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Abstract – 

Autonomous inspection of roads is gaining interest to 

improve the efficiency of road repair and 

maintenance. In this paper we will be showing the 

potential for using Hyper Spectral Cameras, HSC, to 

identify road defects. The key idea of this paper is that 

cracks in the road show the interior material of road 

pavement which have different chemical composition 

from the surface materials due to surface wear. 

Material changes of the road surface give rise to a 

spectral signature that can be easily detected in HSC 

images. This condition facilitates the detection of 

cracks and potholes, which can be difficult if working 

in the visible spectrum domain only. We report on 

experiments with a HSC to identify the road material 

changes and their association to cracks and potholes. 

A new metric is devised to measure the amount of 

metal oxides and associate its absence to the 

appearance of cracks. The metric is shown to be more 

discriminative than previous indicators in the 

literature. 
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1 Introduction 

Detection of road cracks from images is difficult 

since cracks are dark, only have few features and hard to 

distinguish from road texture [1]. As a result, state of art 

road crack detection systems suffer from low recall and 

high false positive rates as reported by [2] [3]. Hyper 

Spectral Cameras, HSC, are considered in this paper in 
search for more discriminative clues for crack detection. 

HSC are used to measure typically spectral range of 

350nm-2500nm which contains spectra beyond the 

human vision range (400nm-700nm). Hyperspectral 

imaging, though relatively expensive and developed 

mainly for satellite and scientific imaging, is now 

becoming affordable and can be exploited for city road 

monitoring. HSC can be used to identify changes of 

surface materials if it has a unique spectral signature. Our 

interest is to exploit HSC fitted on drones for road and 
infrastructure surface inspection to detect cracks and 

anomalies.  

Hyperspectral imaging, HSI, has been used 

previously to classify road conditions from satellite 

images [4] [5] [6] [7] [8]. The research was intended to 

classify road conditions in general and the spatial 

resolution cannot detect road cracks or defects. Only few 

papers considered the detection of pavement cracks 

based on hyperspectral data [1] [9] [10]. In such case 

HSC were fitted on drones of low altitude flights to have 

higher spatial resolutions to enable observing cracks. The 
previous studies considered using descriptors of the 

spectrum such as the VIS2 (intensity difference between 

830nm and 490nm-showing metal oxide content) and 

Short Wave Infra-Red, SWIR (Intensity difference 

between 2120nm and 2340 showing hydrocarbon 

content). The metrics measure the rise and decay of 

spectral response curve at the wavelength regions for 

metal oxides and hydrocarbon which usually 

characterizes road conditions. These metrics have also 

been linked [11] to the Pavement Condition Index, PCI, 

(A standard metric by ASTM D6433 and D5340, used to 

indicate the condition of road pavement and ranges 0-100) 
and is usually computed using visual surveys [5].  

In this paper, a new spectral descriptor is proposed to 

describe the spectra of road pavement and, in particular, 

assist the search for cracks. New roads are mainly 

composed from minerals and hydrocarbons, while 

deteriorated roads show more metal oxides on their 

surfaces [5]. The regions sensitive to both metal oxides 

and minerals are shown in Figure 1. The hypothesis of 

this paper is that cracks have a different chemical 

composition as shown schematically in Figure 2 and 

therefore, present a unique spectral response. That 
response can be used to distinguish cracks from un-

cracked road surface material. A novel metric is proposed 

to measure the content of metal oxides from the spectra 

and associate its depletion to the appearance of road 

anomalies or cracks. 
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This paper is structured as follows: The next section 

outlines the relevant work in road condition analysis 

using hyper-spectral imaging, then, the new algorithm is 

described in detail in section 3. The experiments and 

results on real road conditions are described and 

discussed in section 4, whilst conclusions are drawn in 

section 5. 

2 Related Work 

Hyper-Spectral Imaging, HSI has been used in space 

and satellite cameras for remote sensing and analysis of 

natural resources and several other forestry and 

agricultural applications [12]. Some applications have 

used HSI as a tool for detecting forgery in art work [13]. 

