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Abstract – 

Real-time activity monitoring is becoming one of 

the most significant technologies on construction 

sites because it can be applied to a variety of 

management problems, such as productivity formula 

and safety monitoring. However, current monitoring 

technologies are limited to recognizing postures in an 

ideal environment rather than dealing with the 

ambient occlusion and people-intensive situations on 

real construction sites. Therefore, this study develops 

a low-cost, non-intrusion and portable tool system in 

order to trace and track construction activities on 

complex and crowed construction sites. This system 

is composed of wireless sensors and a smart 

algorithm. Each sensor consists of an inertial 

measurement unit, a communication sensor 

(bluetooth low energy sensor) and several 

environmental sensors, which broadcasts the 

identification, acceleration, palstance and 

environmental measurements at a constant 

frequency. Since the dimension of the sensor is only 

20 x 15 x 2 mm, it can be easily attached or screwed 

on to the hand tools as well as integrated with power 

tools. When a laptop or cell phone receives from 

these sensors, the construction activities are derived 

by the artificial intelligence algorithm in a timely 

manner, providing an visual posture monitoring as 

well as an automatic record of project progress. In 

the end, practical experiments of a concrete vibrator 

and a hammer prove the feasibility and effectiveness 

of the proposed IMU-based tool tracing and tracking 

system. 
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1 Introduction 

Construction is a typical labor-intensive industry 

that a variety of construction assignments are 

accomplished manually, such as wood formwork, bar 

bending and tying, concrete pouring, etc. Therefore, the 

on-site construction activity is one of the critical 

resources contributing to the construction project 

performance, and its effective control and management 

is always considered as a key to success [1]. By tracking 

workers-on-foot and construction heavy equipment, 

near-misses, collisions and safety risks can be prevented 

and alleviated [2], dangerous and awkward postures can 

be detected and alarmed [3], productivity can be 

measured in a timely and quantitative manner [4-6], etc. 

The main obstacle for automated construction 

activity control and management is the real-time activity 

tracking. State-of-the-art technologies, including 

computer vision, wearable sensor, etc., which are 

available for on-site motion tracking, are emerging; 

however, the installation or monitoring process is 

intrusive and the effectiveness is seriously affected by 

complicated environment, such as none-line-of-sight 

effect due to ambient occlusions and multipath effect by 

signal reflection. 

The purpose of the present study is to develop a 

smart and low-cost IMU-based tool system and test the 

feasibility for on-site activity tracking. The research 

introduced the novel concept and established the 

framework of the proposed system at first, developed a 

general prototype and an effective algorithm for 

construction works using cyclic patterns, and finally, 

conducted a pilot study to validate the system [7]. 

2 Background 

The conventional way to monitor construction 

activities is human inspection, which is still the popular 

at the present time. An inspector roams around the site 

at regular intervals, the records the observation and 

draws a daily or weekly report. Once awkward or 

dangerous postures are recognized, the inspector send 

alarms and prevent further damage to the health and 

safety of workers. This is a commendable achievement, 

but it requires full time observation, which is impossible 
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and inefficiency for such a large field as construction 

site [8]. 

In the recent times, cutting-edge sensors are 

introduced to evaluate the spatial-temporal activities in 

the construction industry by attaching inertial and 

biomechanical sensors on human body segments [9]. 

The earliest instruments for linear posture detection are 

tapes and goniometer, and further progress is the advent 

of electromyographic devices (EMG) that using the 

muscle strength to access the movement and rotation. 

However, these devices are only used in clinical 

environments as they are tedious and intrusive to deploy 

[10]. With the emergence and development of micro-

electro-mechanical system (MEMS), the device 

measuring the inertial properties of objects becomes 

small while the accuracy, robustness and quick response 

are improved dramatically, which is called inertial 

measurement unit (IMU). Nowadays, commercial IMU 

is usually made up of a tri-axis gyroscope and a tri-axis 

accelerometer (6-axis IMU), and a tri-axis 

magnetometer (9-axis IMU), enabling the measurement 

of acceleration, angular velocity, and magnetic field 

[11]. Scholars have applied this technology to detect 

awkward postures to prevent musculoskeletal disorders 

[3, 12, 13], near-misses and hazards are also recognized 

automatically and analyzed to assess the potential risks 

[14].  

