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Abstract –  

A common problem when operating heavy 

hydraulic machines consists in low-frequency 

resonance phenomena that significantly limit the 

bandwidth of the closed loop position control. The 

interest in this topic is further motivated by the fact 

that the usage of traditional dynamic models of 

hydraulic actuators usually leads to the identification 

of very high-frequency resonances. This paper tries 

to explain the origin of low-frequency resonances by 

analysing the kinematic coupling between hydraulic 

actuators and structural links that can be found in 

typical hydraulically actuated machines. A novel 

formula for the identification of such resonance 

frequencies is derived. A realistic simulation 

environment is used to identify the resonance 

frequencies corresponding to different load masses 

and link lengths. Finally, the identified frequencies 

are compared to the results obtained using the two 

formulas, showing the superior accuracy of the 

newly proposed approach with respect to the 

traditional one.     
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1 Introduction 

Hydraulic actuation systems are characterized by 

multiple convenient features (namely high power 

density, reliability, and relatively low maintenance cost) 

that make them particularly fit to several application 

domains. Not by chance these actuators are the most 

widespread in the construction and earthworks 

machinery sector [1,2], in the mining industry [3], and 

also in the agriculture and forestry field [4]. In spite of 

the aforementioned advantages, hydraulic actuators are 

typically affected by low-frequency resonance 

phenomena. In addition, these resonances are further 

exacerbated by the large masses and inertias typically 

characterizing the components of a hydraulically 

actuated machine. Unfortunately, these resonance 

phenomena significantly limit the performance and the 

overall bandwidth of any possible closed loop control 

systems [5]. In order to address this problem, several 

control strategies have been proposed, that aim at 

suppressing the oscillations caused by these resonances 

[6,7,8]. Machine design solutions have also been 

proposed. For instance, in [9] the authors increase the 

resonance frequency (thus minimizing the resulting 

oscillations) by properly sizing the hydraulic cylinders 

and by computing the optimal distribution of the inertias 

along the kinematic chain of the machine.    

Even though a significant effort has been spent 

trying to limit the effects of these low-frequency 

resonances, very few research contributions focusing on 

the explanation of these phenomena can be found. Some 

contributions suggest that the origin of these low-

frequency resonances may lie in the variation of the oil 

compressibility [10], that in turn can be triggered by the 

presence of air contaminating the fluid [11]. 

Nonetheless, one of the most interesting aspects of 

these resonance phenomena consists in their 

incoherence with respect to the classical dynamic 

equations of the generic hydraulic servomechanism, 

whose manipulation usually results in the identification 

of very high resonance frequencies. Starting from this 

observation, our work tries to explain the low-frequency 

resonance phenomena from an alternative point of view. 

As a matter of fact, traditional formulations of the 

dynamic model of the hydraulic actuator represent the 

load as a point mass simply acting in either compression 

or traction on the actuator itself, while in a generic 

hydraulically powered machine (e.g. an excavator) 

hydraulic actuators are connected to the links they move 
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through rotational joints. By explicitly taking into 

account the geometry of the connection (and 

consequently, the configuration-dependent nature of the 

mechanical load), it is possible to refine the dynamic 

model of the hydraulic actuator and to develop a 

suitable formula for the estimation of the smallest 

resonance frequency. The proposed approach was tested 

in simulation on a 1-DoF system modelled using 

MATLAB’s SimHydraulics Toolbox. Results confirm 

that the proposed formulation of the resonance 

frequency is coherent with respect to the behavior of the 

simulated system. 
This paper is organized as follows. Section 2 

describes the classical model of a hydraulic servo-

mechanism, while Section 3 introduces a more realistic 

model, characterized by a non-trivial coupling between 

the actuator and the load. For both systems the transfer 

function between the valve control signal and a 

mechanical quantity (either the cylinder’s stroke or its 

linear velocity) is provided, together with a formula for 

the computation of the smallest resonance frequency. 

Then, Section 4, shows a comparative analysis between 

the frequency values obtained with a realistic simulator 

and the ones computed using the aforementioned 

formulas. Finally, conclusions and future development 

are discussed in Section 5.  

2 Hydraulic cylinder with a rigidly 

connected load 

In this section the standard model of a symmetric 

hydraulic actuator connected to a load mass is briefly 

recalled (see Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hydraulic system with compressive 

load. 