It have also been used for art work authentication and for 

crack detection in paintings [14]. There is currently an 

increasing interest in the application of HSC with UAV 

to monitor the conditions of city roads, see [12] for a 

review of UAV based sensors. A simple UAV system 
was described in [15] for application in forestry and 

agriculture.  

Several basic problems are still inherent in the use of 

HSI and infra-red imagery. One is the need to measure 

the illumination colour, online rather than with a single 

measurement before using the sensor as is the current 

practice [16]. Another basic problem is blurred edges 

[12], since it severely affect the measurements due to 

spectral aberrations on edges and several studies have 

focused on de-blurring edges [17] [18]. 

Spectral mixing also occurs since one pixel of a 

satellite camera may represent more than five metres of 
different materials on earth. Hyperspectral un-mixing is 

useful for satellite images since it can improve the 

resolution and show different material contents. This 

effect is less significant when the camera is used at close 

range to surfaces. Hyperspectral images have been 

processed by super-resolution systems through different 

successful methods and reported to improve the spatial 

detection of target in typical 4 m resolution satellite 

images. [19] However, the issue of compromise between 

the spatial and spectral scale in hyperspectral imaging is 

critical and was the subject of extensive research in 
remote sensing [6] [20]. Table 1 summarizes the major 

works in the literature and their significant features. The 

table shows three categories of research namely: basic 

problems, physics-based solutions and pure learning 

approaches. 

2.1. Physics-based approaches 

Several spectral descriptors were developed in 

spectral and spatial domains for the classification and 

object detection in hyperspectral images [9] [18] [20] 

[21]. Approaches to associate the spectra of roads 

monitored from satellite with road conditions in general 

(not for crack detection) have been reported in [4] [10] . 

The simplest spectral descriptors were devised to 

measure the rise and decay of spectral response curves 

for road materials in the full spectral range of typical 

HSC that is (400nm-2500nm). 

The spectral descriptors are known as VIS2 and 

SWIR ratios [10]. The ratios were used as metrics for a 

material with the following definition [8]: 

 

 
where I is the intensity of light and (lambda)is the 

wavelength in nanometer, nm. The ratio SWIR is defined 

as: 

 
It should be noted that the metric VIS2 is termed as a 

ratio in the literature, while it is mathematically a 

difference. Therefore, we preferred to define it as two 

metrics, namely the difference and the ratio. 

The frequency domain has been exploited to derive 

spectral metrics. A spectral similarity measure was 

suggested [22] using the magnitude values of the first few 

low-frequency components for spectral signature. 

Harmonic analysis was also used to describe the spectral 

reflectance and recognize objects [23].  

The design of a spectral descriptor requires a 
compromise between accuracy and simplicity. It seems 

that a precise descriptor is required, which is easy to 

compute and encapsulates all the precious information 

obtained from the camera spectra. This was highlighted 

in [6] where they discussed whether Hyperspectral 

imaging with huge number of spectral bands is really 

required rather than using a limited number of bands, in 

a multi-spectral imaging fashion, at a much reduced cost. 

2.2 Pure learning approaches 

Deep learning and convolutional neural networks 

have been used in a purely learning approach to identify 

features in both spectral and spatial domains. 

Classification from a training set, such as the work 

reported by [24] [25]. The work in this category is 

interesting, especially for unsupervised classification, 

since there is a limited set of labelled data for training in 
general. It is also challenging due to the huge 

computational complexity of deep learning added to the 
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complexity of the spectral cube typical for HSI [26]. 

Feature mining had also been reported to learn 

discriminative features from datasets through feature 

selection and reduction methods [27]. 

 

 

 

 

 

 

3 The New Descriptor 

A typical response curve from HSC is shown in 

Figure 1; the camera used is working in the Visible and 

Near Infra-Red, VNIR spectral range. That means the 

spectral range that can be of interest for road material 

change detection, and hence cracks, is the range showing 
metal and iron oxide in particular. The response in the 

VNIR range changes significantly for road based on age 

and wear as reported in several studies (e.g., [6] [8] [28]). 

The main idea is explained schematically in Figure 2. 

The crack shows the internal pavement material which is 

different in composition from the road surface due to 

surface wear. The surface usually reflects light similar to 

metal oxides because of gravel pigments and loss of the 

bonding asphalt rich in hydrocarbon and oil. 