Another popular way to monitor construction 

activities is by computer vision, which can be briefly 

categorized into three types according to their 

instruments: monocular, binocular and depth cameras 

[1]. Compared with sensor-based activity monitoring, 

CV-based methods are visual and insightful, enabling to 

record various information, not only workers but also 

associated contexts [15]. At the beginning, computer 

vision is used to localize construction resources, 

including manpower, excavators, cranes, etc., providing 

a picture of space use on sites [16], predicting the 

proximity conflicts [17, 18]. After that, with the advent 

of deep learning techniques, motion recognition and 

tracking is available that specific body skeleton can be 

extracted from images or videos. Scholars then 

transform the technology into monitoring construction 

activities [19-21]. Risky and dangerous behaviors, such 

as falling from heights, not wearing a hat or personal 

protective equipment, hazardous materials, etc. are 

identified by cameras.  

The pros of sensor-based human posture detection 

contain direct and simple measuring principle, high 

accuracy and frequency, as well as low latency and cost. 

However, the cons of this detection are also distinct that 

the deployment is tedious and intrusive as people are 

prone to suffer from discomfort and motion restriction 

by the attached sensors. What’s more, the privacy issue 

of monitoring the personal data also exacerbates the 

problem. On the other hand, the considerable 

advantages CV-based human posture detection consist 

of non-intrusion into normal construction activities, 

easy deployment, remote monitoring, tremendous 

potential for artificial intelligence. Nevertheless, some 

disadvantages hinder the wide applications in practice. 

A primary disadvantage of CV-based human posture 

detection is the legal issue of intrusion of privacy that 

employees may object to being filmed under constant 

surveillance. Another disadvantage is the cost. As 

construction sites are always huge, high-resolution 

cameras are required, added by the instruments for 

transmission, compression and storage, it is expensive 

to purchase and keep the detection algorithms upgraded 

all the time. The third disadvantage is the non-line-of-

sight (NLoS) effect due to ambient occlusions that CV-

based detection performs badly without direct 

observations. What’s more, the illumination and 

transparency of exposed environment also have an 

adverse impact on the detection. Other disadvantages, 

such as low accuracy and high latency or frame loss, 

weaken the applicable ability in construction industry as 

well. 

Either sensor-based or CV-based human posture 

detection has exposed their weaknesses in literature and 

practice. This research therefore proposes a novel 

approach that leveraging the location and posture of a 

hand tool or power tool to detect the corresponding 

human postures by a single MEMS-IMU [22, 23]. This 

creative conceptual approach is not only a positive 

solution of personnel concerns and privacy that 

employees are not working under immediate 

surveillance, but also a non-intrusive and marker-less 

solution of human posture detection.  

3 Framework for tracking construction 

activities by tools 

This is an insightful conception that the way human 

beings make and use tools is perhaps what sets us apart 

more than anything else. In turn, tools also have positive 

impacts on our evolution. Workers in modern industries 

are always carry out their jobs with the assistance of 

valuable tools. 

Construction is a typical labor-intensive industry 

that a variety of construction assignments are 

accomplished manually. To improve the productivity 

and ensure the safety, diverse tools are designed and 

adopted on constriction sites, containing hand tools 

(tape measure, torpedo level, screwdriver, wrench, 

trowel, hammer, coping saw, etc.), as well as power 

tools (circular saw, drill. jig saw, orbit sander, angle 

grinder, etc.) in Figure 1. 
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Figure 1. Common hand and power tools can be 

integrated with an IMU sensor 

Thus, for these kinds of jobs using various assistant 

tools, the motions of tools apparently describe the 

detailed process of construction activities. For example, 

the trajectory of concrete vibrator suggests the area of 

concrete consolidation after pouring; the angular 

rotation of screwdriver indicates the effects of workers 

on the connection of reinforcement bars. The data of 

tools therefore not only suggest the status of 

construction activities, but also work as an event data 

recorder that record the associated information during 

specific events. When an accident happens, the 

information can be collected for analysis, to identify the 

status before, during and after the accident. 

The schematic model for this tool-based 

construction activity monitoring is illustrated in Figure 

2.  To monitor the construction activities, manual 

assignments are transformed into tool motions at first. 

For example, the acceleration of tools indicates the 

workload at the construction stage; the velocity and 

angular velocity (palstance) exposes the mobile 

characteristics of workers; and position, rotation of tools 

provides a relative reference of the postures of workers. 

Then the construction regulations, standards, or codes 

are represented by tool rules. By comparing the tool 

data and these rules, it is a quantitative way to 

determine whether the actual construction activity is in 

conformity to the existing strict regulations [24].  

