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Abstract – 

Robots are expected to be widely used on future 

construction sites to assist human workers in the 

performance of repetitive physically-demanding 

tasks. Unlike typical manufacturing assembly lines, 

where parts are delivered to robots and workers in 

stationary workstations, construction robots and 

human workers must accumulate all necessary 

resources and repeatedly navigate to desired 

assembly locations on-site to perform useful work. 

The condition of such resources and the geometry of 

the environment are constantly changing and 

generally unstructured. As a result, the motion 

trajectories of any robot arms cannot be programmed 

beforehand. The robots must define the trajectory 

based on the encountered workspace geometry. 

Learning from Demonstration (LfD) methods have 

the potential to be used in teaching robots specific 

skills through human demonstration such that the 

robots can repeat the same process in different 

conditions. In this research, we explore the LfD 

method to teach robots to perform repetitive but 

geometrically adaptive construction tasks of installing 

suspended ceiling tiles within pre-assembled ceiling 

grids. The developed method translates the work 

context from the set of training videos demonstrated 

by humans to the target scene, then applies the 

reinforcement learning method to generate the policy 

for the robot to perform the subsequent ceiling tile 

installation. The first phase of the proposed method, 

i.e., the context translation model, is implemented and 

evaluated by characterizing whether robot-installed 

ceiling tiles are successfully moved to the grid area. 

The experiments demonstrate promising results that 

show the applicability of the LfD method in teaching 

robots to perform geometrically-adaptive 

construction tasks. 
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1 Introduction 

Human-robot and co-robot collaborative teams are 

broadly envisioned to be deployed on future construction 

sites [1]. The construction industry accounts for 4.3% of 

GDP in the U.S. [2] and is predicted to reach over 1.4 

trillion U.S. dollars in volume by 2021, and $15.5 trillion 

worldwide by 2030 [3]. Construction is the economic 

locomotive of the society, whose competitiveness is 

affected by speed and quality of the construction process. 

However, the construction industry is confronting major 

issues of the aging workforce and the lack of skilled labor 

[44]. The U.S. labor force growth is forecasted to be 

lower than 0.5% by 2030 due to demographic transition 

[4]. The average age of the construction worker in the 

U.S. is 43 years old, and the younger generation is 

reluctant to enter the construction industry [5] due to its 

dangerous and demanding working environment, which 

causes a significant decrease in the employment-

population. As a result, applying co-robots to assist or 

relieve human workers from hazardous, dangerous, and 

repetitive construction tasks has emerged as a key 

prospect to help mitigate issues faced by the construction 

industry [6–9]. 

According to Manzo et al. [10], approximately 50% 

of the construction tasks can be automated and may 

potentially replace nearly 2.7 million construction 

workers with robots by 2057. The human workers will 

work alongside robots or supervise them on the future 

construction site. By applying robots on construction 

sites, the human workers will switch their duty to perform 

the planning and cognitive tasks as supervisors, and train 

the robots to perform the repetitive physical work. 

Similar to the manufacturing assembly line setting, 

the construction process is performed by several 

repetitive basic tasks [11,12], as shown in Figure 1. Take 

suspended ceiling tile installation process as an example: 

workers have to measure the ceiling tile layout, maneuver 

and position the tile, place the tile, and inspect the 

alignment. However, unlike the manufacturing 

environment, the construction site is an unstructured and 
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dynamic environment [45]. The robots have to 

understand the environment, and then plan and execute 

the task accordingly. They need to navigate to the next 

assembling location as well, which makes it impossible 

for robots to perform the exact same task repeatedly [13]. 

 

Figure 1. The construction process involves 

repetitive tasks with different objects, such as 

ceiling tile installation, the tiles are maneuvered 

and placed repetitively at different locations. 

On the other hand, construction projects are unique 

and unidentical. The loose tolerances and the relatively 

low quality control of the construction project causes 

each workpiece to be not strictly identical with each other 

and requires additional adjustments or improvisation on-

site. Even though the workpieces such as tiles are 

designed to be the same size, the actual pieces may not 

be the same. Therefore, construction robots must learn 

how to plan and execute the construction process while 

overcoming the general uncertainty of the environment 

and the workpieces they handle. 

2 Robot Learning from Demonstration 

When training the human worker to perform a task, 

the human will learn the task by observing the 

demonstration from experts and practicing the action. 

