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Abstract –  

Monitoring the progress of a large construction site 

manually is a challenging task for managers. By 

collecting visual data of the site, many monitoring 

tasks can be automated using machine vision 

techniques. In this work, we study a new method of 

collecting site data, which is through crane camera 

images used to create 3D point clouds. The 

technology is cost-effective and enables automatic 

capturing and transmission of on-site data. To 

automatically extract buildings from the as-built 

point clouds, we present VBUILT, which uses 3D 

convex hull volumes to identify building clusters.  

Experimental results on 40 point clouds collected 

over four months on a large construction site show 

that the proposed algorithm can identify building 

clusters with 100% accuracy.  
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1 Introduction 

Machine vision is revolutionizing the construction 

industry by allowing real-time and autonomous 

inspection of construction projects to replace laborious 

and error-prone manual methods. We can now capture 

as-built information in the form of 3D point clouds, 

which can be used for construction progress monitoring 

[1]-[3], quality control [4],  structural damage 

assessment [5]-[6], heavy equipment planning [7] and 

safety management [8]-[9].  

Point clouds are typically acquired using light 

detection and ranging (LiDAR) due to their high 

accuracy. However, laser scanners are not suited to 

capturing large spaces due to the high number of scans 

required. In fact, the time, cost and labour needed for 

accurately capturing an entire construction site using a 

laser scanner would be prohibitive. Large areas are 

surveyed using Airborne LiDAR, which includes the 

significant expense of a piloted airplane carrying 

specialist laser scanning equipment [10]. Besides, 

Airborne LiDAR produces a distant view of the site that 

is not suited for close-range analysis.   

An alternative is the use of photogrammetric point 

clouds. For a large construction site, these can be 

created from images captured using cameras mounted 

on Unmanned Aerial Vehicles (UAVs) (a.k.a. drones). 

But UAVs have a few limitations, such as the need for 

flight permissions [11], image quality deterioration due 

to vibrations caused by weather and the difficulties in 

camera pose estimation with the continuous position 

changes of the UAV [12]. 

In this paper, we study a promising new approach to 

capture as-built information of a construction site, 

which is the use of photogrammetric point clouds 

created from crane camera images. Crane cameras offer 

the advantage that they are already present on 

construction sites and no flight permissions are required 

as in the case of UAVs. Their installation and operation 

is low-cost and convenient.  

The crane camera solution used in this work was 

developed by Pix4D [13]. The 3D point clouds are 

created automatically every day and stored on the cloud. 

In this work, we analyse data collected on a large 

construction site in Finland. 

We focus specifically on the problem of 

automatically extracting buildings from the construction 

site point clouds. Removing the non-building elements 

from a multi-building point cloud can enhance 

alignment with the BIM model for progress 

measurement, but this is beyond the scope of this paper. 

Our work builds on the workflow reported in the 

literature for automatic building extraction from 

airborne LiDAR data. 

Our contributions are as follows: 

 To the best of our knowledge, we are the 

first to study the potential of point clouds 

generated from crane cameras for 

automated progress monitoring.  

 This is also the first work that addresses the 
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problem of automatic building extraction 

on a multi-building construction site. 

 We introduce the use of 3D convex hull 

volumes to identify buildings on the point 

cloud.  

The rest of the paper is organized as follows: Section 

2 discusses related work on automatic building 

extraction, crane cameras and convex 3D hulls. Section 

3 describes the crane camera data collection. Section 4 

describes the VBUILT algorithm. Section 5 presents the 

results and discussion. Section 6 lays out the 

conclusions and future work. 

2 Related Work 

An illustrative example of the automatic building 

extraction workflow for airborne laser scanning (ALS) 

point clouds was presented by Sampath and Shan [14]. 

They performed ground extraction using a slope-based 

1D bi-directional filter. Then, they applied a region-

growing algorithm to cluster individual buildings. They 

set the dimensions of the moving window to 

incrementally more than twice the point spacing, which 

in a LiDAR point cloud differs in the across and along 

scan directions. They also set a minimum point count 

threshold to identify non-building clusters. Wu et al. [15] 

fused LiDAR data with image data to extract the 

boundary lines of buildings. They used a triangulated 

irregular network (TIN) progressive densification 

filtering method to extract ground points. 

Widyaningrum et al. [16] used a generalization of the 

convex hull called the alpha-concave hull [17] to do 

two-dimensional boundary tracing. 

