each frame. 

An f1-score calculated by the crack detection network is 

considered as the CDQ of a frame. The CDQ-Net consists 

of convolutional layers, a global average pooling layer, 

and fully connected layers. Raw input images (2560 x 

1440) obtained from a vehicle-mounted camera included 

non-road area. By eliminating the non-road area, the 

amount of computation could be reduced. On the raw 

input images, only the road area were extracted to result 

in the image size of 1536 x 540. At the convolutional 

layers, the filter size and the stride were 7 x 7 and 4, 

respectively.  

The motivation why the CDQ-Net is a shallow 

network and includes a big filter size and stride is as 

follows. Most of crack shapes are thin lines, which are 

expected to be more related to low-level features than 

high-level features. Low-level features are easy to be 

generated by a shallow network. The vehicle-mounted 

camera has a high resolution (2560 x 1440) compared 

with many applications with ImageNet (256 x 256). If a 

3 x 3 filter is used, as in a typical CNN model, it may be 

difficult to capture a long line feature such as cracks. A 

relatively larger filter sizes and strides can be appropriate 

for the purpose of this study. 

To avoid overfitting problems, batch normalization is 

adopted right after each convolution and before 

activation. The activation function is ReLU [22]. 

Dropout at 50% was applied to each fully connected layer. 

The number of channels in each convolutional layer is 

determined to be similar to ResNet [21]. The number of 

channels in the first convolutional layer is 64 and the 

number of channels in the second convolutional layer is 

128. In the same way as above, the number of channels 

in a convolutional layer is twice the number of channels 

in the previous convolutional layer. Except for the last 

fully connected layer, each fully connected layer has the 

same number of neurons as the number of channels in the 

last convolutional layer. The number of neurons of the 

last fully connected layer is 1 because the output of the 

CDQ-Net should be a single scalar value. 

2.2 Pavement Crack Mosaicking 

Mosaicking pavement crack information from 

consecutive video frames was conducted in the following 

steps. A CDQ of each frame was calculated by the CDQ-

Net. A crack probability, which is the output just before 

binarization, was obtained for each pixel of a frame 

through the crack detection network. An example of a 

crack probability image is shown in Figure 1. The crack 

probability image, which is an oblique-view image, was 

transformed into a top-view image. Consecutive crack 

probability images were then overlapped based on the 

geometric relationships, which is explained in the next 

paragraph. Crack probabilities of overlapped pixels 

corresponding to a specific pixel location were weighted 

averaged according to the CDQ of each frame. The 

weighted averaged crack probability is the crack 

probability of the mosaic. Next, a binary crack mosaic 

image was derived from the crack probability mosaic 

image based on a specific threshold value. The optimal 

threshold value was to maximize a mean of f1-scores for 

binary crack detection of multiple mosaic images. An 

example of a pavement crack mosaic is shown in Figure 

2. 

The geometric relationship between two consecutive 

frames was calculated in the following steps. Oblique-

view frames obtained by a vehicle-mounted camera were 

first transformed into top-view frames. A top-view frame 

included lane markings on both sides. The center curve 

in the previous top-view frame was then estimated based 

on the lane markings. Geometric relationship candidates 

between the two consecutive frames were derived 

according to the position and tangential angle of the 

center curve. The optimal geometric relationship was 

finally selected when the mean squared intensity 

difference between the two consecutive frames was 

minimum.  

 

Figure 1. An example of pixel-wise crack 

probability prediction 
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Figure 2. An example of pavement crack 

mosaicking (from left to right: pavement mosaic, 

weighted averaged crack probability mosaic, and 

binary crack mosaic) 

3 Experiments and Results 

The experimental environment was as follows. All of 

the image data were obtained by a dash-board camera 

Qrontech LK-919 QAD. The fps (frames per second) was 

30 and the resolution was 2560 x 1440. Experiments were 

performed in a desktop with GeForce GTX 1080 Ti GPU 

and Intel Core i7-7700 CPU. The operating system of the 

desktop was Ubuntu 16.04. 