The practical knowledge will be absorbed during the 

practice. Thus, similar to the human learning procedure, 

the Learning from Demonstration method (LfD) [14,15] 

can be utilized for co-robots to learn the collaborative 

task. One approach is imitation learning, where the agent 

attempts to clone the behavior of the expert [16]. Inverse 

reinforcement learning (IRL), on the other hand, 

estimates a reward function based on the expert’s 

demonstration [17,18], then utilizes the learned reward 

function to obtain the policy. Existing demonstration 

methods include visual demonstration [19–23], force 

demonstration [24–26], visual and force demonstration 

[27,28], and trajectory demonstration [29–35]. 

First, the visual demonstration methods utilize 

several or limited video clips of expert’s demonstration 

[36–38]. These methods usually apply to move, push or 

place simple and light objects, which is not suitable for 

the construction process, that require handling complex 

and heavy objects of various geometries. Second, the 

force demonstration methods are done by force sensors 

attached to robots and human experts. The robot will 

learn the contact force on the object and try to replicate 

the same action. These methods have only been 

demonstrated on simple tasks such as bolting or 

unscrewing bottle caps. They do not consider the 

environment and only try to repeat the action.  

Third, the trajectory demonstration methods utilize 

demonstrating trajectory from expert to train the robot, 

such as driving simulation or path planning. One of the 

examples is the kinesthetic demonstration [25], where the 

robot is dragged by the human to finish the task while 

memorizing the trajectory. However, these methods 

require sufficient trajectory data from experts, which is 

difficult to obtain on construction sites. Finally, the visual 

and force demonstration methods combine the advantage 

of both methods to teach the robot to manipulate or grasp 

objects [28]. For construction tasks, in addition to visual 

observation, the workers have to feel the haptic or force 

feedback from the object and react accordingly, yet the 

existing visual and force demonstration methods only 

consider the pose of the human instead of the objects. 

The objective of this research is to investigate the 

robot Learning from Demonstration method (LfD) [36] 

and evaluate the feasibility of applying LfD for teaching 

construction tasks to co-robots. The trained robots can 

collaborate with human workers while the human 

workers focus on the planning and cognitive tasks on the 

future construction site. The suspended ceiling tiles 

installation is used as the target construction process to 

describe the developed methods. The video of the human 

worker performing the tile installation is recorded in the 

laboratory and utilized to train the robot. The pose of the 

object, i.e., ceiling tile, and the target location, i.e., 

suspended grid, are extracted and tracked in the training 

video, then encoded as knowledge for the robot to learn.  

The success rate of the robot performance evaluates the 

learned skill of the robot. 

3 Construction Task Learning 

The method for learning the construction task is 

adapted from a context translation and imitation method 

by Liu et al. [36]. The practical knowledge of the skill is 

extracted from the training video as context and 

translated to the target scene. The robot can further learn 

the results of the translation through reinforcement 

learning method [39]. The detailed problem definition of 

the construction task and the context translation method 

are discussed in the following sections. 
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3.1 Problem Definition and Assumption 

When teaching a robot to perform a specific task, the 

knowledge, or context, from the expert’s demonstration 

must be defined in order to let the robot know what 

information needs to be tracked and absorbed, as well as 

how to determine the action to take for achieving the task. 

The context 𝜔 can be defined as the pose of the object 

and expert, the viewpoint of the camera, the condition of 

the environment, or the target location. In this research, 

we assume the camera is fixed in two different 

viewpoints, and the task is to perform in the same 

environment in order to reduce the complexity. 

The demonstration of the task is defined as [36] (1): 

where 𝑂𝑡 is the observation at time 𝑡, which is generated 

from the Partially Observable Markov Decision Process 

(POMDP) [40]. The probability observation distribution  

𝑝(𝑂𝑡|𝑠𝑡 , 𝜔𝑖), dynamics 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 , 𝜔𝑖), and the policy 

of the expert 𝑝(𝑎𝑡|𝑠𝑡 , 𝜔𝑖)  are utilized to define the 

POMDP, where 𝑠𝑡 and 𝑠𝑡+1 are the current and next state 

(e.g., unknown Markovian state), 𝑎𝑡 is the action of the 

agent (e.g., maneuvering direction), and 𝜔𝑖  is the i-th 

context (e.g., pose of the ceiling tile, viewpoint). The 

context is unknown to the robot learner. Since the robot 

learner might try to track the mismatch context from the 

demonstration (e.g., follow the pose of the ceiling tile but 

consider as the pose of the expert), the context 𝜔𝑖  is 

assumed to be sampled independently and the robot 

learner has fixed context 𝜔𝑙  sampled from the same 

distribution [36]. 

