
36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

Towards Rule-Based Model Checking of Building

Information Models

C. Sydora
a
 and E. Stroulia

a

a
Department of Computing Science, University of Alberta, Canada

E-mail: csydora@ualberta.ca, stroulia@ualberta.ca

Abstract –

Designing a building, so that it adheres to all the

relevant applicable constraints imposed by

construction codes to cultural preferences to the

owners’ styles and aesthetics, can be a daunting task,

requiring many laborious hours of review and

modification. Given the increasing adoption of

Building Information Modeling (BIM) in the design

process, automated model checking is a pragmatic

approach to expeditiously identifying errors that

may otherwise cause issues later in the building

phase. A variety of methods have been proposed, but

they are opaque regarding the rules they consider,

and they do not allow users to edit these rules. In this

paper, we describe a simple, yet extendible, language

for specifying building rules and a method for

evaluating these rules in the context of a BIM

instance, in order to assess the compliance of the

building with these rules.

Keywords –

Building Information Modeling (BIM); Design

Constraints; Rule Checking

1 Introduction

Building Information Modeling (BIM) has become a

key part of the design and management process for

Architecture, Engineering, and Construction (AEC). It

supports the 3D visualization and design of buildings,

while also making explicit the non-geometric properties

of, and relationships between, objects. While this is

extremely useful and valuable information for the

domain experts, it can be an overwhelming amount of

data for bigger buildings with complex models. Each

additional object in the model implies multiple new

relationships between this new object and existing

objects, which increase exponentially as the final model

takes form. The process of designing buildings can be a

complex and error-prone task, given the attention that

needs to be paid to each design consideration. Mistakes

can be made if a designer is not aware of the

ramifications of their design choices and, unless

identified early, they can lead to inefficiencies and

potentially excessive additional costs in the future [1].

Checking a BIM model against a set of design rules

has been a major topic in BIM research for over a

decade, and yet no broadly available solutions exist to

support rules from a variety of sources, such as

governing agencies, handbooks, and builders. While

some model-checking software systems exist, they

either require that their users possess a strong software-

programming knowledge to configure them with rules

of interest, or they are black boxes, not configurable at

all. Since it is unlikely that all stakeholders will ever be

able to agree on a single immutable set of rules,

applicable to all buildings, these products are

fundamentally limiting the wider adoption of automated

model-checking of buildings. Other attempts at

automated model checking have taken the Natural

Language Processing (NLP) approach, aiming at

automatically transforming rules from human-readable

specifications into programmatic executable code.

While these methods have many benefits in terms of

ease of use, there is usually far too much leniency in the

written language, which makes it impossible to process

automatically and accurately; as a result, these methods

are fundamentally limited in their capacity to capture

the requirements around compliance checking.

Our methodology is grounded in the intuition that

there can be no effective “one-size-fits-all” approach to

the problem [2]. In fact, we suggest that model checking

be organized around different levels, appropriate for the

level of programming expertise of the stakeholder

checking the model. Moreover, all levels of experience

should be able to work on a single open platform and

use the Application Programmable Interface (API) that

they feel most comfortable with. This is because there is

a trade-off between the complexity of the rules, the

expressiveness of the language used to specify them,

and the ease of use. While some rules may require

intricate functions that can be difficult to formulate, a

substantial portion of rules can be described using

simple logic and standard geometric relations.

In this paper, we describe a simple, easy to use,

logic-based language for describing rules. Our language

1327

mailto:csydora@ualberta.ca
mailto:stroulia@ualberta.ca

36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

is expressive enough to cover a wide array of rules, and

we argue that, in principle, it can be extended to

broaden its coverage.

The rest of this paper is organized as follows. We

first outline some of the previous approaches in the

related work in Section 2. Our methodology is described

in Section 3. Section 4 contains discussion points on our

methodological assumptions and how the language and

rules fit in the larger picture. Concluding remarks are in

Section 5.

2 Related Work

Solibri. When researching compliance-checking tools,

Solibri Model Checker (SMC) [3] is frequently as one

of the few tools specifically built for the purpose of

checking BIM models. SMC takes as input a building

model in form of the BIM industry standard of Industry

Foundation Classes (IFC) [4]. While the available

rulesets, initially from the Norwegian Statsbygg

handbook [5], can be modified by the end user (by

combining rule sets and deleting rules), there is limited

support for editing rules in the form of changing the

parameters (but not the form) of the provided rules.

Additionally, there are a few rule templates that can be

manipulated, however, full customization of rules can

only be done through the SMC API, which is not open.

