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Abstract -
A common problem when operating heavy hydraulic ma-

chines consists in the inability of performing accuratemotion.
In the last few years the development of non-linear control
techniques and the production of increasingly more accurate
and cheaper hydraulic drives induced a steadily growing in-
terest towards the development of controlled hydraulic sys-
tems. Clearly, this interest is also motivated by the possibility
to exploit the huge power density, which is an intrinsic feature
of hydraulic systems. This paper specifically focuses on the
development of several position control schemes, whose aim
is to guarantee accurate motion of a standalone hydraulic
servomechanism. By relying on an experimentally validated
mathematical model of the servomechanism itself, different
control schemes have been synthesized and the resulting con-
trol performances have been verified and compared together.
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1 Introduction
Nowadays the vast majority of high performance ser-

vomechanisms is composed by electrical servomecha-
nisms. Nevertheless, hydraulic actuation systems are char-
acterized by multiple convenient features (namely high
power density, reliability, and relatively low maintenance
cost) that make them particularly fit to several application
domains, like for instance: construction and earthworks
machinery [1, 2], mining industry [3], agriculture and
forestry [4]. Typically, hydraulic servomechanisms are
controlled either manually by human operators opening
and closing valves, or by using heavily approximated lin-
ear controllers.
Specifically in case of linear controllers, obtaining accu-
rate motion of such kind of servomechanisms is a quite
complex task, mainly due to the highly non-linear dynam-
ics describing the behaviour of valves, and to high para-
metric uncertainty affecting the mathematical models of
the different system components. Given this situation, the
resulting motion is often characterized either by very low
accuracy and repeatability or by a limited bandwidth of

the closed loop system due to a rather conservative design
in order to ensure stability. Despite the mentioned prob-
lems, linear controllers are still implemented for hydraulic
servomechanism [5] because of their simplicity and the
consolidated well-known theoretical background [6].
However, recent research developments in the field of non-
linear control finally allowed to overcome some of the
aforementioned limitations and to guarantee reasonably
good performance. Among these non-linear control strate-
gies, Sliding Mode Control (SMC) is probably the most
widespread solutionwhen dealingwith hydraulic actuators
[7, 8]. More recently, in [9] a 1st -order SMC scheme was
applied to control a 1-DoF hydraulic crane, while in [10] a
2nd-order SMC scheme for the same systemwas proposed.
Dynamic switching functions have been introduced in [11]
and also adaptive SMC laws have been proposed [12, 13] in
order to improve the robustness of the controller of an hy-
draulic motor. Finally, a comprehensive discussion of the
various application of SMC to hydraulic systems is given
in [14], while alternative approaches based on backstep-
ping [15] and cascaded adaptive control [16, 17, 18, 19]
have also been proposed.

With respect to the mentioned scientific literature,
the main contribution of this work consists in an
experimentally-based comparative evaluation of the per-
formance levels of an advanced P-PI linear controller and
an approximated 1st -order SMC, both applied on a stan-
dalone hydraulic servomechanisms. First, the paper details
the development and the validation of the mentioned con-
trol strategies aiming. Then, a comparative evaluation of
the performance of the proposed control strategies is dis-
cussed. In particular, starting from a previously validated
dynamic model of a generic hydraulic servomechanisms
[20], a linear cascade control with static compensation
of the dead-zone and a 1st -order SMC have been synthe-
sized. The tracking performance of time-varying reference
signals of the SMC scheme has been improved by intro-
ducing a model-based feed-forward action. In addition,
the high frequency chattering (caused by the SMC action)
has been reduced by approximating the discontinuity in-
side the SMC law with a sigmoid function. Finally, the
performance of the different closed-loop control systems
have been tested on an experimental test-bench.
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The paper is organized as follows. Section 2 briefly in-
troduces the dynamic model of the hydraulic servomech-
anism, while Section 3 describes the linear controller
scheme synthesized on the basis of the linearized dynamic
model. Then, Section 4 details the development of the
proposed SMC schemes and Section 5 shows the experi-
mental validation of all the proposed control schemes and
discusses the performance levels achieved by each solu-
tion. Finally, conclusions and future developments are
presented in Section 6.