Due to the undetermined feature of the context 

variables, the robot learner cannot know whether the 

context from the demonstration is the same as the context 

in their learning domain. This can be overcome by 

applying the context translation model [36] to translate 

the context from the source to the target, then defining 

the reward function based on the tracked context feature 

for reinforcement learning method, such as Trust Region 

Policy Optimization (TRPO) [41] or Deep Deterministic 

Policy Gradient (DDPG) [42], to learn the policy. The 

source and the target demonstrations are defined as 

follows (2)(3): 

where 𝐷𝑠  is the demonstrations from the unknown 

context of source video, and 𝐷𝑡  is from the unknown 

context of target video. After training with sufficient 

examples, the context translation model is capable of 

translating the new demonstration 𝐷𝑛  into the robot 

learner’s context 𝜔𝑙 so that the robot can track and learn 

the feature. 

3.2 Context Translation Model 

The objective of the context translation model is to 

learn the translation function that can translate the source 

demonstration 𝐷𝑠 = [𝑂𝑡
𝑠], 𝑡 = 0,1, …𝑇  to the target 

context 𝜔𝑡  with the first observation 𝑂0
𝑡  in the target 

demonstration 𝐷𝑡 , that is, the first frame of the target 

demonstration video. The full translation function is 

defined as (4): 

where (�̂�𝑡
𝑡)

𝑡𝑟𝑎𝑛𝑠
 represents the translated observations in 

the robot learner’s context. 

The context translation model is constructed by 

several encoders, decoders, and autoencoders [43], which 

includes a source encoder 𝐸𝑛𝑠(𝑂𝑡
𝑠) , a target first 

observation encoder 𝐸𝑛𝑡(𝑂0
𝑡) , and a target context 

decoder 𝐷𝑒𝑡(𝑧𝑡𝑟𝑎𝑛𝑠), as shown in Figure 2. On the left 

side is the framework of translating the source 

observations to the target observation through the 

translation function 𝑇(𝑧𝑠, 𝑧𝑡) = 𝑧𝑡𝑟𝑎𝑛𝑠, where 𝑧𝑠, 𝑧𝑡  and 

𝑧𝑡𝑟𝑎𝑛𝑠 represent the features of the encoded source, target, 

and translation. The loss function for training the 

translation is defined as 𝐿2-norm (5): 

Since the unknown context is translated from source 

to target, the features need to train on the target video in 

order to ensure the consistency of the feature 

representation between the encoder 𝐸𝑛𝑠 and decoder 𝐷𝑒𝑡. 

The right side of Figure 2 is the framework of the 

autoencoder for training the 𝐸𝑛𝑠  and 𝐷𝑒𝑡  with a 

reconstruction loss, which is defined as (6): 

The next step is to align the feature representation of 

the autoencoder with features 𝑧𝑡𝑟𝑎𝑛𝑠. The loss function 

for the alignment is defined as (7): 

3.3 Network Architecture 

The network of the encoder and decoder is illustrated 

in Table 1. In the encoder network, four convolutional 

layers with different filter size and stride followed by two 

linear layers with the size of 100 and 0.5 dropout are 

applied to the training video frame. In the decoder 
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network, one linear layer with 0.5 dropout followed by 

four deconvolutional layers with different filter size and 

stride are applied to the translated feature. All the 

convolutional and deconvolutional layers are followed by 

LeakyReLu activation function with 0.2 leak except the 

last deconvolutional layer in the decoder. The filter size 

of the linear layer in the decoder is dependent on the size 

of the input image. Batch normalization is applied to the 

network. The input image is cropped to size of 48 by 48 

pixels for training and testing. 

 

Figure 2. Architecture of the context translation 

model. 

Table 1. Network architecture of the encoder and 

decoder. 

Type Layer 
Filter 

size 
Stride Other 

Encoder 

Conv 32 1 

LeakyReLu 

leak = 0.2 

Conv 16 2 

Conv 16 1 

Conv 8 2 

Linear 100 n/a 
Dropout = 0.5 

Linear 100 n/a 

Translation 

function 
Linear 100 n/a Dropout = 0.5 

Decoder 

Linear * n/a Dropout = 0.5 

Deconv 16 ½ 
LeakyReLu 

leak = 0.2 
Deconv 16 1 

Deconv 32 ½ 

Deconv 3 1 n/a 

*Depends on the size of the input image 

3.4 Reward Function for Robot Learning 

After the source context is translated to the target 

observation, a reward function must be defined for the 

robot to learn the policy through reinforcement learning 

method. The reward function contains a feature tracking 

reward function (8): 

 

and an image tracking reward function [36] (9): 

where 𝐸𝑛𝑠(𝑂𝑡
𝑙) encodes the learner’s observation 𝑂𝑡

𝑙  to 

𝑧𝑙. Finally, the total reward function is defined as (10): 

where 𝜔 represents the weight. 

