
36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

A Review of Data-Driven Accident Prevention Systems: 

Integrating Real-Time Safety Management in the Civil 

Infrastructure Context 

A. Assadzadeh
a
, M. Arashpour

a*
, A. Rashidi

b 
, A. Bab-Hadiashar

c
, and S. Fayezi

d
 

aDepartment of Civil Engineering, Monash University, Australia 
bDepartment of Civil Engineering, Monash University, Malaysia 

cSchool of Engineering, RMIT University, Australia 
dBusiness and Economics Faculty Office 

*E-mail: Amin.AssadzadehBirjandi@monash.edu, Mehrdad.Arashpour@monash.edu 

 

Abstract – 

Statistical reports point to the fact that civil 
infrastructure projects remain hazardous working 

environments. Despite the implementation of various 

safety procedures, the frequency and cost of work-related 

injuries are significant. Improvements in sensor 

technologies, wireless communication and processing 

power of computers as well as advancements in machine 

learning and computer vision are now enabling data-

driven systems as effective safety barriers for accident 

prevention. In recent years, many researchers have 

studied various methods of leveraging technology to 

improve safety in civil infrastructure projects. However, 

previous investigations have not produced a thorough 
analysis of the practicality of those approaches. While 

considerable progress has been made in developing 

methods to improve construction safety, few studies have 

focused on implementation of data-driven real-time 

accident prevention systems to effectively minimize risk 

in the event where other safety measures have failed or 

been absent. Motivated to facilitate the development of 

such method, this paper carries out thorough analysis of 

the field and its trends, identifies research gaps, provides 

a discussion of recent advancements, and highlights 

future research directions to help researchers gain an up-
to-date overview of the state-of-the-art and navigate 

through this domain efficiently. 
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1 Introduction 

Around 15% of occupational fatal accidents have 

occurred on construction sites across Australia, where 

construction only accounts for 5% of the workforce [1]. 
In the same year, United States construction fatalities 

alone amounted to 991 lives lost [2]. In the past decades, 

research on safety climate and culture, worker-oriented 

safety, safety management programs, hazard recognition 

and risk assessment, and applications of information 

technology in construction safety has led to 

improvements in overall safety performance [3].  

However, the number of fatal and non-fatal accident 

injuries still remain significantly high in the construction 

industry. 

Recent advancements in machine learning, computer 

vision, and increased affordability and processing power 
of advanced technologies have prompted researchers to 

work towards the development of data-driven accident 

prevention systems, adding a technology-driven safety 

layer to construction sites.  

Given that safety is an ongoing issue on the 

construction site, the development of continuous safety 

monitoring systems has great potential to improve safety 

risk management. As described by Australia’s Work 

Health and Safety Act (WHS), the risk management 

process involves identification hazards, assessing risks, 

controlling risks, and reviewing control measures [4], [5].  
This paper provides a review of recent developments 

of data-driven accident prevention systems designed to 

improve construction safety. It reveals the trend of 

technologies and approaches being used, and discusses 

their potential applications, and identifies future research 

directions. As such, it can be used as a guide for 

researchers interested in this particular domain to study 

an up-to-date account of state-of-the-art research. 

2 Review methodology 

A methodological approach is employed to conduct a 

comprehensive review. Scopus was selected as the 
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database for the search, and the keywords such as 

construction safety management, machine learning, 

computer vision, sensors, information and 

communication technology, building information 

modeling and so on, were used for the initial search. The 

returned results are screened based on their title and 

abstract, and out of 982 documents, 118 were found to be 

relevant. To ensure a more comprehensive and thorough 

search, an explorative search was also carried out, 

leading to an additional 125 documents found, amounting 

to a database of 243 journal articles in total. Section 3 
provides an overview of the selected articles, and critical 

review of the most relevant papers is carried out in 

section 4 of this study. 