2 Hydraulic Servomechanism Model
The dynamicmodel of the generic hydraulic servomech-

anism used as a basis to develop the proposed control
algorithms is defined as follows:
Ûxp = Ûxp
Üxp = 1
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where:

• xp, Ûxp, Üxp: hydraulic cylinder position, velocity and
acceleration, respectively;

• M: mass of the mechanical load;

• A1, (A2): bottom(rod)-side chamber internal sur-
faces;

• V1, (V2): bottom(rod)-side chamber internal vol-
umes;

• P1, (P2): bottom(rod)-side chamber internal pres-
sures;

• fr (·): Coulomb friction function;

• D: viscous friction coefficient;

• ζ : dynamic pressure loss coefficient;

• g: gravitational constant;

• β: mineral oil bulk modulus;

• Q1: flow rate from tank to bottom-side chamber;

• Q2: flow rate from rod-side chamber to tank;

• ci: valve static pressure loss coefficients;

• Pp: pump pressure;

• Pt : tank pressure;

• xv: valve PWM, acting as control signal;

• k±1 (·) , (k
±
2 (·)): bottom(rod)-side chamber valve

opening function2;

• d: valve orifice diameter;

• ρ: mineral oil density;

• d−z , d+z : valve negative and positive dead-zones.

Amore detailed discussion of the dynamicmodel (along
with its experimental validation) can be found in [20].

3 Linear Controller
In this Section a linearized version of the previously

introduced dynamicmodel is given, allowing to synthesize
a linear control scheme.

3.1 Dynamic Model Linearization

Starting from equations (1)-(3), the linearized model
can be computed. The equilibrium point has been chosen
by considering the valve opening outside of the deadzone
region and by taking the middle position of the cylinder as
working point:

xv < d−z ∨ xv > d+z

xp =
xpMAX − xpmin

2

V1 = A1xp, V2 = A2xp

(4)

consequently, the following set of linear equation is ob-
tained:
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where λ1, λ2, λ3, λ4 are the linearization coefficients of the
valve:

δq1 = λ1δP1 + λ3δxv
δq2 = λ2δP2 + λ4δxv

(6)

Finally, the state space formulation can be turned into
the corresponding transfer function between the valve
opening and the cylinder velocity:

F(s) =
δ Ûxp(s)
δxv(s)

= k f
τ1s + 1

(τ2s + 1)(s2/ω2 + 2Ds/ω + 1)
(7)

and the transfer function between the valve opening and
the cylinder position can be obtained by simply integrating
the cylinder velocity:

G(s) =
δxp(s)
δxv(s)

=
F(s)

s
(8)

3.2 Controller Block Scheme

After linearization of the dynamic model, the cas-
caded control scheme has been developed (see Figure 1).
A proportional-integral (PI) controller with anti-windup
block was chosen for the inner velocity loop, while a pure
proportional (P) controller was selected for the outer posi-
tion loop. On the top left part of the digram it is possible to
see a derivative block that outputs a velocity feed-forward
term that helps improving tracking performance. On the
other hand, since a direct measure of the cylinder veloc-
ity is not available, another derivative block is needed in
order to indirectly compute Ûxp . Clearly, each derivative
block is equipped with a tunable low pass filter in order
to ensure that the transfer function of the complete sys-
tem is proper. Moreover, the filter inside the feed-forward
derivative block ensures that the control action is not too
aggressive, while the one on the measurement line miti-
gates the effect of the noise. Finally, the saturation blocks
ensure that the value of the valve opening stays inside the
admissible range [−1, +1], while the “sig” block contains
the dead-zone compensation function sig (u), defined as:

sig (u) = d−z +
d+z − d−z
1 + e−ηu

(9)

in order to avoid chattering of the controlled variable. For
the sake of completeness, to tune the control gains it is
sufficient to neglect the effect of the non-linear blocks and
to apply the Bode criterion to both the internal velocity
loop and to the external position one.