 

 

More specifically, after the derivation of the dynamical 

equations, the transfer function between the piston 

velocity and the valve control signal is presented, 

together with a rough estimation of the first resonance 

frequency of the system. 

2.1 Hydraulic model 

In order to derive the piston equation, we assume 

that:  

 

 the oil is characterized by a finite 

compressibility defined by the nominal Bulk 

Modulus 𝛽; 

 the thermal expansion of the oil is considered 

negligible; 

 the oil density 𝜌  is the same in the two 

chambers; 

 the fluid losses to the external environment are 

negligible; 

 the internal leakage 𝑞𝐿  is proportional to the 

chambers pressure drop:  𝑞𝐿 = 𝐶𝐿(𝑝1 − 𝑝2); 

 the valve electro-mechanical dynamic is 

considered negligible. 

 

Under these assumptions and according to [12], 𝜌 

can be considered equal to its nominal value 𝜌0: 

 

𝜌 =  𝜌0 [1 +
1

𝛽
(𝑝𝑖 − 𝑝𝑟)] ≅ 𝜌0 

 

(1) 

(where 𝑝𝑖  is the i-th chamber pressure and 𝑝𝑟 is the 

initial pressure of the fluid). Therefore, the mass 

conservation equations for the cylinder chambers can be 

written as follows: 

 

𝑞1 − 𝑞𝐿 = �̇�1 +  
𝑉1

𝛽
�̇�1  (2) 

𝑞𝐿 − 𝑞2 = �̇�2 +  
𝑉2

𝛽
�̇�2  

(3) 

where  𝑝𝑖  is the i-th chamber pressure and 𝑞𝑖 is the i-th 

in/out volume flow rate. The two chamber volumes are 

given by: 

 

𝑉1 = 𝑉0 + 𝐴𝑥𝑝 (4) 

𝑉2 = 𝑉0 − 𝐴𝑥𝑝 
(5) 

 

where 𝐴 is the piston area, 𝑥𝑝 is the piston displacement 

and 𝑉0 is the nominal chamber volume, computed when 

𝑥𝑝 corresponds to half of the cylinder’s stroke. 

Since the piston is symmetric the pressure drop 
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Δ𝑝𝑚 = 𝑝1 − 𝑝2  can be considered as a state variable. 

Furthermore, by defining 𝑞𝑚 = 𝑞1 = 𝑞2  and given the 

supply pressure 𝑝𝑝 , the valve orifice equation can be 

written as follows: 

 

𝑞𝑚 =
𝐾𝑣

2
𝑢√

𝑝𝑝 − 𝑝𝑚

𝜌0

≅
𝐾𝑣

2
𝑢√

𝑝𝑠

𝜌0

 (6) 

 

where 𝐾𝑣 is the discharge coefficient and 𝑢 is the valve 

control signal. The overall hydraulic equation is then 

obtained as: 

 

𝑉0

𝛽
Δ�̇�𝑚 = 𝐾𝑣𝑢√

𝑝𝑝

𝜌0

− 2𝐴�̇�𝑝 − 2𝐶𝐿Δ𝑝𝑚 (7) 

where 𝐶𝐿 is the internal leakage coefficient. Finally, the 

resulting hydraulic force is given by: 

𝐹𝑝 = 𝐴Δ𝑝𝑚 
(8) 

2.2 Mechanical equation 

The mechanical equation is derived by considering a 

load mass rigidly connected to the piston rod: 

 

(𝑀𝑝 + 𝑀𝑙)�̈�𝑝 + (𝐷𝑝 + 𝐷𝑙)�̇�𝑝 + 𝐹𝑑 = 𝐴Δ𝑝𝑚 (9) 

 

where 𝑀𝑝 (𝑀𝑙) is the mass of the piston (load), 𝐷𝑝 (𝐷𝑙) 

is the damping coefficient of the piston (load), and 𝐹𝑑 is 

a disturbance force (e.g. gravitational force). 