3 Analysis of the domain 

The database of the selected papers cover articles 

published from 2006 to 2018. The number of relevant 

papers did not exceed 6 before the year 2012. In the past 
few years, however, the number of publications have 

risen significantly, due to increased interest in using 

sensor technologies and vision-based systems, wherein 

2018 it nearly doubles to 78 publications. The analysis 

reveals that the United States, China, and South Korea 

are the top three countries contributing to the domain. 

Figure 1 shows the distribution of selected articles by 

year and country of affiliation. 

 

 
 

 
 

Figure 1. Distribution of articles by publication 

time, and country of affiliation 

 

Table 1. Journals and the number of corresponding 

articles 

Journal Number of 

Appearances 

Automation in Construction 93 

Advanced Engineering Informatics 23 

Journal of Computing in Civil 

Engineering 

21 

Journal Of Construction Engineering 

And Management 

17 

Safety Science 16 

Visualization in Engineering 12 

Sensors (Switzerland) 6 

Engineering Construction And 

Architectural Management 

4 

Journal Of Management In 

Engineering 

4 

 

The selected studies include publications from more 

than 35 different journals. Table 1 lists the journals 

publishing more than four papers within the selected list 

of articles. Not surprisingly, Automation in Construction 

has contributed the most to this domain, with more than 

38% of the papers being published in this journal. Other 

relevant journals include Advanced Engineering 

Informatics, Journal of Computing in Civil Engineering, 

Journal of Construction Engineering and Management, 
and Safety Sciences, each representing more than 15 

papers in the selected database. 

Based on the database of selected articles, co-

publication of authors are analyzed using Gephi, an open 

source graph and network analysis software [6]. Figure 2 

shows the network of the most prominent scholars, active 

in the domain.  

 

 

Figure 2. Network of the most influential scholars 

in the domain 
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4 Data-driven safety risk management 

This section provides an overview of latest 

developments in data-driven accident prevention systems 

and discusses their relation to various steps of safety risk 

management as described by Australia’s Work Health 

and Safety Act (WHS) [4], [7]. The following 

subsections cover the impact of such systems on 
identification of hazards, assessing risks, controlling 

risks and reviewing control measures.  

4.1 Hazard identification 

Hazard identification is the process of finding entities 

or situations that have the potential of causing harm. 

Developing data-driven systems for real-time hazard 

identification is a crucial step towards intelligent safety 

management. Three different approaches to hazard 

identification are discussed in this section. First, an 
indirect approach, which attempts to identify hazards by 

analyzing data from the construction site for anomalies 

that may be suggestive of an existing hazard. Second, 

identifying hazards as they directly relate to workers’ 

behavior. And the last approach is to monitor the 

workplace for specific anticipated hazards.  

4.1.1 Indirect hazard identification 

Considering the dynamic nature of a construction site, 

regular safety inspections need to be carried out to ensure 

a hazard-free work environment. However, since 

inspections are often manually performed, it is not 
uncommon for newly appeared hazards to remain 

unidentified for a prolonged period of time, exposing 

workers of the site to risks of trip, fall, struck by falling 

objects, electrocution or other accidents. Continuous 

monitoring of the site can therefore immensely facilitate 

safety management. An innovative approach to 

automatically identify hazardous areas has been proposed 

by Kim et al. [8]. In this study, a real-time tracking 

system is used to identify potentially hazardous areas by 

comparing workers’ actual path to their optimal routes. 

Location tracking is performed using an RFID-based 

Real-Time Location Tracking System (RTLS), where 
RFID tags are mounted on workers’ hardhats. Upon 

testing the framework in a case study, it was found that 

80% of the identified hazards by the system corresponded 

to real hazards such as material piles, openings, areas 

with inadequate electric wire protection, and areas with a 

lack of falling object protection. 

Although RFID technology is used in various 

industries for tracking some entities, the rapidly changing 

nature of the construction sites and their complexity 

make effective use of RFID very challenging. RFID 

requires a direct line of sight for optimum accuracy, 
which is a condition hard to realize in construction. In 

addition, it requires installation of multiple tags and 

receivers which limit its practicality [9]. 

