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Abstract -
The majority of fatalities and traumatic injuries in heavy 

industries involve mobile plant and vehicles, often result-
ing from a lapse of attention or communication. Existing 
approaches to hazard identification i nclude t he u se o f hu-
man spotters, passive reversing cameras, non-differentiating 
proximity sensors and tag based systems. These approaches 
either suffer from problems of worker attention or require 
the use of additional devices on all workers and obstacles. 
Whilst computer vision detection systems have previously 
been deployed in structured applications such as manufac-
turing and on-road vehicles, there does not yet exist a robust 
and portable solution for use in unstructured environments 
like construction that effectively communicates risks to rel-
evant workers. To address these limitations, our solution, 
the Toolbox Spotter (TBS), acts to improve worker safety 
and reduce preventable incidents by employing an embed-
ded robotic perception and distributed HMI alert system to 
augment both detection and communication of hazards in 
safety critical environments. In this paper we outline the 
TBS safety system and evaluate it’s performance based on 
data from real world implementations, demonstrating the 
suitability of the Toolbox Spotter for applications in heavy 
industries.
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1 Introduction
In 2018 there were 99 fatalities in the heavy industries 

of Transportation, Agriculture, and Construction alone in 
Australia, accounting for 69% of all workplace fatalities 
across all industries [1]. The vast majority of these (71%) 
were directly related to vehicle collisions and impacts with 
other moving machinery.

ToolBox Spotter (TBS) is an embedded robotic percep-
tion and distributed alert system for use in heavy indus-
tries that works to supplement existing safety procedures 
in these critical environments. It addresses both the de-
tection of hazards that may result in a collision or injury,

Figure 1. The Toolbox Spotter (TBS) hazard aware-
ness system in use on heavy machinery at a con-
struction site. The sensor node (highlighted in blue)
is alerting the operator to the presence of the two
people standing in the vehicle’s blind spot.

as well as the effective communication of these hazards
to vehicle operators and nearby pedestrians. The TBS is
a modular system consisting of local sensor nodes, a cen-
tral processing node (CPN), and distributed alert devices.
This forms an intelligent detection system and alert net-
work for use on vehicles, mobile plant and machinery, and
on infrastructure as a safety control measure.
Existing approaches to safety include the use of a hi-

erarchy of controls which aim to eliminate and mitigate
risks where possible through the use of standard policies
such as task isolation and the use of personal protective
equipment (PPE). Whilst these procedures can be effec-
tive when correctly employed, it is not always practical to
completely remove a risk during normal operations. Ad-
ditionally, worker distractions and lapses of attention can
greatly reduce the effectiveness of these approaches. Re-
cently, proximity based collision detection devices com-
bined with wearable RFID tags have been used in safety
systems in construction [2]. However, these systems can-
not always differentiate between objects when RFID tags
are not worn and crucially rely on human behaviour and
supervision to ensure this.
In this work we describe our solution to the problem
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of safety around moving vehicles and plant in heavy in-
dustries, the ToolBox Spotter. Section 3.1 provides an
overview of the components of the TBS system.
We also evaluate our proposed system in Section 5 on

three diverse datasets of real world video clips, chosen to
reflect current implementations of the TBSon construction
sites. We outline the performance of the system as well as
addressing usage of the system with consideration of its
application as a human in the loop safety system.

2 Background
2.1 Safety in Heavy Industries

A comprehensive study of occupational safety in the
construction industry [3] detailed that the primary condi-
tions influencing safety performance in a workplace were
not just the organisational procedures and policies in place,
but the individual attitudes towards safety, including per-
sonal engagement, the taking of responsibility, and priori-
tisation of safety. Whilst the proper use of control pro-
cedures are critical in the elimination of avoidable risks,
there will always be situations in which a degree of inher-
ent risk is unavoidable. In these cases there is a clear need
for safety controls that are not dependent on individual
behaviours, such as the use of PPE.