 

Figure 2. Schematic model for the IMU tool 

system 

4 Data collection method 

Various methods can be considered for the 

implementation of the framework for tracking the 

construction activities on-site. Among the current 

cutting-edge technologies, electro-mechanical system 

inertial measurement units (MEMS-IMUs) are 

economic and easy-handling.  

 
Figure 3. IMU and IMU+BLE sensors to collect 

tool data 

As shown in Figure 3, the sensors are quite small 

and light, which can be integrated with power tools or 

installed on hand tools. This simple deployment ensures 

the non-intrusion during the construction stage.  

These sensors are able to collect acceleration and 

angular velocity as a tri-accelerometer and a tri-

gyroscope are imbedded in. Therefore, the task diagram 
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of IMU sensors is described in Figure 4. The IMU starts 

with measuring acceleration and angular velocity, and 

the calibrate each other according to the earth model. 

The adjusted acceleration is integral to produce velocity, 

and integral twice to generate displacement. Meanwhile 

the calibrated angular velocity is then integral to obtain 

the rotation and orientation at each time interval. By 

differential operation, the angular velocity can extract 

the angular acceleration as well. Noted that the 

magnetometer is more sensitive to tiny changes in 

direction, 9-axis is more common in applications as the 

measurement of magnetic field improve the accuracy 

significantly by calibrating at a high frequency. 

 
Figure 4. Task diagram of IMUs 

The kinematics of a rigid body like a tool is 

composed of translation and rotation. This research only 

focuses on the rotation component as it produces 

considerable impacts on bar connections. Although the 

initial data collected by MEMS-IMU is in Euler angle 

form, here the orientation is represented in quaternion 

form which is simple and efficient in transforming 

computation. Thus, a rotation around axis 𝒏  with an 

angle of 𝜃 is represented by 

𝑸 = [cos (
𝜃

2
) , sin (

𝜃

2
)𝒏] = [𝑞0, 𝑞1, 𝑞2, 𝑞3] (1) 

While the orientation 𝑹 is denoted by 

𝑹 = [0, 𝒓] = [0, 𝑟1, 𝑟2, 𝑟3] (2) 

The corresponding differential function is written by 

d𝑸

d𝑡
=

1

2
𝑸 ⊗ 𝝎nb

b  (3) 

where 𝝎nb
b = [𝜔𝑥 𝜔𝑦 𝜔𝑧]T , refers to the angular 

velocity of each axis. And the matrix form of formula 

can be represented by 

[

𝑞0̇

𝑞1̇

𝑞2̇

𝑞3̇

] =

[
 
 
 
 
0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0 𝜔𝑧 −𝜔𝑦

𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥 0 ]
 
 
 
 

[

𝑞0

𝑞1

𝑞2

𝑞3

] (4) 

As the MEMS-IMU measures the angular velocity at 

a constant frequency, the iteration formulation is 

𝑸(𝑡 + 1) = (𝑰cos
2Δ𝜃

2
+ Δ𝛀

sin
2Δ𝜃
2

Δ𝜃
)𝑸(𝑡) 

(5) 

where Δ𝛀 =

[
 
 
 
 

0 −Δ𝜃𝑥 −Δ𝜃𝑦 −Δ𝜃𝑧

Δ𝜃𝑥 0 Δ𝜃𝑧 −Δ𝜃𝑦

Δθ𝑦 −Δ𝜃𝑧 0 Δ𝜃𝑥

Δ𝜃𝑧 Δ𝜃𝑦 −Δ𝜃𝑥 0 ]
 
 
 
 

, refers to 

the direct output of MEMS-IMU, 

Δ𝜃 = √Δ𝜃𝑥
2 + Δ𝜃𝑦

2 + Δ𝜃𝑧
2  is the total changes of 

angular velocity. 

The initial quaternion is determined be the 

transformation matrix from the earth frame to the sensor 

body frame, which is represented by 

𝑪n
b = [𝒄𝟏, 𝒄𝟐, 𝒄𝟑] 

𝒄𝟏 = [
𝑞0

2 + 𝑞1
2 − 𝑞2

2 − 𝑞3
2

2(𝑞1𝑞2 + 𝑞0𝑞3)

2(𝑞1𝑞3 − 𝑞0𝑞2)

] 

𝒄𝟐 = [

2(𝑞1𝑞2 − 𝑞0𝑞3)

𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2

2(𝑞2𝑞3 + 𝑞0𝑞1)

] 

𝒄𝟑 = [

2(𝑞1𝑞3 + 𝑞0)

2(𝑞2𝑞3 − 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

(6) 

At the same time, ‖𝑸‖ = 1 that each quaternion of 

rotation and orientation is normalized. 

