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Abstract – 
In 2018, the United States Department of 

Transportation Federal Highway Administration 
reported that Americans traverse over 1,000 miles a 
month on average. Maintenance of pavement 
marking conditions is crucial to creating a safe 
driving environment. Traditionally, pavement 
markings are assessed periodically through manual 
road inspectors. This method is time consuming and 
ineffective in capturing the deterioration of the 
pavement markings throughout their service life. The 
incorporation of Unmanned Aerial Vehicles (UAVs) 
and machine learning techniques provide promising 
ground to detect pavement marking defects. The 
study proposes a system based on Deep Convolutional 
Neural Network (DCNN) that can collect, store, and 
process data to predict pavement marking conditions 
throughout their service life. The developed pavement 
marking detection tool has four stages. The Data 
Collection stage consists of obtaining images using 
different methods. In the Classification stage, a 
method for assessing the defects from images is 
created based on current methods by Departments of 
Transportation (DOTs) and the Manual on Uniform 
Traffic Control Devices (MUTCD). The third phase—
the Model Development and Data Processing— and 
the Model Testing phase are to train and test the 
model using a multi-level classification program and 
complex algorithms to process the data collected and 
output a result. The system was implemented, and the 
preliminary results show that the model can identify 
and classify the pavement marking defects. The 
developed system will help transportation authorities 
identify and forecast future deteriorating rates and 
intervention timing. 
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1 Introduction 

Road pavement markings are a characteristic of road 
design that influence drivers’ perception of roadway 

alignment and the ability to maintain safe vehicle 
positioning [8, 17]. Features such as edge lines, 
centerline, lane lines, and other pavement markings guide 
users and provide physical and intuitive barriers that 
ensure road safety and reduction in traffic congestion 
[17]. When strategically placed, pavement markings 
ensure adherence to speed limits [3, 21]. Environmental 
factors and wear from vehicle contact, as well as 
misplaced markings, call for the inspection and 
maintenance of these road markings [21].  

The current practices of pavement marking inspection 
are mainly done manually. Manual inspection techniques 
such as Visual Nighttime Inspection, Measured 
Retroreflectivity, Expected Service Life, and Blank 
Replacement methods are a few of the vision-based 
techniques employed by DOTs to assess and evaluate 
pavement marking conditions [9]. Handheld devices, 
measurements, and Senior Citizen vision characterize 
these methods. These manual methods allow for high 
subjectivity and rely on trained inspectors that must go 
through training to follow the appropriate protocols. 
These visual assessment techniques require investing 
time, money, and resources. These processes often 
require workers to drive in nighttime conditions, evaluate, 
and record pavement conditions that pose public and 
individual safety risks. 

 Experimental studies have found short-term and 
long-term reductions in speed along hazardous curves by 
installing and maintaining pavement markings [21, 3]. 
Drops in speed from 41.3 to 33.9 miles per hour were 
attributed to pavement markings “designed to make the 
roadways appear narrower at the beginning of the curves.” 
Other sites saw up to a 50% increase in adherence to 
advisory speed after the pavement marking installations 
[3]. Additional pavement markings in 42 sites in advance 
of roundabouts and termination of high-speed roads saw 
a 52% reduction in crashes after 2 years. Verbal and 
symbolic pavement markings consisting of the word 
“SLOW” and a left curve arrow installed before entering 
sharp horizontal curves also saw significant reductions in 
average vehicle speeds [3]. Earlier studies showed crash 
reductions after the installation of edge lines ranging 
from 19% to 46% [7, 19]. Despite differences in modern 
days traffic, vehicle design, and design speeds, more 
studies continue to report crash reductions as a result of 
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pavement markings. Particularly, a study across 10 states 
found crash reductions of 36% after installing edge lines 
and an average of 21% attributed to pavement markings 
overall [4, 22]. 

There are two ways of assigning pavement marking 
defects: manual and automated. A manual evaluation of 
pavement markings from photogrammetry data would be 
highly subjective and time-consuming, thus an 
automated identification method presents an efficient and 
reliable alternate [2, 13]. This paper aims to propose an 
innovative UAV-based Pavement Marking Identifier 
Tool using a deep learning technique that automatically 
identifies the pavement marking defects. The tool uses 
data collected from Google Maps to train and test the 
model. This stage of the research looks at the 
applicability and efficiency of the technique.  