Previous approaches to reducing vehicle collisions in
heavy industry havemade use of proximity sensors, includ-
ing RADAR and ultrasonic based systems [4, 5]. These
devices have less capability of differentiating between dif-
ferent types of objects, and so have been used alongside
body tags, using RFID or magnetic fields [2]. Whilst
these systems can work effectively to reduce the risk of
collisions they again depend on individual behaviours, re-
quiring each worker to wear the tag as additional PPE.
These signals are also significantly impacted by conduc-
tive materials and can be obstructed by nearby vehicles
and human bodies [6].

2.2 Computer Vision based Safety Systems

The use of computer vision object detection in safety
systems is well established in areas including automotives
and manufacturing, where these systems are integrated
into the vehicles or fixed infrastructure [7, 8]. Similar sys-
tems have also seen recent application in mining vehicles,
where they are used for both personnel and vehicle detec-
tion in less structured environments [9]. These systems
have been shown to effectively detect hazards in heavy
industries, but are generally used within a completely au-
tomated process, rather than forming a human in the loop
system that communicates these hazards to relevant work-
ers. Additionally, these safety systems are often built in
to the hardware in which they are used, minimising their

capability to be retro-fitted to existing vehicles and infras-
tructure or be used in a portable manner. Other appli-
cations include the use of computer vision technologies
for safety management, in which the detection of work-
ers’ locations, activities and behaviours from surveillance
cameras is used to inform management strategies for mit-
igation of future risks [10]. Whilst these approaches can
help decrease incidents over a longer time period, they do
not communicate immediate hazards to vehicle operators
or workers.
Human in the loop safety systems require a thorough

understanding of the interaction between humans and au-
tomation [11]. The system’s behaviour should be intuitive
to the human and not cause extra cognitive load. An exam-
ple of intuitive behaviour is to only alert an operator of the
presence of a distant person when the person is approach-
ing the operator, not when the person is moving away. This
example only holds for distant objects, as all close objects
should result in an alert to the operator. Behaviour of a
human operator will be influenced to be more positive and
safe in a well-designed human in the loop safety system.
Our TBS system can communicate with human opera-

tors via haptic, visual, and audio alerts. Additionally, a
halo-light can be placed on top of a vehicle to alert people
approaching the vehicle to the detection of their presence.
This acts to enhance ‘positive communications’, a proce-
dure where a person walking behind or alongside a con-
struction vehicle must establish that the operator is aware
of their presence.

3 System Details
3.1 Overview

The TBS is composed of a network of connected de-
vices, including a single Central Processing Node (CPN),
multiple camera sensing nodes, and a Human Machine
Interface (HMI) consisting of distributed AlertWear alert
devices and a user interface (UI) tablet device. Each sens-
ing node passes 2D images to the CPN where the Alert
Pipeline, outlined in Figure 2, is used to determine when
to send an alert to the distributed AlertWear devices. The
behaviour of the Alert Pipeline is configurable by the op-
erator using the UI device, allowing the setting of which
types of hazards to be alerted to, including people, light
vehicles, heavy vehicles, and demarcations such as traffic
cones and bollards. Additionally, the operator is able to
configure exclusion zones within each sensing node’s field
of view, in order to define alerts to a region of interest.

3.2 Alert Pipeline

The main components of the alert pipeline are outlined
in Figure 2. Input images are first preprocessed, including

814



37Cℎ International Symposium on Automation and Robotics in Construction (ISARC 2020)

Figure 2. Network architecture of the TBS system, illustrating communication between sensing nodes, central
processing node (CPN), UI device, and distributed AlertWear devices. Alert Pipeline is detailed in Section 3.2

Figure 3. The physical TBS system, showing the
Central Processing Node (CPN) (a), Alertbands (b),
Sensing Nodes (c) and additional AlertWear devices
(d) including the Alertbeacon (top right), halo-light
(bottom right) and expansion node (left) which al-
lows connection to external devices.

a check of image quality used to advise operators if the
quality is outside operating conditions via the UI device.
Object detection in the camera frame is performed us-

ing convolutional neural networks (CNNs) [12, 13, 14],
which have been pretrained as per Section 3.3. In order to
minimise duplicates and false detections, improve detec-
tion localisation accuracy, smooth alerts, and to determine
the final confidence of each detection, the output is further
processed before alerts are communicated to the opera-
tor. Objects are tracked between frames and if an object’s
confidence exceeds the user defined threshold, an alert is
issued to each connected AlertWear device. Tracked ob-
jects are finally filtered based on selected class types in the
UI, and by region of interest, if an exclusion zone is being
used (see Section 3.4).