Ultra-wideband (UWB) is another radio frequency-

based technology used for location tracking. UWB uses 

high-bandwidth radio pulses for communication, which 

makes it less susceptible to signal interferences. However, 

it still requires installation and maintenance of multiple 

tags and receivers [10]. 

Global Positioning System (GPS) has also been 

widely used to track workers’ trajectories in construction 

sites in order to improve safety. For instance, Arslan et al. 

[11] demonstrated a prototype of a GPS-based system for 
identifying stay points, the intersection of multiple 

trajectories, and classifying the trajectory into running or 

walking. Such semantic enrichment of data using various 

data mining and machine learning techniques helps 

improve the decision-making process by providing 

insight on workers’ behavior. 

Vision-based systems as an alternative to other 

methods for tracking various entities on construction 

sites has recently attracted researchers’ attention. 

Although still in early stages of development, vision-

based systems have the advantage of not requiring 

installation of multiple tags, have lower costs, and are 
easier to maintain.  

Park et al. [12] propose a vision-based method that 

uses videos obtained from ordinary 2D cameras, and 

employs detection and tracking algorithms in a hybrid 

system for tracking entities. However, the method is 

limited to tracking workers across video frames, and is 

unable to produce trajectories with respect to the 

workplace.  

In another study, Konstantinou et al. [13] developed 

a framework for obtaining 3D trajectories using multiple 

camera views. The proposed method uses three 
sequentially activated matching techniques. The output 

of a 2D tracking method is first checked using a motion 

matching technique, followed by a geometry matching, 

and finally a template matching technique. In any step if 

a match is found, further checking is terminated, 

therefore significantly reducing the required 

computational power. 

In a comparative study, Xiao et al. [14] evaluated the 

performance of a number of 2D vision-based tracking 

methods employed in the context of construction. Their 

study showed that although vision-based systems have 

promising potentials, many challenges such as occlusion, 
clutter, illumination, and scale variation need to be 

tackled for practical deployment of such systems. 

Another innovative approach for identifying potential 

hazards based on real-time information obtained from 

construction site was proposed by Yang et al. [15]. They 

propose using wearable Inertial Measurement Unit 

sensors to analyze workers’ gait abnormalities to identify 

potential fall hazards. In their experiment, subjects were 

asked to walk across a steel beam in a controlled 
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environment. There were two hazards placed along the 

beam, a slippery surface, and an obstacle. Upon analysis 

of data obtained from multiple subjects, it was found that 

the correlation between collective gait abnormality and 

presence of a hazard is significant. However, this study 

was limited to one dimension only. The extension of such 

method to two or three dimensions by taking advantage 

of location tracking methods as discussed above would 

provide valuable information that could be used for 

effective real-time hazard identification. Moreover, such 

spatio-temporal data enriched with information about 

gait pattern, activity, etc. can be used for further analysis. 

4.1.2 Behavior-related accident precursors 

Construction accidents are often directly related to the 

worker’s behavior. In an investigation of identifying the 

root causes of accidents, Abdelhamid et al. [16] 

explained that accidents occur either due to the failure of 

workers in identifying hazards, workers deciding to 

proceed despite identification of hazardous condition or 

workers deciding to act unsafely regardless of work 

condition. 

Real-time safety monitoring systems have great 

potential to be used as supplementary tools for safety 
supervision. Workers’ disregard of hazards often 

manifests itself in lack of adequate personal protective 

equipment usage. Recent advancements in computer 

vision and machine learning provide powerful tools for 

object detection using images. For instance, Park et al. 

[17] used Histogram of Oriented Gradients along with 

Support Vector Machines to detect human bodies and 

hardhats, and by matching geometric and spatial 

relationship of the two, identify cases where the person is 

not using a hardhat.  

Fang et al. [18] developed a method for monitoring 
appropriate usage of harness, anchoring and hardhats by 

steeplejacks. In the proposed method, cameras are 

installed inside the rooms and facing the windows where 

steeplejacks are to perform the aerial work on exterior 

walls. They use the Single Shot MultiBox Detector (SSD) 

algorithm, which uses Convolutional Neural Networks 

(CNNs), and reported precision and recall rates of higher 

than 90%. 