There are a number of research papers that report

how different checks might be implemented using the

available rule templates [6], [7], and [8]; however, these

are black-box approaches and it is impossible to

comment on their accuracy, efficiency, generality and

expressiveness.

Country-Specific Implementations. Model-checking

tools have been implemented for the purpose of

evaluating requirements of governing bodies, with

differing levels of success. Singapore’s CORENET

ePlanCheck has been noted as the most successful

implementation, since, at one point, it was mandatory as

part of the government’s building requirement

legislation [9]. In Australia, DesignCheck [10] was built

on the Express Data Manager (EDM) Model Server but,

to the best of the authors’ knowledge, it has since lost

support. The General Services Administration (GSA) in

the United States mandates that their project models be

checked with rules implemented within SMC [9].

BIM API. While not specifically model-checking tools,

BIM editors, such as Autodesk Revit [11] and

Graphisoft ArchiCAD [12], provide APIs (the former

public while ArchiCAD’s requires permission) that

allow access to the model’s internal structure and object

database and therefore, can, in principle, be used for

model checking. This requires a high level of

programming knowledge even for the simplest checks.

To address this challenge, some tools have been

developed to perform the same functionality in a visual

environment. These include tools such as Autodesk

Dynamo [13], which works on the Revit platform, and

Rhino Grasshopper [14]. These two tools are both

graph-based visual editors that have some scripting

available - Dynamo’s scripting being in Python rather

than C# as the Revit API.

BIMServer [15], an opensource IFC model

repository platform, has a model-checking plugin,

however, it requires direct coding in JavaScript. The

scripts are then linked to the model for execution. This

also requires programmatic coding knowledge and a

strong understanding of the IFC vocabulary and syntax.

Semantic Web Ontologies. More recently, there has

been a conceptual shift in model-checking approaches,

given the emergence of semantic-web technologies.

Specifically, newer methods have worked with

extendable IFC based ontologies of the BIM model to

query for design flaws. While this technology can be

useful in extending the data schema, the query

languages require a steeper learning curve. The basics

of this approach are outlined in [16].

Natural Language Processing (NLP). As we

mentioned in the introduction, attempts have been made

to parse natural-language rules from design handbooks

and regulation texts. While such approaches could

potentially simplify the rule-creation process, many of

the natural-language rules lack the clarity and

unambiguity required to be directly parsed without any

human intervention or interpretation.

One of the more commonly cited approaches in this

vein is that of Hjelseth who used a four-sentence

component classification to parse natural language rules,

namely Requirement, Applicability, Selection,

Exception (RASE) [17] [18]. Another use of NLP has

been to identify information from rules that is missing

or may need to be added to models [19].

Rule-Checking Languages. The Building Environment

Rule and Analysis Language (BERA) [20] was

developed as a domain-specific programming language

for model checking. The concept is built on providing

model-checking capabilities without the need for precise

knowledge of general-purpose programming languages

[21]. However, the language derives heavily from Java

which may be difficult for non-programmers and it is

built on the Solibri IFC engine, and therefore is still

quite opaque.

Visual Programming Languages (VPL). Some

approaches have taken the Rule Languages one step

1328

36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

farther by adding a visual component to them, in the

same sense that Dynamo is a visual language for Revit’s

API. This is intended to allow for more complex rules to

be created without adding the need to code

programming. Check-mate [22] first introduced this as a

very simple puzzle-based interface that allowed

connecting pieces that together would form a structured

rule, however, the expressiveness of this language is

limited. The Visual Code Checking Language (VCCL)

took a node-based approach, calling it a “white-box”

approach with the available nodes to be extendable as

the project matures [23], although, to the best of our

knowledge, geometric properties and relations cannot be

expressed, unless precalculated as properties.

3 Methods

Our methodology for rule checking follows the four-

stage process outlined by [9]: (i) Rule interpretation, (ii)

Model preparation, (iii) Rule execution, and (iv)

Reporting. The following subsections outline our

approach to each stage.

3.1 Rule Interpretation

In our work, we have opted to work with a custom,

structured rule language approach. As many rules are

inherently logic-based and BIM can be viewed as a

database for building properties and relationships, our

language derives much of its structure from

mathematical logical reasoning and database languages,

such as Structured Query Language (SQL). As

Niemeijer et al. [22] suggested, it is easy to see the

similarity between a statement “For every x in Real

Numbers…” in mathematics with “For every Window…”

in building regulations. As BIM is a collection of 3D

objects, their properties and the relationships among

them, we define a model as a set of objects and a set of

relationships. Therefore, similar to SQL, our rule

language expresses queries on two sets or tables (the

FROM element) and determining the result (the

SELECT element) of a logical expression (the WHERE

element). The exact implementation does not use a

specific database query language; we simply use SQL to

illustrate our rule language. Figure 1 describes one

example of a how a rule can be interpreted from natural

language to our proposed rule language.