3.3 Application Specific Training

We make use of a proprietary dataset of 15870 labelled
construction specific scenes to fine-tune our models after
pre-training on publicly available datasets, e.g. [15]. To
evaluate detection performance, the dataset is split ran-

domly into a train and a test set. Dataset balance and la-
belling quality is critical to the trainedmodel performance.
Data augmentation is performed during training, allowing
the model to generalise better to new unseen data. When
our system is implemented in new environments, images
from the new environment are added to the train and test
dataset. Semi-automatic human-in-the-loop labelling is
performed using the existing model to provide labels.

3.4 HMI

AlertWear
The purpose of the AlertWear system is to communicate
detected hazards and risks to all relevant workers in a clear
and non-intrusive manner. This system involves a wireless
mesh network (IEEE 802.15.4 std) of devices which can
expand to accommodate user selected devices.
The main means of communication is an Alertband,

worn by workers which vibrates to communicate various
alerts. This interface was chosen based on initial pilot
studies conducted of the system on a major construction
company’s operational sites, in which users deemed vi-
sual and audible warnings either too distracting or not
noticeable enough, leading to the misuse and non-use of
the system. From these studies it was found that a two
second pulsed vibration was the most effective means of
communicating an alert. The AlertWear system also sup-
ports visual and audible warnings through the use of the
halo-light, which can be mounted on vehicle to illuminate
exclusion areas, and the Alertbeacon which can provide
area wide alerts, as shown in Figure 3.
Operator Interface

AUI app has been developed to allow configuration of each
device, including checking sensor field of view, selection
of detection classes, setting of any exclusion zone and the
changing of Alert Pipeline settings. Alert Pipeline settings
are input by using sliders which allow configuration of the
detection and tracking thresholds. Changing these values
will alter the false positive and false negative rate.
In this work we have tested three different alert modes

based on different configurations of these sliders: (1) De-
fault; (2) Reactive; and (3) Certain, where Reactive aims
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Figure 4. Real world use cases of the TBS are shown in the top row, with the location of sensing nodes highlighted
in red and camera views as inset if available. The bottom row is a top down illustration of the setup, showing the
location of sensing nodes, AlertWear, and objects, as well as the field of view of each sensing node in blue, and
people as orange ellipses . Example (a) demonstrates a single sensing node on a manufacturing line covering
a blind spot of the mobile machinery from the operator’s viewpoint. (b) shows two nodes and an Alertbeacon
installed on infrastructure at intersection alerting oncoming traffic to the presence of hazards around a blind
corner. (c) shows two nodes covering a rail vehicle’s blind spots.

to minimise alert delay, Certainminimises false positives,
andDefault aims to strike a balance between the two other
modes. This UI also allows the setting of user defined ex-
clusion zone, which can be used to limit alerts to detections
that intersect with an area of interest in the camera frame.
An example of an exclusion zone is shown in Figure 5 (c).

4 Empirical Evaluation
Evaluation of the overall TBS system has been con-

ducted in order to determine performance across a variety
of real world scenarios and visual variations. This eval-
uation has been done specifically with the class type of
people, rather than other hazards and vehicles in the im-
ages for the sake of clarity and to to provide an indicative
example of performance on the highest priority class.

4.1 Datasets

The TBS is currently implemented across a number of
real world heavy industry sites, including construction,
mining, agriculture and manufacturing. Within these im-
plementations the TBS is being used on vehicle, on infras-
tructure or buildings, and within manufacturing lines.