In a similar study, Fang et al. [19] used Faster R-CNN, 

and a deep CNN model to identify workers not wearing 

a safety harness when working at height. Using 

automated safety inspections, safety managers can be 
notified of unsafe behaviors, and take appropriate action 

to mitigate the risks in a timely manner.  

A different approach of identifying unsafe behaviors 

was proposed by Guo et al. [20] whereby they used depth 

cameras to identify various postures related to unsafe 

behavior. Various body angles obtained from the 

skeleton-based posture information are compared to an 

unsafe behavior database in order to identify postures that 

are suggestive of unsafe actions, such as jumping over a 

guardrail or dumping construction waste from higher 

levels.  

Other forms of unsafe behavior leading to hazardous 

conditions include working under the influence of drugs 

or alcohol, working under a high level of fatigue or 

attempting a hazardous task with low relevant skill level. 

One example is the loss of balance possibly induced by 

the aforementioned factors. To address this issue, Umer 

et al. [21] developed a balance monitoring tool that uses 

wearable Inertia Measurement Units (IMUs) and fuzzy 
set theory to determine workers’ balance performance by 

taking 20-second tests at different times of the day. 

Monitoring physiological condition of workers using 

Physiological Status Monitors (PSMs) has also been 

explored [22]. Using these methods, metrics such as heart 

rate and breathing rate can be monitored, providing 

valuable information for identifying unsafe working 

conditions as they arise. 

High levels of stress induced by schedule pressure or 

other factors may cause workers to act unsafely in certain 

conditions. Therefore, it is essential to provide a work 

environment, which is free of stress-producing 

conditions.  

4.1.3 Workplace-related accident precursors 

Certain hazards can be identified by monitoring the 

workplace for specific accident precursors. One example 

is site congestion. Congested working areas are more 

prone to accidents. Location tracking systems as 

discussed in section 4.1.1 can enable workplace analysis 

in terms of congestion. Zhang et al. [23] used GPS 

sensors attached to workers’ hardhats to track their 

activity while working on cast-in-place concrete columns. 

The workspaces were then visualized in a BIM platform 
to identify conflicts among other work-zones or material 

handling paths.  

Environmental factors of the site such as temperature, 

noise level, and pollutants are important workplace 

hazards that require constant monitoring. For instance, 

Riaz et al. [24] have proposed using wireless sensor 

networks for monitoring workplace temperature 

conditions, and integrating the system with a BIM 

platform for enhanced work and safety management. 

Temporary structures on construction sites are 

another aspect requiring a thorough inspection to ensure 

all safety requirements are met. Safety inspection of 
scaffolds, for instance, is performed visually by the 

inspector and is a labor-intensive process. Cho et al. [25] 

proposed a system for real-time safety monitoring of the 

structure using strain sensors mounted on the scaffolds. 

With the aid of Finite Element Method (FEM) analysis, 

they develop a machine learning model to classify 

various states of the scaffolds such as over-loading, 

uneven settlement, and over-turning based on the data 
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obtained from the strain sensors.  

Vision-based systems also have the potential to be 

used as an effective monitoring method to ensure 

worksite safety. Kolar et al. [26] explored using transfer 

learning and CNN-based models for detecting guardrails 

in images. Furthermore, an improved version of Faster R-

CNN can be used for detecting workers and equipment in 

images of civil infrastructure projects [27]. 

Often in construction sites, workers are required to 

perform their task alongside heavy equipment in a shared 

working area and therefore are exposed to high risk of 
struck-by accidents. Developing proactive real-time 

alarm systems are another active area of research. In a 

recent study, Soltani et al. [28] developed a method, 

fusing computer vision based systems with real-time 

location systems to estimate the poses of excavators in 

three dimensions, using surveillance cameras installed on 

the construction sites as stereo-cameras. 

Understanding task-specific accident precursors, and 

defining quantitative metrics for evaluation of unsafe 

behaviors or conditions will facilitate the development of 

effective real-time monitoring systems.   