An excellent review of building extraction 

techniques for ALS point clouds is presented in [18] 

which categorizes all the reported techniques into three 

categories: i) 2D building outline extraction; ii) 3D 

model reconstruction of buildings and iii) 3D roof 

contour extraction.  

Our problem differs from the reported works in a 

number of ways. First, we intend to extract the actual 

as-built point cloud of a specific building, rather than to 

construct a 3D model from 2D segments. Secondly, a 

region-growing algorithm such as the one used in [14] 

discards non-building clusters based on point count. 

That is, from the points that remain after ground 

extraction, those clusters that have less than a certain 

number of points are discarded as being possibly 

vehicles or trees. This method is not suitable for 

construction sites, where non-building clusters 

(corresponding to large equipment, for example) may 

also have a high point count. Thirdly, the reported 

works do not perform building identification. Our 

problem requires that after extraction, the buildings be 

labeled. Fourthly, our data is a photogrammetric point 

cloud obtained from crane camera images.  

Additionally, we choose to use a variation of 

RANdom SAmple Consensus (RANSAC) called M-

estimator SAmple and Consensus (MSAC) for 

separating ground and non-ground points. This 

algorithm was proposed by [19], who showed that 

changing the cost function of RANSAC to score inliers 

on how well they fit the data improves the robust 

estimation with no additional computational burden.  

A recent work [20] used crane camera images for 

updating the 3D crane workspace on a construction site. 

However, the crane camera images were used to modify 

a laser-scanned point cloud, which had to be manually 

captured. Point clouds generated automatically from the 

crane camera images were not considered. 

Another recent work [21] used the area of 3D 

convex hulls to automatically map discontinuity 

persistence on rock masses. However, to the best of our 

knowledge, the use of 3D convex hull volumes for 

building extraction has not been reported.  

3 Data collection and description 

The data was collected on the site of the Tripla 

project located in Helsinki, Finland, which includes a 

shopping centre, hotel, housing and offices. The total 

area of the site is 183,000 floor square meters. Our 

focus in this work is on three buildings of the site, 

whose as-designed model along with the building labels 

is shown in Figure 1(a). Two independent cameras were 

mounted on the jib of a tower crane. Images were taken 

automatically when the crane would begin operation 

and then transferred to the Pix4D Cloud, where they 

were converted to 2D maps and 3D models.   

The dataset consists of 40 as-built point clouds 

corresponding to weekdays spanning August 17th, 2018 

to November 23rd, 2018. The as-built point cloud for 

day 40 is shown in Figure 1(b). Twenty point clouds 

contain building A only (due to B and C not being 

captured by the crane cameras), while twenty others 

contain multiple buildings as described in Table 1. 

Table 1. Description of point cloud data  

Available data No. of point clouds 

Single-building 

data (A only)                  

20  

Multi-building data 

A,B only 1 

A,C only                                 10 

A, B and C 9 

 

 By default, the point clouds are georeferenced, with 

an average point density of the order of 1000 points/m3, 

except for point cloud 40, which has an average point 
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density of 37,233 points/m3. However, for 13 point 

clouds between August 29th, 2018 and September 17th, 

2018, the image geotags were not detected and thus the 

output coordinate system was arbitrarily set. Therefore, 

the point cloud could not be scaled and the resulting 

point density is of the order of 3 points/m3. We 

subsequently refer to these point clouds as 'non-

georeferenced'.  

Figure 2(a) shows the front-view of Building A. The 

holes in the data are due to the portion of the building 

being out of the field-of-view of the camera. Figure 2(b) 

shows the top view of the building, which shows the 

formwork being laid. This is the clearest data of the 

building available.    

4 Building extraction using VBUILT 

In this section, we explain the VBUILT algorithm. 

Our objective is to extract the 3D point cloud of a 

specific building on the site to be used for further 

analysis, such as construction progress tracking.  

Our solution is to extract the ground plane using 

MSAC, then cluster the non-ground point cloud based 

on Euclidean distance, followed by an analysis of the 

3D convex hull volumes of each cluster. 

 

 

(a) 

 

 
 

(b) 

Figure 1. (a) As-designed model of the Tripla 

site with building labels A, B and C; (b) As-built 

point cloud of the Tripla site for day 40  

(November 23rd, 2018)  

 

(a) 

 

(b) 

Figure 2. Manually extracted point cloud of 

building A: (a) front-view and (b) top-view  

4.1 MSAC-based ground extraction  

Let the set of construction site point clouds be S={S1, 

S2 , …SD}, where D=40 and each point cloud Si={s1, 

s2 , …sN}, Si ∈ R3. First, we downsample the point 

cloud for faster processing using grid average 

downsampling, which merges points within a 3D grid 

by averaging their locations and colours.  