2.3 Transfer function 

By gathering the masses and the damping 

coefficients together in the terms 𝑀 and 𝐷, respectively, 

it is possible to linearize equation (9) in a small 

neighborhood of the following equilibrium point: 

 

𝑥𝑝 = 0    �̇�𝑝 = 0   𝑢 = 0 

 

This way, we obtain the following transfer function 

between the piston velocity and the control signal: 

 
𝑉𝑝(𝑠)

𝑈(𝑠)
=

=

𝐾𝑣
𝛽𝐴

𝑉0𝑀 √
𝑝𝑝

𝜌0

𝑠2 + (2
𝛽
𝑉0

𝐶𝐿 +
𝐷
𝑀

) 𝑠 + 2
𝛽

𝑉0𝑀
(𝐴2 + 𝐶𝐿𝐷)

 

(10) 

 

Equation (10) represent a second order system 

whose resonance frequency can be roughly 

computed by simply neglecting the internal leakages 

(𝐶𝐿 = 0): 

𝑓𝑛 =
1

2𝜋
√

2𝛽𝐴2

𝑀𝑉0

 
(11) 

 

Notice that in case of a standard asymmetric 

piston the above relation slightly changes in: 

 

𝑓𝑛 =
1

2𝜋
√

2𝛽

𝑀
(

𝐴1
2

𝑉01

+
𝐴2

2

𝑉02

) 
(12) 

 

where 𝐴1  and 𝐴2  are the bottom-side and rod-side 

piston areas, respectively.  

3 Hydraulically actuated mechanism 

     The above formulation clearly does not represent a 

system characterized by a non-trivial coupling between 

the actuator and the load. The case-study of this paper is 

indeed the 1-D.o.F. system shown in Figure 2, which is 

more similar to a real-world scenario (e.g. an excavator 

link).   

 

Figure 2. 1-D.o.F. hydraulically actuated 

mechanism 

In this section we start by presenting the non-linear 

dynamical equations of the system, then we select a 

proper working point and, finally, we obtain the 

linearized model. 

3.1 Kinematics 

In order to retrieve the model as a function of the 

cylinder displacement, we can apply the cosine formula 

to the 𝑎1-𝑑1-𝑥𝑝 triangle (see Figure 2): 
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𝜃 = acos (
𝑎1

2 + 𝑑1
2 − 𝑥𝑝

2

2𝑎1𝑑1

) = 𝑓𝜃(𝑥𝑝) (14) 

3.2 Mechanical dynamics 

     The mechanical balance of the system can be 

obtained by assuming the piston mass and inertia to be 

negligible. Given these assumptions, the mechanism is 

equivalent to a 2-Link planar robot, where angle 𝛾 

corresponds to the second DoF. Consequently, the 

dynamic of the mechanism can be computed according 

to [13]. In particular, given all the geometrical 

parameters shown in Figure 2 and defining 𝑚𝑖 and 𝐼𝑖  as 

the mass and the inertia momentum of the i-th link, the 

following equation is obtained: 

 

𝐵1�̈� + 𝐵2�̈� + 𝐶1�̇��̇� + 𝐶2�̇�2 + 𝐺 = 𝜏1 (15) 

 where: 

 

𝐵1 =  𝑚1𝑙1
2 + 𝐼1 + 𝑚2𝑎1

2 + 𝑚2𝑙2
2

+ 2𝑚2𝑎1𝑙2 cos(𝛾) + 𝐼2 
(16) 

𝐵2 =  𝑚2𝑙2
2 + 𝑚2𝑎1𝑙2 cos(𝛾) + 𝐼2 

(17) 

𝐶1 =  −2𝑚2𝑎1𝑙2sin (𝛾) 
(18) 

𝐶2 =  −𝑚2𝑎1𝑙2sin (𝛾) 
(19) 

𝐺 = 𝑚1𝑔𝑙1 cos(𝜃) + 𝑚2𝑔 𝑎1𝑐𝑜𝑠(𝜃)
+ 𝑚2𝑔𝑙2cos (𝛾 + 𝜃) 

(20) 

 

and 𝜏1  is the equivalent torque provided by the 

hydraulic actuator: 

 

𝜏1 = 𝑑1 cos(𝛼) 𝐹𝑝 = 𝑑1 cos(𝛼) 𝐴Δ𝑝𝑚 (21) 

A simpler formulation of the previous equations can be 

obtained by assuming: 

 

 𝐼1 = 𝐼2 = 0 

 𝑚1 = 0 

 𝛾 =  𝜋
2⁄  (fixed) 

 

As a result, the dynamic equation reduces to:  

 

𝑚2(𝑎1
2 + 𝑙2

2)�̈� + 𝑚2𝑔𝑎1 cos(𝜃) − 𝑚2𝑔𝑙2sin (𝜃)
= 𝜏1 

(22) 

 

Finally, the hydraulic dynamics is obtained according to 

Equation (7). 