2 Literature Review 

2.1 Overview 

An assessment of the effects of pavement markings 
on road safety reveals the importance of identifying and 
addressing current defects and missing pavement 
markings. Efforts are underway to mitigate the risks of 
missing important pavement markings and those in poor 
condition. For example, the Michigan Department of 
Transportation (MDOT) plans to require wrong-way 
arrows at all target exit ramps [18]. At paired 
exit/entrance ramps, the left turn into the exit has resulted 
in several fatal crashes. By installing pavement marking 
extension lines, vehicles could be guided into the correct 
ramp. They are considered a low-cost treatment with a 
benefit-cost ratio of 45.9 and the potential to reduce 
traffic-related deaths and increase road safety [3, 18]. A 
study was also conducted to assess whether pavement 
markings before wrong way entries in two sites were in 
good condition, or at all present [14]. The study found 
that both sites lacked pavement markings, such as 
Wrong-Way Arrows and stopping lines, which are linked 
to a reduction in fatal crashes. Also, in 2004, the Missouri 
Department of Transportation began implementing lane 
departure countermeasures consisting of pavement 
markings such as edge lines, centerlines, and skip lines, 
as well as other road features focused on lane departure 
countermeasures [8]. As a result, from 2005 to 2007, 
there was a 25 percent reduction in lane departure 
fatalities. Pavement markings wear out due to constant 
vehicle contact and weathering and therefore require 
inspection and maintenance. Given the role they play in 
road safety and the limited resources some cities struggle 
to keep pavement markings up to the standards due to 
limited resources. In addition, prioritizing pavement 
repair and maintenance in a very efficient way is critical 
for decision-makers to plan future budget allocation and 

prioritizing road maintenance. 

2.2  Data Acquisition 

New technologies of real-time data collection such as 
drones are an increasingly popular technology in 
construction and transportation [5, 19]. A recent study 
developed a framework for using UAVs in transportation, 
which defined the drone block as (1) flight planning, (2) 
flight implementation, and (3) data acquisition [15]. This 
framework was implemented by a later study to capture 
images of pavement defects [14]. This study outlined the 
importance of taking weather conditions and flight 
restrictions into account in the flight planning process. 
This ensured optimized visuals and adherence to 
regulations. For flight implementation, flights can be 
conducted manually or autonomously. For automated 
surveys, an advanced image processing algorithm is 
required such as Support Vector Machines (SVM) or 
Structure from Motion (SfM) [12, 13, 2]. These machine 
learning algorithms allow UAVs to quickly identify the 
presence of defects and cracks on the road, although they 
have yet to be implemented to detect defects in pavement 
markings. The SfM is an innovative photogrammetry 
method used to transform photo data sets into 3D models; 
however, research on its applications for road pavement 
is limited [13]. The data acquisition consists of captured 
images by the drones. These images are deemed adequate 
for analyzing and monitoring the condition of unpaved 
roads [23] and road pavement distresses [13], but there is 
very limited research in its applications to pavement 
markings. Data collection via UAVs also mitigates the 
risks associated with workers in high traffic zones [14]. 

2.3 Data Processing and Inferencing 

Data processing and analysis is critical in developing 
an automated defects detection system. Efficient data 
extraction, noise removal, and storage are necessary 
components to have a functioning system [15]. Manual 
evaluations of the drone-captured images based on visual 
observations are associated with high levels of 
subjectivity, and low production rates [13]. For example, 
in a study analyzing the condition of road pavement, 
different crack types were assigned different ratings to 
assess and prioritize remedial actions according to the 
severity and average traffic volume [2]. Due to limited 
resources and a large area to cover, metric accuracy must 
be consistent [13]. Therefore, automated identification 
methods and severity numerical index assignments are 
considered a fundamental goal in transportation efforts to 
maintain the assets. Autonomous surveys incorporating 
machine learning algorithms can process the images 
automatically to identify the distress type [13]. A study 
that incorporated a UAV-based system with a machine 
learning algorithm observed an accuracy in pavement 
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crack identification of 90.16 [12]. 
Other studies incorporating the use of multi-level 

classification and deep machine learning to develop 
predictive models for addressing pavement defect repairs 
and maintenance continue to advance [25]. These 
improvements in machine learning models are pivotal to 
the development of smart cities and autonomous vehicles. 
Furthermore, deep convolution neural networks (DCNNs) 
have been implemented to detect pavement cracks and 
reduce noise [24]. Using datasets for training and testing 
models set the basis for a system that can characterize 
road conditions [25]. 