Next, we need to separate the ground and non-

ground points. For this, we implement the MSAC 

algorithm using the in-built MATLAB function 

pcfitplane, which we explain subsequently. We specify 

three parameters for the MSAC algorithm:  

 the reference vector (nr) (the orientation 

constraint). 

 the maximum absolute angular distance 

(denoted as θmax) between the normal 

vector of the plane hypothesis (nh) and the 

reference vector.  

 the threshold dmax, which is the maximum 

distance between an inlier point and the 

fitted plane. 

For ground plane extraction, nr should be set normal 

to the xy plane. Then, the algorithm checks if the 

angular distance between nr and nh (denoted as θ ) is 

less than θmax. If not, the plane hypothesis is discarded 

and a new one is considered. Otherwise, the MSAC 

algorithm proceeds to calculate the following cost 

function: 
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𝐶𝑗 = ∑ 𝜌𝑖

𝑁

𝑖=1

 

(1) 

 

where j is the iteration number and the robust error 

term ρ is defined as follows:  

𝜌 = {
|𝑑| 𝑖𝑓 |𝑑| < 𝑑𝑚𝑎𝑥  

𝑑𝑚𝑎𝑥 𝑖𝑓 |𝑑| ≥ 𝑑𝑚𝑎𝑥
 

 (2) 

If Cj+1 is less than Cj, the (j+1)th model is taken as 

the best model found so far. Every time the best model 

is updated, the maximum number of iterations is set to k, 

which is defined as follows: 

𝑘 =
𝑙𝑜𝑔(1 − 𝑝)

𝑙𝑜𝑔(1 − 𝑤𝑛)
 

(3) 

where p is the desired confidence level (set to 0.99 

as per standard practice) that at least one point in the 

plane hypothesis is an inlier, w is the probability that a 

single point is an inlier and n is the number of points 

needed to define the model (which for a plane, as in our 

case, is 3).  

For the georeferenced point clouds, θmax and dmax 

were selected as 5° and 5 m, respectively, based on the 

intuition that the ground plane is only slightly inclined 

with respect to the xy plane. For the non-georeferenced 

point clouds, due to the smaller point cloud density, dmax 

was set to a higher value (40).  

 

 

 
(a) 

 

 
(b) 

 

Figure 3. (a) Ground removed using MSAC; (b) 

Euclidean-distance based clusters 

 

 

Note that the ground in the as-built point cloud 

contains many more points than the top floors of the 

buildings, thus yielding more inliers and a smaller cost 

(see Equation (1)). This is why the top floors are not 

mistaken for the ground by the algorithm.  

Once the ground plane is identified, we remove the 

portion of the point cloud below it by checking the dot 

product of each point with the plane. If the dot product 

is negative, the point is below the plane. In other words, 

for a point si=(xi, yi, zi) and the ground plane parameters 

ag, bg, cg and dg, if  agxi + bgyi + cgzi + dg < 0 , then si is 

a below-ground point and is removed. Finally, the 

ground plane is removed from the point cloud. Figure 

3(a) illustrates the ground-removal for Day 40. 

4.2 Euclidean distance-based clustering 

With the ground and below-ground points removed, 

the task now is to cluster the point cloud. We do this 

using a Euclidean distance criterion. For every point 

si=(xi, yi, zi) and sj=(xj, yj, zj), the Euclidean distance 

between the points is as follows: 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ (𝑧𝑖 − 𝑧𝑗)
2
 

  

(4) 

 

If dij is less than a distance threshold δ, then si and sj 

are in the same cluster. We set δ =1 (and δ =5 for the 

non-georeferenced point clouds) as a reasonable 

estimate of the separation between intracluster and 

extracluster points. We refer to the clusters as the set Cd. 

The results of the clustering are shown in Figure 3(b). 

4.3 Building identification using convex hull 

volumes 

A convex hull of a set of points is the smallest 

convex set that contains all the points. In this paper, we 

describe the creation of a 3D convex hull based on the 

Quickhull algorithm, upon which the MATLAB 

function convhull is based. Note that convhull uses a 

more robust (albeit proprietary) strategy for coping with 

imprecision than the approach outlined in Section 4 of 

the original Quickhull paper [22], but otherwise the 

implementation is standard. 