4 Sliding Mode Controller
The parametric uncertainties and the intrinsic high non-

linearities of hydraulic systems can greatly deteriorate

Figure 1. P-PI cascaded control scheme with anti-
windup, feed-forward and dead-zone compensation.

the performances of classical linear controllers, especially
when the state configuration of the system is far from the
linearization point. For this reason SMC can be a suitable
alternative for the realization of an accurate position con-
trol. In this Section, after a brief overview of the SMC
theory is given and the control law adopted for our system
is presented and. Finally, the condition that guarantees the
overall stability of the closed loop is discussed.

4.1 Sliding mode control overview

The main properties of SMC are the robustness with
respect to both external disturbances and parametric un-
certainties, and the capability to constrain the system state
within a specific a-priori defined state subspace. This
subspace is called “sliding surface” and it is defined by:

S = {x : σ(x) = 0} (10)

where x ∈ Rn is the state vector of a given system and
σ(x) : Rn → R is the sliding variable, a function prop-
erly defined in order to achieve the desired performances.
Given a generic non-linear SISO system with bounded
state:

| Ûxi | < Ui, |xi | < Ubi, xi ∈ x (11)

Lyapunov’s theory can be used in order to compute a con-
trol signal that forces the state movement on S:

V(x) =
1
2
σ(x)2 > 0, ÛV(x) = Ûσσ (12)

Usually, by making proper manipulation, the first
derivative of the sliding variable can be expressed as a
function of the control variable:

Ûσ = Ûσ(u) (13)

Then, by choosing the following discontinuous control
law:

u = kssign(σ) (14)

with a sufficiently large ks , it’s possible to guarantee ÛV < 0.
Note that the 1st -order sliding mode is characterized by

a discontinuous control law. When the system reaches the
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sliding surface, a chattering phenomenon on the control
variable will be triggered at an ideally infinite frequency.
This fact entails a very intense use of the control variable
and determines the presence of undesired vibrations on the
overall system, that can also damage physical components.
These phenomena can be reduced, either by approximating
the sign function or implementing an higher order SMC.

4.2 A different formulation of the model

In order to design a proper control law, a different for-
mulation of themodel has been adopted. Ignoringmomen-
tarily deadzone and internal leakages, the valve model can
be written as follows:
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where S(ν) is the Heaviside step function. Therefore,
the flow rates can be expressed as Q1 = Φ1ν and Q2 =
Φ2ν. Also, a new state vector can be defined:

zt =
(
e Ûe P1 P2

)
=

(
z1 z2 z3 z4

)
(20)

where e = xp0 − xp and Ûe = Ûx0
p − Ûxp are the position

and speed tracking errors, respectively. By defining the
following quantities:
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+
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1
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+
A2

2
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z2 can be expressed as a function of the hydraulic force
first derivative:

z2 =
ÛFp

βH0
−

H1
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ν + Ûx0
p (22)

Finally, the new formulation is obtained by writing (1)
with respect to the new state vector:
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where Floss( Ûxp) = fr ( Ûxp) − D Ûxp − ζ Ûx2

p .

4.3 Evaluation of the control law

The design of the control law starts with the definition
of a proper sliding variable and a candidate Lyapunov
function. A common choice is:

σ(z) = C1z1 + z2, V(z) =
1
2
σ(z)2 (24)

In order to ensure ÛV(z) < 0 the aforementioned control
law can be used:

ν = kssign(σ) (25)

Unfortunately with the current experimental set-up the
measure of z2, which depends on Ûxp , is not available.
However at the increasing of C1, the dependency of σ(z)
of z2 becomes negligible, therefore the time derivative of
V(z) can be written as:

ÛV(z) = σ(z1)

[
−

C1H1
H0

ν +
C1 ÛFp

βH0
+ C1 Ûx0

p

]
(26)

and the control law changes into:

ν = kssign(z1) (27)

The numerical value of ks is computed accordingly
to the absolute upper bound of the hydraulic force time
derivative(UBdFp ) and reference velocity (UB Ûx0

p
).

ks >
H0
H1

[UBdFp

βH0
+UB Ûx0

p

]
(28)

The maximum speed achievable by the load depends on
the supply pressure and it can be set as the upper bound of
the reference speed. Also both UBdFp and UB Ûx0

p
can be

estimated by several simulations of the validated model,
as suggested in [21].