Multiple studies have also incorporated a Geographic 
Information System (GIS) to enable automatic 
visualization of road conditions and automated pavement 
management [2, 12, 16, 6, and 20]. This system can be 
used to position classified images into Google Maps [12] 
and can cover thousands of miles of roadways as well as 
smaller volume roads [14]. GIS has spatial analysis 
capabilities that can integrate the graphical display of 
pavement condition and the assigned prioritization based 
on classification to facilitate pavement management 
operations [6, 20]. Currently, the system cannot predict 
the rate of deterioration of pavement marking based on 
its current condition but using a Matlab-GIS-based 
application, it can rate the condition of road segments [2]. 
Studies integrating this system for the inspection of 
pavement markings are very limited. 

3 Methodology 

The proposed framework for the pavement marking 
identifier tool is outlined in Fig.1. The framework 
encompasses four stages: (1) data collection using UAV, 
(2) data classification, (3) model development and
training, and (4) model testing.

3.1 Data Collection 

In the proposed framework, the data concerning 
pavement marking condition is collected using either a 
UAV or a Light Detection and Ranging (LIDAR) device. 
In this paper, the authors are using the UAV method 
given the high number of images that can be collected in 
a short time. For training and testing the model, two sets 
of data are required. The authors used Google maps and 
the Google search engine to collect images that show the 
defects as highlighted in Table 1.  

3.2 Data Classification 

The data classification phase consists of 
developing terminology that informs developed 
framework users of the pavement marking defects 
present in a surveying site. These terms, as specified in 
Table 1, are designed to provide a visual evaluation based 
on criteria outlined in the MUTCD.  Per the standards, all 
lines must be continuous, and uniform in shape. Class 3, 
7, and 8 defects address this standard. Lines must also 
have clear and sharp square edges, as well as be parallel 
to each other with discernible space. Class 1, 2, 4, 5 
address this. Marking visibility and obstruction are 
addressed in defect classes 6 and 9.  

Based on these standards, the set of defects was 
developed to inform the user when a pavement marking 
did not fall within these guidelines, as seen in Table 1. 
This study categorizes the images by lane feature and the 
associated defect type. These terms can be modified or 
expanded to suit the needs of any given road segment or 
the regulations of a company or department of 
transportation. The output is the class type. 

Figure 1. Automated System for Identifying Pavement Marking Defects 

69



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

Table 1. Classes of Defects 
Class Type  Feature 
Class 1 Edge Missing 
Class 2 Corner Missing 
Class 3 Segment Missing 
Class 4 Edge Faded 
Class 5 Corner Faded 
Class 6 Segment Faded 
Class 7 Misalignment 
Class 8 Cracking 
Class 9 Ghost Marking 

Figure 2. Pavement Marking Annotation and 
Data Preparation for Model Training 

For purposes of this study, lane type identification 
was added to ensure that the labeling algorithms can 
differentiate between spacing between dashed center 
lines and faded sections along a continuous edge line. As 
seen in Fig. 2 a multilevel classification software was 
employed in this study in order to annotate the features 
of the road segment onto the image. This step is essential 
in developing a reliable and consistent algorithm-based 
system for future automated classification of roads. The 
annotations made must be precise and consistent to 
increase confidence levels.   The second round of 
annotations classifies the markings based on defect types 
from Table 1. The pavement markings from the training 
and testing data must be fully categorized to be processed 
correctly according to MUTCD standards. 

3.3 Model Development and Data Processing 

3.3.1 Model Development  

The model used to detect the objects in the test images 
was based on a region proposing convolutional neural 
network (RCNN) written in python. This model initially 
had the original settings of a pre-trained model called the 
“faster_rcnn_inception_v2” model from tensor flow’s 
library of packaged models open to anyone for usage and 
particular implementation. The layers of the neural 
network were pre-defined for optimal speed and result, 
and required weights adjusted and optimized for the 
pavement images.  

Figure 3. Deep Learning Model Precession Data 

3.3.2 Model Training 

For this study, this model was trained to identify the 
specific features of the pavement images. The model was 
trained using a dataset named pavement marking images 
(PMI). The model was fed aerial images from Google 
Maps, which are accessible to all and contain data from 
roads all over the world. These are updated about every 
1-3 years, which renders the satellite-images mostly
accurate. Images were captured along the highways of
San Luis Obispo County, CA, which were manually
inspected and annotated according to the lane type, as
seen in Fig. 1, and the defects identified. A multi-level
classification program was used in this process.

To train this model, each image’s data is passed 
through the network. Once all the images go through the 
network, this is considered an epoch. After each epoch, 
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the weights of the network are changed slightly to yield 
better predictions on all of the data. 100 training images 
were collected and annotated and 50 images more were 
selected for testing. 

3.4 Model Testing 

The model was only given 80 training images and 20 
test images. A snapshot of the model results is shown in 
Fig. 3. The results of the Validation Data are outlined in 
the Preliminary Results and Analysis section of this 
report. 