Starting with a 3D set of points, Quickhull first 

builds an initial hull from four points. Ideally, this 

tetrahedron should be maximal, which can be 

accomplished by first finding the maximum and 

minimum points along the X, Y and Z axes, then finding 

the furthest point from the line segment made by the 

first two points, then finding the furthest point from the 

plane made by the first three points. Once the initial hull 

is created, the point from the remaining set (not used in 

the initial hull) which is farthest from the hull is set as 

the eye point. Those faces of the hull that lie above the 
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eye point (as determined by a simple plane test) are 

called visible faces, while those that lie below it are 

non-visible faces. The edges that connect visible with 

non-visible faces together constitute the horizon. To 

determine the horizon, a flood-fill approach is used. The 

algorithm starts from a visible face, and then travels 

across an edge to a neighbouring face. If the 

neighbouring face is also visible, the algorithm travels 

further across an edge until a non-visible face is 

encountered, at which point the offending edge is 

marked as being part of the horizon. Then, the algorithm 

returns to the last visible face and continues traveling 

across another edge. This process continues until the 

algorithm returns to the original visible face. Once all 

the horizon edges are found, the eye point is connected 

to it and thus the hull is extended. This process 

continues till no face remains with a point outside it.  

Our use of convex hull volumes is based on the 

intuition that buildings are typically more voluminous 

than non-buildings on a construction site, especially a 

large site such as the one we are considering. As we 

shall demonstrate, this intuition is supported by our 

dataset. For example, Table 2 shows the convex hull 

volumes for C40.  

 

Table 2. Convex hull volumes of clusters  

Cluster # Convex hull 

Volume 

Cluster-type 

(Manually 

labeled) 

1  749.2316 Building 

2   318.9671 Building 

3   169.1460 Building 

4    10.4517 Non-building 

5     7.2664 Non-building 

6     3.9378 Non-building 

7     3.7009 Non-building 

8     0.1131 Non-building 

9     0.1000 Non-building 

10     0.1000 Non-building 

 

 

Note that the building clusters are much larger than 

the non-building clusters. This motivates us to define a 

quantity called the relative volume (vR) as follows: 

(𝑣𝑅
𝑖)𝑑 =

(𝑣𝑎𝑏𝑠
𝑖)𝑑

(𝑣𝑚𝑎𝑥)𝑑

∗ 100 
  

(5) 

 

where vabs
i is the convex hull volume for cluster i and 

vmax is the largest convex hull volume for the set of 

clusters under consideration (i.e. for day d). Figure 4 

shows the smallest building cluster and the largest non-

building cluster for each day based on the vR values of 

the clusters. The figure shows a considerable separation 

between building and non-building clusters. As Figure 

4(a) shows, for the single-building data, the building 

cluster is always the largest and maintains a 

significantly higher vR value than the largest non-

building cluster for each day. In fact, the mean of the 

relative volumes of the largest non-building clusters is 

9.68%. For the case of multi-building point clouds 

(Figure 4(b)), the mean of the relative volumes of the 

largest non-building clusters is 4.72%, while that of the 

smallest building cluster is 37.35%.  

 

 

 
(a) 

 
(b) 

 

Figure 4. Comparison of smallest building 

cluster and largest non-building cluster for (a) 

single-building point clouds and (b) multi-

building point clouds  

 

Based on these insights, we outline the following 

strategy for extracting the building clusters: 

 For the single-building data, the cluster 

with the largest vR  value is the building. 

 For the multi-building data, a cluster with 

vR less than 15% is a non-building cluster. 

Additionally, we impose the maximum 

possible buildings on the site (3 in our case) 

as a constraint. 

The algorithm finally divides the point cloud into 
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two sets, BuildingClusters and NonBuildingClusters.  

The results are presented in the next section. 

In order to label the extracted buildings, we consider 

the relative vR values of the three buildings, but this 

approach is not fully demonstrable due to some 

limitations in our dataset, as is discussed in the next 

section. 

5 Results and discussion 

5.1 Classification: building vs non-building 

clusters 

We define the classification accuracy as being 100% 

for a particular day if the set BuildingClusters contains 

the actual buildings available on the original 

construction site point cloud. The achieved accuracy is 

100% for all 40 point clouds, i.e. building and non-

building clusters are successfully separated for the 

entire dataset. Figure 5 shows the building-only point 

cloud obtained for day 40. 