4.2 Risk Assessment 

Assessing risks associated with the identified hazards 

requires consideration of how severe the consequences 

are if someone is exposed to the hazard, and how likely 

it is to occur. Data-driven systems facilitate the process 

of risk assessment and reduce the bias caused by the 

subjectivity of the analysis. 

The context in which hazards appear and the co-

occurrence of various hazards determine the severity and 

likelihood of risks. For instance, in the case of struck-by 
accidents, heavy equipment approaching a worker in a 

congested working area is more likely to cause an 

accident than one approaching worker spacious area. 

Similarly, the close proximity of a worker and equipment 

is more indicative of high risk if the worker is standing in 

the blind spot of the equipment. Seo et al. [29] developed 

a method to monitor struck-by accidents using computer 

vision. They propose using fuzzy inference for 

determining the safety level, based on risk factors such as 

congestion and proximity. 

Evaluating safety and health risks associated with a 
given task is another important part of safety 

management. A number of studies have focused on 

methods of performing ergonomic analysis in a 

minimally intrusive way. The rapidly changing and 

complex nature of construction make reliable ergonomic 

assessment challenging. To address this issue, 

researchers have developed data-driven systems to 

quantitatively perform ergonomic risk analysis [30]. The 

outcome of such systems can be used to improve safety 

training, planning, and task design.  

For instance, insole pressure sensors have been used 

to detect and classify awkward working postures. In a 

study, Nath et al. [31], using accelerometer and 

gyroscope sensors built-in in smartphones, and machine 

learning algorithms estimated duration and frequency of 

various activities. And by doing so evaluated the 

overexertion risk level associated with the task. 

Vision-based systems have also been used to perform 

ergonomic risk assessment using posture analysis based 

on body angles. Golabchi et al. [32] proposed a 

framework for data collection, analysis, and visualization 

to facilitate ergonomic analysis. Vision-based techniques 
that utilize CNNs, to estimate 3D skeleton of the subject 

from 2D images for ergonomic assessment have also 

been reported.  

Risk assessment is a crucial step in safety risk 

management. Therefore, development of effective 

automated safety monitoring systems requires the 

integration of data-driven risk assessment systems into 

the frameworks. 

4.3 Control risks 

Controlling risks, once identified and assessed, can be 

categorized into three levels based on their effectiveness. 

The most effective level of control is elimination [33]. 

Real-time safety monitoring systems facilitate 

elimination control by identifying newly appeared or 

unidentified hazards and informing safety managers or 

site supervisors, which will then take the necessary steps 

to eliminate the risks if applicable. 

The second level of control includes substitution of 

the hazard with a safer alternative, isolating the hazard 

from people, or reducing the risks through engineering 

controls [34]. Safety will be enhanced by timely 
identification of hazards, and notification of the people in 

charge to take appropriate actions. In addition, real-time 

safety alarm systems that will notify the workers or 

equipment operators of danger can be considered as 

another form of engineering control, driven by data-

driven monitoring systems.  

The last level of control is aimed at reducing exposure 

to hazards. This level includes methods such as Personal 

Protective Equipment (PPE) and administrative controls. 

Proper usage of PPE is often overlooked on construction 

sites. Real-time monitoring systems provide a promising 
solution to continuous supervision of their appropriate 

utilization. The data obtained from real-time systems can 

also be used for trend analysis and evaluating safety 

culture at different work zones or various stages of the 

project. Thus, facilitating targeted administrative 

controls, and enhancing safety training quality.  

4.4 Safety  Control Measures 

The last step in the safety risk management process 

refers to performing hazard identification, risk 
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assessment and controlling risks repeatedly to ensure 

appropriate control measures are taken at all times. Data-

driven monitoring systems facilitate automation of the 

process. By continuously monitoring the workplace and 

workers’ conditions, the automated safety risk 

management systems supplement human supervision to 

effectively prevent accidents at the construction site. 