Once all the training and testing images have been 
processed, the images captured by a UAV, or similar 
technology, can be automatically processed using 
complex computer vision algorithms to extract multiple 
features from the images captured. If these images are 
annotated consistently and with reduced background 
noise, the output should be accurate and reliable. The 
coded data from the collection and classification stage is 
processed, and its output informs what type of defect, if 
any, is found along a given road segment.  

4 Preliminary Results and Analysis 

This study presented preliminary results of the 
proposed system that automatically predict the pavement 
marking condition. The proposed deep learning model 
was trained with a sample of annotated images, and 
another sample was used for testing purpose. The model 
was able to predicate road segments with and without 
pavement marking defects. A group of the defects 
classified as corner faded and missing were identified 
with an accuracy of 50% to 80% as shown in Figure 4. 
Although the model was intended to generate preliminary 
results using machine learning technique, the results still 
showed promising trends and levels of confidence for 
expansion and fine-tuning. The model projected higher 
accuracy in detecting larger features than small and 
medium ones. This was expected because larger objects 
in the image contain more pixels which inform the object 
detector of what defect it might be, than small and 
medium-sized features. These results will guide the 
manual annotation of additional sets of data to enhance 
the model prediction algorithm. Annotating defects in 
images, and ensuring less noise within the boundary 
circling the defects was found to be critical for the model 
accuracy. 

Figure 4. Defects Detection by the Deep 
Learning Model 

Despite the small number of data sets used to train 
and test the model, the deep learning model was able to 
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predict road pavement defects with over 50% confidence. 
In some instances, it predicted the defects with 80% 
confidence, as shown in Fig. 4. These results also yield 
increased confidence in identifying pavement markings 
without defects. This was expected since faded segments 
vary in levels of marking deterioration and visibility, 
while pavement markings in good condition are similar 
in contrast to the pavement in their clean-cut edges. The 
results of the model were validated manually by 
comparing the model outcomes with the manually 
annotated images.  

These results inform us of the current condition of 
pavement markings in the area, as well as which road 
segments require immediate attention, and which should 
be monitored. The preliminary state of these results 
cannot replace traditional methods for pavement marking 
inspection, but it can still inform road agencies of which 
road segments output the most defects in an initial site 
survey using a drone. By expanding the training and 
testing data, these results could be used to predict the 
remaining service life of each road segment captured.  

Lastly, the results of this pavement marking 
identifier tool are expected to show an increase in safety, 
a reduction of labor and equipment-associated costs, a 
fast identification of defects, and expedited repairs. 

5 Conclusion 

In this paper, a method for assessing and predicting 
pavement marking defects using machine learning was 
presented. Images extracted from a satellite imagery 
web-mapping service were processed to create a dataset 
of over 100 annotated images. For image optimization, 
images compiled were carefully annotated to ensure 
noise reduction, consistency, and proper labeling. The 
method employed in this paper used images in PASCAL 
VOC in a multi-level classification program. For image 
annotations, tighter rectangles enclosing road features 
were found to produce results that are more accurate. The 
preliminary results show higher accuracy and detection 
for larger segments and most common features. These 
show potential in an integrated manual identification of 
pavement marking defects and a python-based image 
extractor software. Future research will be focused on 
integrating retroreflectivity analysis and reading into the 
model to better resemble the standard maintenance 
protocols used by departments of transportation. This 
will result in a comprehensive system for assessing, 
monitoring, and maintaining roads. By implementing this 
model, drones can automatically detect and classify the 
pavement marking defect classes. The machine-learning-
based methods employed in this research are accessible, 
cost-effective, and relatively safe to conduct pavement 
marking assessments and evaluations. With enough data 
and proper annotation, the model developed can detect 

marking defects from an aerial view using different 
camera views. This reduces labor and equipment costs 
otherwise incurred from manual inspection and reduces 
the risk of construction-related accidents from placing 
workers in high-speed roads. The improvement of 
machine learning models for maintaining pavement 
markings up to standard is essential for the digital maps 
integrated into the programming of AV’s to detect road 
surface markers (RSMs). By maintaining roads up to 
MUTCD standards, AV machine learning can detect the 
necessary road features to allow for the integration of 
autonomous vehicles on our roads. Improved roads pave 
the way for improved cars, transportation systems, and 
societies. 

In the future, this study will be extended to address 
the relationship between road defects and road pavement 
marking defects. Many studies suggest that the causes 
that contribute to pavement defects also contribute to 
pavement marking defects.   
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