 

 
 

Figure 5. Building-only point cloud for day 40  

 

5.2 Building labeling 

In our dataset, building A always has the largest vR 

value and it can therefore be labeled with 100% 

accuracy for the entire dataset. However, only a small 

segment of buildings B and C is captured by the crane 

cameras. The size of these segments varies 

inconsistently due to the varying positions of the crane 

cameras. Thus, a volume comparison cannot be 

consistently applied to these buildings until they are 

captured more completely. In other words, more 

complete data is required to label these buildings 

according to their relative vR values.                           
 

5.3 Departure from convexity: effect of the α-

radius 

A convex hull is a specific case of an alpha shape, 

which is a polytope with a parameter called the α-radius 

that defines how tightly the boundary fits around the 

shape [23]. A convex hull results when the α-radius is 

infinity. In our specific case, using the convex hulls was 

more suitable due to the nature of a convex hull to 

“wrap around” the object, thus ignoring false cavities in 

the point cloud clusters resulting from the crane camera 

not capturing a portion of the site. An alpha shape, on 

the other hand, tends to “wrap into” the cavities of the 

point cloud clusters, resulting in a smaller boundary 

volume that does not approximate the actual volume of 

the building well. This is illustrated in Figure 6. We 

suggest this phenomenon might generalize to any point 

cloud with missing regions being subjected to boundary 

volume analysis. Additionally, using convex hull 

volumes obviates the need to find a suitable alpha radius, 

as was done in [24] for example. 

 

 

 
(a) 

 

 

 
(b) 

Figure 6. Illustration of (a) convex hull (α-

radius=∞) and (b) alpha shape with lower radius 

 

5.4 Crane cluster outlier 

Figure 4(b) shows that for multi-building point cloud 
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11, the largest non-building cluster has a vR value of 

22%, which is a clear outlier. Visualizing this cluster 

shows that the large volume comes from the presence of 

a crane in the cluster, as is shown in Figure 7. When we 

manually remove this crane from the cluster, the vR 

value of the cluster reduces to 4.44%. Note that the 

maximum building number constraint we imposed deals 

with this outlier effectively, which is why this cluster is 

correctly classified as a non-building cluster despite 

being above the 15% vR  threshold.  

 

 

Figure 7. Outlier cluster for multi-building point 

cloud 11 (day 29/40) with vR=22%    

6 Conclusions and future work 

Crane cameras are a convenient and cost-effective 

alternative to laser scanners and UAVs for visually 

capturing an entire construction site. In this work, we 

did a preliminary study on the potential of crane camera 

point clouds for automatic progress monitoring. We 

addressed the problem of automatically extracting 

buildings from the crane camera point clouds. We 

presented an algorithm called VBUILT which is based 

on the intuition that building clusters have larger 3D 

convex hull volumes than non-building clusters. We 

found that our dataset supports this intuition, showing a 

large separation between the relative volumes of 

building and non-building clusters. By utilizing this 

separation, VBUILT was able to correctly identify the 

building clusters for all 40 point clouds in the dataset. 

We also successfully labeled one building which is 

captured relatively well by the crane cameras, but would 

require better data of the other buildings to demonstrate 

the effectiveness of the relative volume strategy for 

multi-building labeling. 

An important insight from our work was that convex 

hull volumes capture the volumes of building clusters 

with missing regions more effectively than alpha shapes 

with lower radii due to the tendency of the latter to wrap 

into the empty regions of the cloud. We thus 

recommend the consideration of the convex hull over 

alpha shapes for such volume-based analyses of 

incomplete point clouds. 

The algorithm successfully dealt with an outlier non-

building cluster by imposing a maximum building 

number constraint. However, in order to prevent such 

outliers altogether, an automatic crane removal 

algorithm can be developed in future work, possibly by 

leveraging on the high slenderness ratio and the uniform 

colour of the cranes.  

The proposed algorithm worked successfully with 

both georeferenced and non-georeferenced point clouds, 

the latter constituting about 32% of our dataset. In 

future work, we will study why georeferencing fails for 

some point clouds and how we can address the problem. 

The point clouds generated from crane cameras give 

a good overview of the site and high quality views of 

the top portions of the buildings where the laying of 

formwork and rebar can be observed. Thus, in future 

work, we intend to use the building point clouds 

obtained through VBUILT to infer the progress of 

formwork and rebar. Also, the crane camera point 

clouds contain holes in the building façade regions. 

More studies are needed to truly gauge the effectiveness 

of this portion of the point clouds for progress 

monitoring.  Therefore, in the future, we intend to match 

the building-only point cloud with the as-designed 

Building Information Model (BIM) of the site to study 

the extent to which progress and deviations can be 

measured. 
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