3.2 Model Preparation

Data in IFC is structured in a highly complex

manner as an objects’ mesh representation can take the

form of extruded solid, Boundary Representation

(BREP), or their combinations. This implies that, before

the rules can be evaluated, the BIM data must first be

transformed into structural objects that support efficient

geometric calculations. Similar to [24], our method

parses the model into an internal object structure that

includes a global triangulated mesh, a local triangulated

mesh, and a global bounding box that contains the

direction and dimensions of the object in 3D space; a

mesh being a series of vertices grouped into sets of three

forming triangular boundary faces. Every object with

type nested under IfcElement is extracted and placed in

the set of objects that can be checked.

Once all the IFC objects have been read, our method

constructs and adds to the model several different types

of Virtual Objects (VOs) which, we define as objects

that represent complex, multi-object relationships. By

this definition, some VO types are already included in

the IFC vocabulary, such as IfcSpace and IfcSite for

example, nested under IfcSpatialElement. We extend

this list of possible VOs to include IfcCorner, as shown

in Figure 1, which is the connection between IfcWall

objects. VOs have geometric bounds and therefore are

represented internally much like IfcElements. The major

difference between the two is that VOs are created

based on IfcElements and thus depend on them, whereas

IfcElements have no strict dependence relations.

Properties of objects and object relations are the

Figure 1. An example of a design rule in natural language converted to our rule language. Note that in

IFC, there is not type IfcDishwasher or IfcCorner and the Distance function is not explicitly defined as a

relation property. These three elements exemplify the three proposed extensions of our language namely

Virtual Objects (IfcCorner), implicit geometric object relations (Distance), and expansion of the BIM

object type hierarchy (IfcDishwasher).

1329

36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

underlying items being checked by the rules. However,

these must be implicitly calculated from the model’s

geometric data. The geometric properties of objects,

such as “Width” and “Height” for example, can be

calculated directly on the object’s mesh, while

geometric-relation properties, such as “Distance” and

“Overlap”, must be derived from calculations between

the two object meshes.

3.3 Rule Execution

All geometric properties and VOs are calculated on

a need-to-know basis, thereby intertwining it with the

model preparation. As an example, the distance between

two objects of a certain type is not calculated unless it is

necessary for a rule. Once calculated, it is cached, and

can be reused as necessary, until the complete set of

rules has been evaluated and the building model-

checking is complete.

An interesting challenge is how to archive the

computations performed, i.e., the VOs and the relations

among objects, in support of the complete model-

checking process. In principle, there are two choices: (a)

they may be saved with the building model itself, or (b)

they may be saved in a separate data structure but with

references to the building model.

Should the VOs and properties be saved to the

model, it would be necessary to develop a management

process to remove the results of individual rule

evaluations as the objects to which the rules apply are

modified. For instance, if the “Distance” relation

property was calculated but the dishwasher has been

moved in the new model version, then the original

“Distance” property should be removed and recalculated

if required.

If the building model editor is capable of flagging

the objects that have been modified since the last model

check, the model check could recalculate the VOs and

properties that depend on those modified objects. This

would theoretically expediate the subsequent model

checks.

The safer, more conservative, choice is to assume

the building model has not been checked previously and

that all VOs and properties must be newly calculated

and, if existing, then overwritten by the new values.

This is the current practice in our prototype, however,

we are currently investigating the most efficient way to

save and flag changes in our editor.

3.4 Reporting

Finally, all results need to be relayed back to the end

user or application. This is returned in the form of an

object set, along with the rules that have been evaluated

relevant to those objects, and the result of the rule

evaluation. While returning all results is important, the

reports may also be narrowed down to only the failed

rule instances. This allows the client application to parse

the result information, graphically display the objects

that failed the rule, and display the rule information

including the error level of the rule.

4 Discussion

As validation for the proposed research, we have

created a prototype model-checking .NET library, as

seen in Figure 2.

The library is used by an in-house Unity-based IFC

editor of building interiors that is currently capable of

Figure 2. Current implementation of the IFC editor and model checking package.