In the previous work, only the intensity at two 

spectral bands was used to derive the VIS2 ratio. The new 
descriptor relies on the observation from Figure 3, that 

the slope is different between cracks and normal surfaces 

in the range 450-550nm. In this paper, the approximate 

line that represents the spectrum in the region between 

450nm and 550nm is found. The slope, S, of a line is 

computed using the least squares method in the range 

[450nm - 550nm]. The angle of the line from the 

horizontal axis is then fond through the following 

equation: 

 
The reason to select the range (450nm-550nm) is that 

it is representing the change of metal oxides in response. 

It is observed in Figure 4 of the spectral response that this 

particular region is almost straight without curves. This 

justification is proved empirically through the 

experiments.  

There is an assumption that the surfaces are clean 

because the spectral response depends on the surface 
condition. Fortunately, the weather in the UK is often 

rainy, which increases the probability that road surfaces 

will be clean from dust and other metal oxides that may 

impair the crack detection. The application for road 

inspection also requires low sensitivity to illumination 

colour because in real outdoor situations, the illumination 

colour will continually change. This issue will not be 

covered here and we will rely on measuring the 

illumination with the standard grey patch before 

measurement with the assumption that illumination is not 

changing after the calibration. 

 

 
 

4 Results 

The hyperspectral camera used in this study is a 

Cubert (model S185) measuring in the range (450nm-

950nm) across 125 channels and fitted with a lens of 23 

mm focal length. The total image size is 1000*1000 

pixels. With the optical system used, one pixel represent 

(0.5 * 0.5) mm area at one metre depth. The spectral 

range of the camera enables the measurement of the 
metal oxides sensitive spectra as shown in Figure 1. 

Several experiments were conducted using the 

camera to view real cracks in paved roads and 3 sample 
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results are shown in Figure 4. The location of cracks are 

known in these experiments and both ’normal surface’ 

and ’crack’ pixels were randomly selected from 

identified areas. The images are shown on the left-hand 

side of Figure 4 and two square windows marked in the 

image, one for normal road surface and another for a 

crack region. The right-hand side curve shows the 

spectral response of both normal surface and crack 

reflection. The area used to capture the spectrum is fixed 

during this experiment to one pixel size. 

It can be observed in Figure 4, that the crack 
reflection is less than the reflection from normal surface. 

It can also be observed that the slope of the spectrum in 

450nm-550nm range is radically different from normal to 

crack surfaces. The angle - was computed using Equation 

4, and shown in Figure 5 for regions of both cracks and 

normal surfaces for comparison. 

It can be observed that the slope angle is lower for the 

crack regions than the surface regions of the pavements 

in most of the cases. The histograms of this angle 

computed for cracks and normal surfaces have very little 

overlap as shown in the right-hand side of Figure 5. 

However, for any given sample, the angle of slope of 
crack is always lower than that of road surface. This 

implies that a single threshold can be used to discriminate 

cracks from normal surfaces. 

The VIS2 ratio was computed for the same sample set 

and is shown in Figure 6 as a ratio (Equation 2). The VIS2 

difference (Equation 1) is also computed and shown in 

Figure 7. It is observed that the histograms are almost 80 % 

overlapping in Figures 6 and 7 compared to less than 20 % 

overlap in Figure 5.  

5 Conclusions 

Hyperspectral imaging is exploited in this paper to 

discover the defects and anomalies in road pavement.  

HSC has the potential to be useful for revealing the 

defects in infrastructure by observing the changes in 

spectral reflectance caused by different materials. A new 

metric was used in this study as an indicator for the 
change of material and was shown to be a good indicator 

representing the change of metal oxides in the spectral 

region 450nm-550nm. The angle of slope of the spectral 

line in this region, is shown to be better than the VIS2 

metric. The angle of the slope utilizes more information 

from the spectral response than the previous VIS2 

indicator. Exploiting more spectral information is good 

to improve the clues used to find material changes and 

hence associate this with cracks and potholes and even 

normal wear of the road surface. This finding may allow 
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fast extraction of defective road pavement areas.ences 
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