3.3 Linearized model 

To compute the linearized model, the working point 

defined by 𝜃0 =  𝜋 2⁄  is considered. It is also useful to 

define the following quantities: 

 

𝛿𝑥𝑝 = 𝑥𝑝 − 𝑥𝑝0
 (23) 

𝛿𝑝𝑚 = Δ𝑝𝑚 − Δ𝑝𝑚0
 

(24) 

𝛿𝑢 =  𝑢 − 𝑢0 
(25) 

where: 

𝑥𝑝0
=  √𝑎1

2 + 𝑑1
2 (26) 

Δ𝑝𝑚0
=

𝑚2𝑔𝑙2

𝑑1 cos(𝛼0) 𝐴
 

(27) 

𝑢0 =  
2𝐶𝐿

𝐾𝑣
√

𝜌0

𝑝𝑝

Δ𝑝𝑚0
 

(28) 

𝛼0 = atan (
𝑑1

𝑎1

 ) 
(29) 

 

Moreover, the linear dependence of joint angle 𝜃  on 

piston displacement 𝑥𝑝 can be defined as follows: 

𝜃 = 𝑓𝜃 (𝑥𝑝0
) +

𝑑𝑓𝜃

𝑑𝑥𝑝

|
𝑥𝑝0

𝛿𝑥𝑝 = 

= 𝑓𝜃 (𝑥𝑝0
) + 𝑛𝜃𝛿𝑥𝑝 

(30) 

�̇� = 𝑛𝜃𝛿�̇�𝑝  
(31) 

�̈� = 𝑛𝜃𝛿�̈�𝑝 
(32) 

 

Therefore, the linearized mechanical equation is given 

by: 

 

𝑚2(𝑎1
2 + 𝑙2

2)𝑛𝜃𝛿�̈�𝑝 − 𝑚2𝑔𝑙2𝑛𝜃𝛿𝑥𝑝 

−𝑚2𝑔𝑙2f (𝑥p0
) = 𝐴𝑑1 cos(𝛼0) 𝛿𝑝𝑚 

(33) 

 

and the linear hydraulic equation is: 

 

𝑉0

𝛽
δ�̇�𝑚 = 𝐾𝑣√

𝑝𝑝

𝜌0

𝛿𝑢 − 2𝐴𝛿�̇�𝑝 − 2𝐶𝐿δ𝑝𝑚 (34) 

3.4 Transfer function 

Similarly to the previous case, it is possible to 

retrieve the transfer function of the linearized dynamics 

between the piston displacement and the valve control 

signal: 

 
𝑋𝑝(𝑠)

𝑈(𝑠)
=  

𝜇

𝐾𝑠3 + 𝐹𝑠2 + 𝑄𝑠 − 𝐻
 (35) 
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where: 

 

𝐾 =  
𝑉0

𝛽
𝑚2(𝑎1

2 + 𝑙2
2)𝑛𝜗 (36) 

𝐹 =  2𝐶𝐿𝑚2(𝑎1
2 + 𝑙2

2)𝑛𝜗 
(37) 

𝑄 =  2𝑑1 𝑐𝑜𝑠(𝛼0) 𝐴2 − 𝑚2𝑔𝑙2𝑛𝜗

𝑉0

𝛽
 

(38) 

𝐻 =  2𝐶𝐿𝑚2𝑔𝑙2𝑛𝜗 
(39) 

𝜇 =  𝑑1 𝑐𝑜𝑠(𝛼) 2𝐴𝐾𝑣√
𝑝𝑝

𝜌0

 
(40) 

 

In addition, by neglecting the internal leakage (𝐶𝐿 =
0), it is possible to simplify the denominator, obtaining 

the following transfer function between the piston speed 

and the valve control signal: 

 
𝑉𝑝(𝑠)

𝑈(𝑠)
=  

𝜇

𝐾𝑠2 + 𝑄
 (41) 

 

Therefore, the resonance frequency can be estimated by: 

 

𝑓𝑛 =
1

2𝜋
√

𝐾

𝑄
=

=
1

2𝜋
√

2𝑑1 𝑐𝑜𝑠(𝛼) 𝐴2 − 𝑚2𝑔𝑙2𝑛𝜗
𝑉0

𝛽
𝑉0

𝛽
𝑚2(𝑎1

2 + 𝑙2
2)𝑛𝜗

 

(42) 

4 Numerical Simulations 

In order to better understand the effect of the joint 

connected load, several simulations have been 

performed. In this section, the results of these 

simulations are presented and compared to the results of 

the previously explained formulas.  