Although the integral approach appears to be 

accurate in theory, random noise, signal bias, etc. 

accumulates overtime. To improve the robustness and 

accuracy of rotation measurement, acceleration and 

magnetic field data collected by accelerometer and 

magnetometer are fused to orientation estimation by 

gyroscopes as well. Given a specific construction field, 

the direction of gravity and magnetic field are known. 

An orientation of the sensor frame relative to the earth 

frame is therefore calculated by comparing the 

measurement by gyroscope and by accelerometer and 

magnetometer.  

If the rotation quaternion relates the earth frame to 

the sensor body frame is denoted by 𝒒e
b, the expected 

measurement of acceleration and magnetic field in the 

earth frame is denoted by 𝒅e, meanwhile these in the 

sensor body frame measured in real-time is represented 

by 𝒔b . The fusion of acceleration data and magnetic 

field data is modeled as an optimization problem. The 

objective function is 

𝑓(𝒒e
b, 𝒅e, 𝒔e) = 𝒒e

b∗ ⊗ 𝒅e ⊗ 𝒒e
b − 𝒔b (7) 

To approximate to the minimum of the objective 

function, the corresponding gradient of the objective 

function is written by 

38



36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019) 

∇𝑓(𝒒e
b, 𝒅e, 𝒔e) = 𝑱T(𝒒e

b, 𝒅e)𝑓(𝒒e
b, 𝒅e, 𝒔e) (8) 

where 𝑱 is the Jacobian matrix.  

For acceleration data, 

𝒔e = [0 0 0 1] (9) 

𝑓(𝒒e
b, 𝒂e, 𝒔e) = [

2(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑎𝑥

2(𝑞0𝑞1 + 𝑞2𝑞3) − 𝑎𝑦

(1 − 2𝑞1
2 − 2𝑞2

2) − 𝑎𝑧

] (10) 

𝑱(𝒒e
b, 𝒂e) = [

−2𝑞2 2𝑞3 −2𝑞0 2𝑞1

2𝑞1 2𝑞0 2𝑞3 2𝑞2

0 −4𝑞1 −4𝑞2 0
] (11) 

For magnetic field, 

𝒔e = [0 𝑠𝑥 0 𝑠𝑧] (12
) 

𝑓(𝒒e
b,𝒎e, 𝒔e) = 

[

2𝑠𝑥(0.5 − 𝑞2
2 − 𝑞3

2) + 2𝑠𝑧(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑚𝑥

2𝑠𝑥(𝑞1𝑞2 − 𝑞0𝑞3) + 2𝑠𝑧(𝑞0𝑞1 + 𝑞2𝑞3) − 𝑚𝑦

2𝑠𝑥(𝑞0𝑞2 + 𝑞1𝑞3) + 2𝑠𝑧(0.5 − 𝑞1
2 − 𝑞2

2) − 𝑚𝑧

] 

(13
) 

𝑱(𝒒e
b, 𝒂e) = [𝑱𝟏, 𝑱𝟐, 𝑱𝟑, 𝑱𝟒] 

𝑱𝟏 = [

−2𝑠𝑧𝑞3

−2𝑠𝑥𝑞3 + 2𝑠𝑧𝑞1

2𝑠𝑥𝑞2

] 

𝑱𝟐 = [

2𝑠𝑧𝑞3

2𝑠𝑥𝑞2 + 2𝑠𝑧𝑞0

2𝑠𝑥𝑞3 − 4𝑠𝑧𝑞1

] 

𝑱𝟑 = [

−4𝑠𝑥𝑞2 − 2𝑠𝑧𝑞0

2𝑠𝑥𝑞1 + 2𝑠𝑧𝑞3

2𝑠𝑥𝑞0 − 4𝑠𝑧𝑞2

] 

𝑱𝟒 = [

−4𝑠𝑥𝑞3 + 2𝑠𝑧𝑞1

−2𝑠𝑥𝑞0 + 2𝑠𝑧𝑞2

2𝑠𝑥𝑞1

] 

(14
) 

In this research, acceleration, angular velocity and 

magnetic field data are available, 9-axis MEMS-IMU 

algorithms is therefore applied to fuse and combine 

these data for compensating distortion, filtering 

erroneous data and smoothing. The fundamental way to 

accomplish this goal is Kalman filter.  