3.1 Crack Detection Quality Prediction 

The number of convolutional layers and the number 

of fully connected layers were changed to find the 

optimal CDQ-Net structure. The image dataset consisted 

of 270, 66, and 83 images for training, validation, and 

testing, respectively. Ground truth binary crack images 

were made by manual labelling. A CDQ of each frame 

was calculated through the crack detection network. 

Epochs were 500 for a majority of the CDQ-Nets, but 

larger epochs were used when the value of the loss 

function did not converge sufficiently in the validation 

process. Batch size was fixed to 4. The network with the 

lowest MAE (Mean Absolute Error) was chosen as the 

optimal CDQ-Net. The optimal CDQ-Net consisted of 

four convolutional layers and one fully connected layer. 

The experimental results are summarized in Table 1. 

 

Table 1. MAE and epochs of various CDQ-Net 

structures: MAE (Epochs) 

No. of fully 

connected 

 layers 
No. of 

convolutional 

layers 

1 2 3 

2 
8.61% 

(2000) 

11.01% 

(1000) 

9.99% 

(3000) 

3 
10.30% 

(500) 

8.59% 

(1000) 

10.98% 

(2000) 

4 
8.26% 

(500) 

8.59% 

(500) 

8.95% 

(1500) 

5 
10.11% 

(500) 

10.01% 

(500) 

10.72% 

(500) 

 

The proposed CNN model was compared with a 

representative CNN model, the ResNet, in terms of its 

capability to predict the CDS. For the direct comparison, 

the experimental environment was set to the same 

conditions. Pre-trained weights learned with ImageNet 

data were used as the initial weights of ResNet50 [21]. In 

terms of MAE and duration for training, CDQ-Net's 

performance was superior to ResNet50. The 

experimental results are summarized in Table 2. 

 

Table 2. MAE and duration on CDQ-Net and ResNet50 

Performance CDQ-Net ResNet50 

MAE 

(Epochs) 

8.26% 

(500) 

9.23% 

(1000) 

Duration 

(Unit) 

0.39 

(hours) 

9.77 

(hours) 

3.2 Pavement Crack Mosaicking 

The proposed method for pavement crack mosaicking 

was tested using LOOCV (Leave-One-Out Cross-

Validation) [23]. In the LOOCV, one mosaic image was 

selected for testing, while the others were selected for the 

determination of the optimal threshold value. The 

threshold value was selected to binarize each pixel of the 

test mosaic image into crack or non-crack category. 

Based on the ground truth images, the performance was 

measured by the f1-score. This process was repeated for 

every mosaic image of the dataset. In the end, the f1-

scores were averaged to provide a scalar value of 
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performance. 

The performance of the proposed method was 

compared with two intuitively obvious methods: 

overwriting and accumulating. The overwriting method 

is to use the crack information of the new frame to its 

fullest extent, ignoring the crack information of the 

existing mosaic. The accumulating method is to conserve 

every crack information of the existing mosaic to result 

in the OR operation with the new information. The two 

methods were measured by the average f1-score.  

The experimental dataset for pavement crack 

mosaicking consisted of five videos. Each video has 90 

frames. The ground truth binary crack mosaic images 

were made by manual labelling. In terms of f1-score for 

crack detection, the performance of the proposed 

pavement crack mosaicking method was superior to the 

other mosaicking methods. The experimental results are 

summarized in Table 3. Examples of pavement crack 

mosaicking results are shown in Figure 3. 

 

Table 3. Performance of the crack mosaicking methods 

Mosaicking 

method  
Precision Recall F1-score 

CDQ 0.5175 0.6748 0.5838 

Overwriting 0.8251 0.2634 0.3969 

Accumulating  0.3427 0.8543 0.4870 

 

Figure 3. Examples of pavement crack 

mosaicking results (from left to right: CDQ based 

method, overwriting method, and accumulating 

method) 

4 Conclusions 

This paper presented the pavement crack mosaicking 

method based on crack detection quality. The proposed 

network, which is to predict a crack detection quality of 

each frame, performed better than ResNet50. The 

proposed pavement crack mosaicking method, which is 

based on the crack detection quality of each frame, 

showed better performance than the two intuitively 

obvious methods: overwriting and accumulating. The 

proposed method, when strengthened by a large number 

of crack image data, is expected to produce a 

significantly improved mosaic map of pavement cracks. 
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