For this purpose, a realistic simulator has been 

developed in MATLAB/Simulink environment, using 

the SimHydraulics toolbox [14]. More specifically, the 

parameters of an off-the-shelf double-acting asymmetric 

cylinder and the ones of a commercial 4/3 valve have 

been considered. In addition, the mechanical system 

shown in Figure 2 has been reproduced. Finally, the 

pump behavior was assumed to be ideal, meaning that 

the supply pressure 𝑝𝑝  was always constant. The 

simulations have been performed by feeding the valve 

with a sine sweep-shaped control signal and varying the 

load mass 𝑚2  and the link length 𝑙2  for a total of 40 

different configurations. Then, resonance frequencies 

have been identified by analyzing the spectrum of the 

resulting cylinder’s speed signal. As far as the “rigidly 

connected load” case is concerned, 𝑓𝑛  is computed 

according to equation (11). For the sake of clarity, we 

replaced mass 𝑚2  with an equivalent mass, computed 

on the basis of the average static load “sensed” by the 

hydraulic cylinder. In this way, we were able to 

incorporate in a single inertial parameter the effects of 

both 𝑚2  and 𝑙2 . Figure 3 shows how the resonance 

frequency changes with respect to different load masses. 

Moreover, for each load mass value, five different link 

lengths have been considered. On the other hand, Figure 

4 shows the dependency of the resonance frequency 

with respect to different link lengths. In this case, eight 

different values of load mass have been considered for 

each link length value. In both cases the identified 

frequencies are displayed in red, while the computed 

ones are pictured in blue. As expected, given the same 

load mass (link length), the resonance frequency tends 

to decrease as the link length (load mass) increases. 

 

Figure 3. Resonance with varying load mass and 

rigidly connected load 

Nevertheless, it is clear that the estimated resonance 

frequencies 𝑓𝑛 computed according to equation (11) are 

significantly higher with respect to the corresponding 

identified frequencies. To this regard, Figure 5 and 

Figure 6 show the comparison among the identified 

frequencies and the ones computed according to 

equation (42). Clearly, the proposed formula is 

significantly more accurate than the traditional one. In 

addition, these results demonstrate how the kinematic 

coupling between the load and the actuator affects the 

natural frequencies of this system. Indeed, by means of 

Root Mean Square Error the following results are 

obtained: 

 

𝑅𝑀𝑆𝐸𝑟𝑖𝑔𝑖𝑑 = 23.4900 𝑟𝑎𝑑/𝑠  
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𝑅𝑀𝑆𝐸𝑗𝑜𝑖𝑛𝑡 = 0.0635 𝑟𝑎𝑑/𝑠 
 

 

Figure 4. Resonance with varying length and 

rigidly connected load 

 

Figure 5. Resonance with varying mass and 

joint-connected load 

 

Figure 6. Resonance with varying link length and 

joint-connected load 

5 Conclusions 

     This paper presents a study carried out on a hydraulic 

actuation system with the aim to achieve a better 

understanding of the causes of the low frequency 

resonances affecting the system. Starting from very 

simple models of the actuator and the load which it is 

connected to, the transfer function between the valve 

control signal and a mechanical quantity was computed 

and a formula to retrieve the resonance frequency was 

derived. Then, a more complex system characterized by 

a non-trivial coupling between the load and the 

hydraulic cylinder was considered. Once again, the 

model of the system was retrieved and, after 

linearization, a more complex formula for the estimation 

of the resonance frequency was computed. 

Finally, a simulation environment of the joint-

connected load was developed and several simulations 

were performed in order to obtain, via spectral analysis, 

an accurate estimation of the resonance frequencies 

corresponding to different load masses and link lengths. 

These estimated frequencies were compared to the 

results obtained using the two formulas, showing how 

critical is the impact of the kinematic coupling on the 

natural frequency of this kind of systems.  

As far as future developments are concerned, the 

formula for the resonance estimation can be furtherly 

improved by taking into account the asymmetry of the 

hydraulic actuator and a more detailed description of the 

valve dynamics. To this regard, a promising solution 

could be represented by the adoption of object-oriented 

modelling strategies and tools [15], which allows to 

easily implement custom models such as the ones 

showed in [16].  
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