4 Experiments 

In order to evaluate the feasibility of applying the 

robot LfD method for construction tasks, the ceiling tile 

installation demonstration video was collected in the 

laboratory and utilized to train the context translation 

model. The performance of the model was evaluated by 

the success rate of the installation task. 

4.1 Implementation and Training Details 

The context translation model was implemented by 

modifying the original network using TensorFlow. A 

total of 55 videos were utilized to train the network, and 

20 initial observations were used as the testing data, i.e., 

first frame of the video as the starting point for testing. In 

the demonstration video, the camera was set up at two 

fixed viewpoints for reducing the complexity, as shown 

in Figure 3. The network was trained by ADAM 

optimizer with learning rate 10−4 and the loss function 

described above. 

  

Figure 3. Example of the ceiling tile installation 

demonstration video with two different camera 

viewpoints. 

 

�̂�𝑓(𝑂𝑡
𝑙) = −‖𝐸𝑛𝑠(𝑂𝑡
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1

𝑛
∑𝑇(𝑧𝑠, 𝑧𝑡)

𝑛

𝑖

‖

2

2

 (8) 

�̂�𝑖(𝑂𝑡
𝑙) = −‖𝑂𝑡

𝑙 −
1

𝑛
∑ 𝑀(𝑂𝑡

𝑠, 𝑂0
𝑡)

𝑛

𝑖

‖

2

2

 (9) 

�̂�(𝑂𝑡
𝑙) = �̂�𝑓(𝑂𝑡

𝑙) + 𝜔�̂�𝑖(𝑂𝑡
𝑙) (10) 

1308



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

4.2 Results 

We use the success rate to evaluate the performance 

of the context translation model on the ceiling tile 

installation. The success metric is defined as whether the 

final distance between the ceiling tile and the target grids 

is within a predefined threshold. After the source context 

is translated to the target scene, we identified the final 

location of the ceiling tile and the grid, then determined 

whether they were within the predefined threshold in 

order to calculate the success rate. Figure 4 is an example 

of the demonstration source video of ceiling tile 

installation. The human worker demonstrates how to 

install the ceiling tile. 

Figure 5 shows examples of the target observations 

with two different viewpoints (iso view and bottom view). 

The target observation is the first frame of the 

demonstration video, which is utilized for translating the 

context from the source video. Figure 6 shows the results 

of the translated scene. The top row is the successful 

result, and the bottom row is the unsuccessful result. The 

red rectangle represents the ceiling tile, and the green 

rectangle represents the target grid. The distance between 

the ceiling tile and the grid is over the predefined 

threshold; thus it is determined as unsuccessful result. 

We compare the success rate of the translation with the 

different type of viewpoint, as shown in Table 2. The 

success rate of the bottom view is 25%, and the iso view 

is 43%. The overall success rate is 35%. 

 

Figure 4. Example of a source video of ceiling tile 

installation. 

  

Figure 5. Example of target observations, which 

is the first frame of the video. 

Translated 

Success 

 

Translated 

Failure 

 

Figure 6. Results of the translated scene. Top - 

successful result; Bottom - unsuccessful result. 

Red rectangle represents the ceiling tile, and the 

green rectangle represents the target grid. 

Table 2. Success rate of the translated result. 

Viewpoint Success Failure Success rate 

Bottom view 2 6 25% 

Iso view 5 7 42% 

Overall 7 13 35% 

In comparison with the Liu et al. [36], where they 

used the context translation model to teach the robot to 

ladle almonds into a frying pan and sweep the almonds 

into a dustpan, the success rate is 66% with 60 training 

videos of the almonds pouring and 75% with 100 training 

videos of the almonds sweeping. Thus, the performance 

can be improved by providing more demonstration 

videos. In addition, the bottom view has a lower success 

rate since most of the trajectories of ceiling tile 

installation are vertical types and the bottom view cannot 

provide sufficient information. This can be addressed by 

avoiding the vertical type viewpoint. 

5 Conclusion and Future Work 

In this research, we proposed and evaluated a 

Learning from Demonstration (LfD) method to train the 

construction robot to perform repetitive construction 

tasks, in which we utilized the ceiling tile installation as 

the target task. We adopted a visual LfD method, i.e., the 

context translation model, for our application. The 

context translation model only uses the visual 

demonstration as input to train the robot. The model is 

trained on a set of ceiling tile installation demonstration 

videos. The results showed that the model could translate 

the work context from the source video to the target 

observation with acceptable success rate when using the 

iso camera view, which can further apply the 

reinforcement learning method for robots to determine 

the control policy. In ongoing work, we are collecting 

more demonstration videos from new viewpoints. We are 

also implementing the reinforcement learning method for 

robots to learn and perform the policy. 
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