5 Discussion of Research Gaps 

In this study, we have reviewed various aspects of 

safety risk management that can be improved using data-

driven systems. This section identifies a number of 

research gaps and suggests future research directions. 

1. At the current stage, most studies have focused on 

the development of monitoring systems that collect 

and process certain types of information from 

various entities at construction sites (e.g. workers’ 

gait pattern, physiological state, workers’ activity, 

workspace congestion, temperature, etc.). A 
desirable feature would be a framework for 

combining information obtained using various 

methods into an integrated system. The added 

dimensionality to the data can provide managers 

with valuable information. For example, a system 

that is able to detect safety violations can be 

extended to include more information such as 

where the violation has occurred, information about 

the subcontractor, environmental factors at that 

time (e.g. temperature), and information about the 

physiological conditions of the workers. 

2. Near-miss events are important safety-leading 
indicators that are often left unreported and 

undocumented. Although frameworks, which 

facilitate the process of reporting near-misses and 

visualizing them through BIM have been proposed 

[35], the possibility of using real-time monitoring 

systems to identify and document near-misses 

automatically has not yet been fully explored. 

3. Real-time monitoring systems create enormous 

amounts of data. Further domain specific studies, 

including Big Data Engineering and Data Analytics, 

are required to extract valuable information from 
data obtained from real-time monitoring systems, 

and explore their applications to construction safety 

[36][37]. 

4. Visualization of information obtained via real-time 

monitoring systems through BIM platforms can 

improve analysis, facilitate accessibility, and 

enhance communication and training. While some 

studies have explored the integration of wireless 

sensor networks with BIM [38], solutions that 

combine vision-based monitoring systems with 

BIM platforms have not been sufficiently explored.  
5. Rapid advancements in the field of computer vision, 

and an abundance of cameras on construction sites 

create an exceptional opportunity for vision-based 

techniques to be used as effective monitoring 

systems in the industry. However, the majority of 

vision-based studies have evaluated their proposed 

algorithms on datasets that are proprietary to that 

project and are often small in size. Lack of  publicly 

available large datasets for construction safety 

monitoring that can be used as benchmarks makes 

performance comparison of various algorithms 

difficult.  
6. Further research in the identification of critical 

accident precursors as they relate to fall, struck-by, 

caught in or between, and electrocution, and 

detailed breakdown of each accident precursor by 

defining quantitative parameters to be monitored 

can accelerate the development of automated 

monitoring systems.  

6 Conclusion 

Developing sensor-based systems for improving 

construction safety has recently gained a considerable 

amount of attention. In particular, vision-based 

monitoring systems have become an active topic of 

research in construction. This study has provided an 

overview of recent advancements in the domain as they 

relate to safety risk management and mapped the area for 

future work. 

Safety risk management as described by Safe Work 

Australia {4} includes four steps, identifying hazards, 

assessing risks, controlling risks, and reviewing control 
measures. The impact of data-driven systems on each 

aspect of the process, along with examples of various 

methods employed by researchers have been discussed. 

The reviewed studies cover a range of technologies and 

approaches being used. These include but are not limited 

to utilization of wireless sensor networks, RFID, UWB, 

IMUs (accelerometers and gyroscopes), and vision-based 

techniques for location tracking, gait analysis, object 

detection, activity recognition, ergonomic assessment, 

and so on for the development of data-driven accident 

prevention systems. 
Data-driven systems can be used for automated 

continuous monitoring of construction sites. They can be 

used to proactively prevent accidents by notifying 

workers or equipment operators of an incoming hazard. 

Further, such systems can be used to notify safety 

managers or site supervisors of unidentified, or newly 

appeared hazards. As a result, necessary actions can be 

taken in a timely manner to prevent accidents.  

The overview provided in this study can be used as a 

guide for researchers pursuing research on intelligent 

accident prevention systems. It is acknowledged that this 
review study is only limited to construction industry. 
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Future research effort should examine state-of-the-art 

techniques and technologies used in other sectors and 

consider their applicability to tackling construction safety 

challenges.   
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