Consider the spatial-temporal characteristics of a 

construction tool is a state vector that contains a series 

of variables. The model assumes that the true state at 

current time t is evolved from the state at the previous 

time t - 1. This discrete-time linear stationary model 

without control loop can be represented by 

𝒙𝑡 = 𝚽𝒙𝑡−1 + 𝚪𝐰t−1  (15) 

where x is the state vector, 𝚽  refers to the state 

transition matrix, 𝚪  is the control matrix of noises, 

𝐰~𝓝(𝟎,𝐖t)  represents the process noise that is 

assumed to be generated from a zero mean multivariate 

normal distribution 𝓝 with covariance 𝐖t. 

Concurrently, the measurement process is: 

𝒛𝑡 = 𝐇𝒙𝑡 + 𝐯t  (16) 

where H is the observation matrix and 𝐯~𝓝(𝟎, 𝐕t) is 

the observation noise that drawn from a zero mean 

Gaussian distribution 𝓝 with covariance 𝐕t. 

5 Pilot study and results 

As shown in Figure 5, IMU sensors can be deployed 

on the surface of a wrench, a hammer, etc. By tight 

connection, the data collected is according to the 

location of sensors, that is to say, the crucial axis for 

analysis is determined by the position and relation 

between sensor deployment and the core motion space.  

 

Figure 5. Deployment of IMU sensors 

The MEMS-IMU sensor tested here required extra 

battery support, and the chip is named JY901. The 

weight is 40 g and the size is less than 2 cm
2
, almost 

non-intrusive when used. 

Assume a wrench is adopted to apply torque to turn 

a screw for connection. Wireless MEMS-IMU is the 

device collecting the data of the combination wrench, 

providing a quantitative assessment of turning. In 

addition, a rubber mallet is also tested to conduct a 

wood work, requiring a softened strike with a positive 

drive. 

In Figure 6, the curves of raw data revealed the 

turning process by a wrench rotating around y-axis. It 

could be seen that the turning job appears to be cyclic in 

much the same way as a wave with various frequencies. 

By integral operation, the rotation angle of turning 

process was shown in Figure 7. The cyclic pattern was 

more apparent that each cycle ranged from 0 to 90 

degree at the begging time for applying torque, and then 

decreased to the initial position for the next cycle. In 

this experiment, 22 cycles were counted and the total 

rotation angle of turning was around 1442 degree, that 

means the screw has been turned for 4 circles. While the 

actual rotation was 1620 degree, and the relative 

measurement error was 10.99%. 

39



36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

 
Figure 6. Angular velocity of turning collected 

by MEMS-IMU 

 

Figure 7. Rotation of turning collected by 

MEMS-IMU 

On the other hand, the angular velocity of 

hammering process in Figure 8 exposed another kind of 

cyclic patterns. Here, x-axis was the rotation axis that 

the rubber mallet was held to hit on the objective panel. 

The extreme values of palstance were much higher than 

those of turning process. At the same time, the rotation 

angle of hammering was also larger as shown in Figure 

9. The process begun with hanging on the mallet at the 

rotation angle of zero, then fell down as the rotation 

angle raised up to around 90 degrees. However, the 

measurement of highest rotation angles in each cycle 

was not accurate that the obtained value was more than 

143 degrees. The error was unacceptable at this moment, 

which required to be improved in the future.  

 

Figure 8. Angular velocity of hammering 

collected by MEMS-IMU 

 
Figure 9. Rotation of hammering collected by 

MEMS-IMU 

By comparing the different cyclic patterns from 

these two preliminary experiments, the extracted raw 

data clearly revealed the spatial-temporal characteristics 

of the different construction activities. Although the 

data was not so accurate because the current MEMS-

IMU algorithm enlarged the cumulative errors over time, 

these two pilot studies have shown the potential of the 

proposed IMU-based tool system for monitoring the 

construction activities in a timely and automated 

manner. 
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6 Conclusion 

This study proposed a feasible solution to monitor 

the construction activities without intrusions by 

collecting and analyzing the IMU data of hand tools 

used in the construction processes. Two simple 

experiments validated the novel concept and the 

preliminary framework. However, further developments 

were required in the future research, containing the 

reduction of random errors and cumulative errors and 

the pattern recognition for various tools and activities.  
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