In addition, control law (27) can be improved by adding
feed-forward and proportional actions:

ν = kpz1 + kssign(z1) +
H0
H1
Ûx0
p (29)

therefore the condition on the time derivative of the
candidate Lyapunov function becomes:

σ(z1)

[
−

H1
H0
(kpz1 + kssign(z1)) +

UBdFp

βH0

]
< 0 (30)

In order to compute ks the worst case can be considered.
More specifically, the value of the control signal ν is min-
imum when the proportional action tends to zero (z1 ≈ 0),
thus the condition on ks can be re-written as follows:

ks >
UBdFp

βH1
(31)

253



36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

Figure 2. Sliding mode control scheme with propor-
tional term, feedforward model based and sigmoid

By using the proposed control law (29) a less stringent
condition has been retrieved:

UBdFp

βH1
≤

H0
H1

[UBdFp

βH0
+UB Ûx0

p

]
(32)

Consequently, smaller values of ks can be adopted and in
general smaller oscillations can be induced with respect to
the ones determined by control law (27) .
Furthermore, the introduction of the proportional term

and of the model-based feed-forward action entails a faster
time response and an improvement of the dynamic tracking
performances.
Moving to the dead-zone, its effect can be considered

by means of a further condition on ks . In particular, with
reference to the worst case, the following condition must
be always satisfied:

ks > max{| f (d+z )|, | f (d
−
z )|} (33)

Moreover, in order to reduce the undesired oscillations,
triggered by the presence of the sign(·), a sigmoid approx-
imate function is usually adopted:

sign(x) ≈ sig(x) = −1 +
2

1 + e−εx
(34)

Finally, once ν is computed, it is possible to find the
corresponding valve opening by directly inverting function
f :

xv = Ψ(ν) : f (Ψ(ν)) = ν (35)
The result is a smooth control action at the price of a

partial loss in terms of robustness and accuracy (see [21]).
Nevertheless, as shown in the next discussion, this choice
does not significantly compromise the overall tracking per-
formance.

5 Experimental Validation and Perfor-
mance Analysis

In this Section the experimental validation platform is
described, experimental results are presented, and, finally,

Figure 3. Hydraulic test-bench.

the performance levels achieved by each control solution
are compared together.

5.1 Hydraulic Test-bench

The hydraulic test-bench used to test the proposed con-
trol schemes is pictured in Figure 3. The system is com-
posed by two independent hydraulic servomechanisms.
The rod-side of each cylinder is rigidly connected to the
load, which consists in a plate (constrained by vertical mo-
tion guides) on top of which it is possible to load a generic
weight. More in detail, the test-bench comprises:

• 2 asymmetric hydraulic cylinders: one with a traction
load and one with a compression load;

• 2 directional valves with 4 ways and 3 positions;

• 1 hydraulic pump powering the entire system;

• pressure relief valves to ensure operational safety;

• 2 linear potentiometers that measure the position of
each cylinder;

• 5 pressure sensors installed at the outlet of the pump
and inside the four chambers of the two cylinders;

• 2 load cells installed between the rod side and the
plate.

5.2 Experimental Validation - Linear Controller

The control scheme pictured in Figure 1 has been tuned
in the following way:

kp = 1, kv = 0.108, T = 0.002, η = 50 (36)

All the transfer functions have been discretized using the
Backward Euler method and the experiments have been
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Figure 4. Linear Controller: response to step set-
point.