1330

36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

reading an IFC file, displaying the model in 3D, and

enabling a user to review an object catalogue and add

IfcSystemFurnitureElements to the IFC model.

The underlying IFC model can be passed to the

model-checking method, which is currently configured

with an initial rule set, provided by our industrial

partner. The rules in this initial set were specified in our

language, and subsequently implemented into source

code used by the model-checking module. The

implementation process is currently manual, but we

have developed a library of basic functionalities for

computation of VOs and numerous geometric functions

(i.e., for calculating object height and width, and

distance between objects) and we are currently working

on a model-driven method for automatically

transforming rules into source code relying on this

library.

After execution, the model-checking method returns

the results for each of the rules. A rule result includes a

pass/fail boolean as well as each instance of the set of

objects that were checked against for the particular rule

and the result of that instance.

For example, for the rule in Figure 1, an object set

instance would be dishwasher1 and corner1, which

would have an instance result of pass/fail. The rule

result is the collective result of the ANY/ALL/NONE of

each object instance and their corresponding instance

results. The IFC editor is therefore able to highlight the

instances where an object fails a particular rule. The VO

meshes are also accessible and can optionally be

displayed in the IFC editor.

Since the majority of these rules deal with

furnishings and appliances, there is an additional stage

in the model preparation that is required but not yet

implemented. In addition to restructuring the object

representations into our mesh objects, we also believe

the object type hierarchy within the IFC schema needs

to be extended. Furniture and appliance items typically

fall somewhere within either IfcFurnishingElement,

IfcFlowTerminal, or IfcBuildingElementProxy, with

each of these being the leaf or the second lowest level of

the hierarchical tree. While it is possible to add a

property to each object that states explicitly the object

type (as in the current implementation), we believe

more specific IFC types, such as IfcCouch, IfcFridge,

etc. are required. Additionally, this hierarchy should be

extendable such that new types defined later should be

included. Figure 3 demonstrates a subset of the IFC4

[25] schema with examples of additional object types.

For the purpose of this study, we used the object

name to determine automatically whether an object can

be categorized, however, the onus is on a more

intelligent BIM editor to infer the most specific type of

the object, beyond IfcElement. It is also imperative that

objects do not fall under multiple categories or are

compositions of multiple other objects. For instance,

difficulties can arise when a collection of objects, such

as multiple chairs surrounding a table, are modeled as a

single object. Therefore, good modeling practices

should be adhered to the largest extent possible.

Other issues encountered included the direction of

the objects not always being standardized in IFC, or at

least by the BIM editors that export the models.

Therefore, relationship properties such as behind and in

Figure 3. A) IFC object types above the dashed line represent a subset of the current IFC4 schema. B)

IFC object types under the dashed line indicate sample extensions to the IFC hierarchy; those under

IfcSpatialElement representing VOs that would be created implicitly from the existing model IfcElements.

1331

36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

front of, which appear frequently in our rules, would

occasionally return erroneous values. We see this as an

error in the object design, since from an end user

viewing the model, this error would not be visually

apparent.

Finally, while we acknowledge there are many

possible design rules and that they often come in the

form of large, text-based documents, we believe that

future iterations of these rule documents should be made

in tandem with the rule language rules. This would both

ensure that text-based rules can in fact be quantified and

calculated and that automated rule check results are as

the rule creator intended. The use of NLP may help

expediate this process but our belief is the onus should

be on the rule creator to interpret and test rules as they

produce them.

5 Conclusion

In this paper, we have provided a brief introduction

to our rule-specification language and a model-checking

method able to evaluate rules in this language on IFC

building models. Our work aims to connect many

concepts put forward in previous model-checking

approaches. Several building model-checking

approaches exist, each with its own advantages and

shortcomings. We therefore believe that providing an

extensible framework to enable different rule sets to be

expressed and evaluated against different BIM objects

should each be supported. Each rule, regardless of

method used for its specification (logical, mathematical

expressions, or SQL operations on data), should be

executable in the same process such that future

applications can take advantage of model checking. For

instance, we believe model checking can be a useful

integration into generative design, which for runtime

optimization would require rules sequences to be

reprioritized. This will be created in latter iterations of

the project and will be implemented as part of the

grander scheme of a BIM service framework.

6 Acknowledgements

This work was supported by an NSERC CRD grant

entitled “Development of cloud-based collaborative

BIM modelling software”.

7 References

[1] Lopez, R., and Love, P. E. Design error costs in

construction projects. Journal of construction

engineering and management, 138(5):585-593,

2011.