Figure 5. Linear Controller: response to sine refer-
ence signal.

performed on the actuator with a compression load mass
of 282 kg.
Figure 4 show the system responses to a step set-point.

The control action is not affected by any chattering and
the system converges to the desired set-point value without
oscillating.

On the other hand, Figure 5 shows the results of a track-
ing experiment during which a sinusoidal reference signal
is sent to the control system. The control action seems
not to be affected by significant chattering phenomena.
Nevertheless, the not completely accurate compensation
of the valve dead-zone determines a relevant tracking er-
ror, that reaches up to 13.4 mm where the sign of the speed
changes.

Figure 6. SMC: response to step reference signal.

5.3 Experimental Validation - SMC

At first, a simplified version of SMC law (29) was im-
plemented in the hydraulic test-bench:

ν = kp(x0
p − xp) + kssign(x0

p − xp) (37)

with:
kp = 4.5 ks = 0.067 (38)

The response to a step set-point is shown in Figure 6. The
system is able to converge to the imposed set-point with
zero static error. Nevertheless, as soon as the state reaches
the sliding surface, the control variable starts to chatter at
high frequency.

In order to improve the dynamic tracking performance,
the feed-forward term was added to equation (37):

ν = kp(x0
p − xp) + kssign(x0

p − xp) +
H0
H1
Ûx0
p (39)

In addition, to simplify the implementation, the following
assumptions have been made:

H0
H1
≈

A1
Φ1
, k+1 = 0.052, k−1 = 0.045 (40)

Figure 7 shows the response of the system to a sinu-
soidal reference signal. After the initial peak, the position
error rapidly decreases with a maximum of 3.3 mm. The
chattering phenomenon of the valve opening is still visible.
To remove these undesired oscillations, the final SMC law
(29) was implemented choosing ε = 4000.
Figure 8 shows the response of the complete SMC law

to a trapezoidal set-point profile, while Figure 9 shows the
response to a sinusoidal reference signal. In both cases,
we can see that good performance in terms of position
error are achieved (maximum tracking error on sine signal
is equal to 6.4 mm) and that the use of the approximating
sigmoid function enforces a smooth control action, without
any significant chattering.
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Figure 7. SMC with feedforward: response to sine
reference signal.

Figure 8. SMC with feed-forward and sigmoid: re-
sponse to trapezoidal set-point profile.

Figure 9. SMC with feed-forward and sigmoid: re-
sponse to sine reference signal.

5.4 Comparative Evaluation of Performance

Generally, we can state that the linear controller is able
to achieve good static performance, but it also entails poor
tracking capabilities. Moving to the classical SMC con-
troller, this solution is able to guarantee the best perfor-
mance both in steady-state and in tracking, but the control
action is heavily affected by chattering. Finally, the in-
troduction of the feed-forward term and of the sigmoid
approximating function allows to eliminate the chatter-
ing problem, without significantly undermining the per-
formance in terms of both convergence time and tracking
error.

6 Conclusions and Future Developments

This paper describes the research activities leading to
the development of several position control schemes for
a standalone hydraulic servomechanism. Starting from a
previously validated mathematical model of the hydraulic
actuator, several control laws have been synthesized and
validated on an real system. Various experiments have
been performed in order to verify the performance of each
control schemes with respect to both step set-points and
sinusoidal reference signals. Experimental results suggest
that the SMC schemes (both the classical one and the one
with sigmoid approximation) are able to guarantee better
performance with respect to the linear cascade control
scheme. Moreover, the intrinsic robustness of the SMC
strategy leads to a high level of accuracy of the closed loop
system.
As far as future developments are concerned, at first

a decentralized position control system for an hydraulic
manipulator will be designed on the basis of the SMC
schemes here discussed. Then, possible alternatives in
terms of control strategies will also be evaluated, like for
instance the SuperTwisting algorithm (which is an exam-
ple of 2nd-order SMC) [22], and the linear control with
adaptive compensation of the dead-zone [23].
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