[2] Solihin, W., and Eastman, C. Classification of

rules for automated BIM rule checking

development. Automation in Construction, 53:69-

82, 2015.

[3] Solibri. Online: https://www.solibri.com/ Accessed:

30/01/2019.

[4] BuildingSMART. Online:

https://www.buildingsmart.org/ Accessed:

30/01/2019.

[5] Statsbygg BIM Manual, Version 1.2.1(SBM1.2.1).

Online:

https://www.statsbygg.no/files/publikasjoner/manu

aler/StatsbyggBIM-manual-ver1-2-1eng-2013-12-

17.pdf Accessed: 30/01/2019.

[6] Jiang, L., and Leicht, R. M. Automated rule-based

constructability checking: Case study of formwork.

Journal of Management in Engineering,

31(1):A4014004, 2014.

[7] Lee, Y. C., Eastman, C. M., and Lee, J. K.

Automated Rule-Based Checking for the

Validation of Accessibility and Visibility of a

Building Information Model. In Computing in

Civil Engineering 2015, pages 572-579, 2015.

[8] Getuli, V., Ventura, S. M., Capone, P., and

Ciribini, A. L. BIM-based code checking for

construction health and safety. Procedia

Engineering, 196:454-461, 2017.

[9] Eastman, C., Lee, J. M., Jeong, Y. S., and Lee, J.

K. Automatic rule-based checking of building

designs. Automation in Construction, 18(8):1011-

1033, 2009.

[10] Ding, L., Drogemuller, R., Rosenman, M.,

Marchant, D., and Gero, J. Automating code

checking for building designs-DesignCheck.

Clients Driving Construction Innovation: Moving

Ideas to Practice. CRC for Construction

Innovation, pages 1-16, 2006.

[11] Revit. Online:

https://www.autodesk.com/products/revit/overvie

w# Accessed: 30/01/2019.

[12] ArchiCAD. Online:

https://www.graphisoft.com/archicad/? Accessed:

30/01/2019.

[13] Dynamo. Online:

https://www.autodesk.com/products/dynamo-

studio/overview Accessed: 30/01/2019.

[14] Grasshopper. Online:

https://www.grasshopper3d.com/ Accessed:

30/01/2019.

[15] BIMServer. Online: http://bimserver.org/ Accessed:

30/01/2019.

[16] Pauwels, P., and Zhang, S. Semantic rule-checking

for regulation compliance checking: An overview

of strategies and approaches. In 32rd international

CIB W78 conference, pages 619-628, Eindhoven,

Netherlands, 2015.

[17] Hjelseth, E., and Nisbet, N. Capturing normative

1332

36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019)

constraints by use of the semantic mark-up RASE

methodology. In Proceedings of CIB W78-W102

Conference, pages 1-10, 2011.

[18] Hjelseth, E. Converting performance based

regulations into computable rules in BIM based

model checking software. eWork and eBusiness in

Architecture, Engineering and Construction:

ECPPM, pages 461-469, 2012.

[19] Zhang, J., and El-Gohary, N. M. Extending

building information models semiautomatically

using semantic natural language processing

techniques. Journal of Computing in Civil

Engineering, 30(5):C4016004, 2016.

[20] Lee, J. K. Building environment rule and analysis

(BERA) language and its application for

evaluating building circulation and spatial. PhD

diss., Georgia Institute of Technology, 2011.

[21] Lee, J. K., Eastman, C. M., and Lee, Y. C.

Implementation of a BIM domain-specific

language for the building environment rule and

analysis. Journal of Intelligent & Robotic Systems,

79(3-4):507-522, 2015.

[22] Niemeijer, R. A., De Vriès, B., and Beetz, J.

Check-mate: automatic constraint checking of IFC

models. Managing IT in construction/managing

construction for tomorrow, pages 479-486, 2009.

[23] Preidel, C., and Borrmann, A. Automated code

compliance checking based on a visual language

and building information modeling. In

Proceedings of the International Symposium on

Automation and Robotics in Construction (ISARC),

Oulu, Finland, 2015.

[24] Solihin, W., Dimyadi, J., Lee, Y. C., Eastman, C.,

and Amor, R. The Critical Role of the Accessible

Data for BIM Based Automated Rule Checking

System. In LC3 2017: Proceedings of the Joint

Conference on Computing in Construction (JC3),

pages 53-60, Heraklion, Greece, 2017.

[25] Industry Foundation Classes Release 4 (IFC4)

Documentation. Online:

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/ Accessed: 30/01/2019.

1333