Figure 4 provides examples from each implementation,

showing both the system in use and a top down diagram
of installation. The datasets used in this work have been
chosen to reflect these real world use-cases, and include:

1. Vehicle: On vehicles in an off-road environment
2. Indoor: On mobile machinery for indoor use.
3. Infra: On infrastructure in a road environment

The Vehicle dataset contains a total of 17 clips, Indoor
dataset 10 clips, and Infra dataset 7 clips. Each clip con-
tains approximately 20 seconds of video. Example images
from each dataset are shown in Figure 5. These clips cover
the following range of visual variations, encountered dur-
ing real world implementations of the TBS:

• Overexposure and glare
• Varying target obstruction
• Image degradation (blur and dust)
• Varying target distance
• Varying clutter in image

Additionally, a second subset of clips has been created
for supplementary testing, which we refer to as ‘Outlier
Clips’. This subset was compiled based on a subjective
measure of how difficult it was for a human labeller to ini-
tially identify the person in the clip and includes examples
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Figure 5. Example TBS viewpoint images from each of the test datasets as outlined in Section 4.1, illustrating the
visual variance tested. (a) is mounted on a vehicle in an outdoor environment, (b) on moving machinery indoors,
and (c) on stationary infrastructure on road. Example (c) illustrates how a user defined exclusion zone (shown
in red) is displayed in the UI, as described in Section 3.4.

that the average user would not be expected to see within
a reasonable length of time.
These examples are a result of:
• The sensing node being set up without a clear view
of the area of interest

• The person of interest being very heavily occluded or
located very far from the sensor

• The person of interest appearing in an unexpected
area of the frame

• Extreme visual aberrations including glare or usage
at night

Testing on the ‘Outlier Clips’ subset is detailed further
in Section 6. Figure 7 provides two typical examples of
images from this data subset.

4.2 Metrics

Performance of the TBS system has been measured on
the following metrics for all datasets:

• Precision - True positives over all detections
• Recall - True positives over ground truth occurrences
• Alert % - Proportion of people resulting in an alert
• Alert Delay - Time from first appearance to initial
alert for each person

Precision and recall have both been calculated on a
frame-wise basis. Alert % is calculated based on the num-
ber of completely missed alerts. For instance, a clip con-
taining a single person walking through the scene would
score 100% if an alert was sent whilst the person was in
frame, or 0% otherwise. Alert Delay is calculated based
on the time between a person entering the frame and the an
alert being sent. Testing has been repeated for each of the
three detection modes outlined in Section 3.4 determined
by the system configurable parameters, including: (1) De-
fault; (2) Reactive; and (3) Certain. Testing has then been
repeated 5 times for each dataset.

4.3 Implementation

During testing each recorded dataset has been played by
an external host computer over an ethernet network. This
has been done using the ROS framework, duplicating the
logged video over two separate streams to replicate usage
of two sensing nodes. The output of the TBS has then
been taken prior to the TBS CPN passing the alerts to
the AlertWear wireless comms module. Alerts were then
streamed back to the host using the same network.
Measured round trip network latency between host com-

puter and TBS (83.0ms) has been deducted from all alert
delay calculations and replaced with the measured real
world sensing latency of the used cameras (67.0ms). Ad-
ditionally, the time taken to send an alert over the Aler-
tWear network has not been included in measures of alert
delay. As this network uses IEEE 802.15.4 standard, we
instead refer to previous testing which has shown a round-
trip latency of 18ms for a ‘single hop’ less than 100m line
of sight and 100ms for 4 hops. [16].

5 Results
BothDefaultmode and Reactivemode were able to cor-

rectly detect all people present in each clip, whilst Certain
mode achieved an average accuracy of only 96.67%. The
Reactive mode was also able to increase recall compared
to Default, meaning that more frames containing a person
were correctly identified as such. However this came at
a cost to precision, meaning that false positives grew sig-
nificantly. Conversely, Certain mode was able to increase
precision at a cost to recall.
Figure 6 illustrates the distribution of delays for each

tested mode across all datasets. Both Default and Reac-
tive modes achieve significantly less delay than Certain
mode, with peaks of 200ms compared to 1000ms. This
equates to over 50% of all alerts occurring with a delay of
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Figure 6. Delays for each tested mode across all
datasets. Delay refers to time between an object
becoming present in the camera frame until the time
at which an alert is passed to the TBS AlertWear.
Combined result for all datasets is shown on top.

less than 600ms for Default and Reactive, and 1000ms for
Certain. This delayed response is due to the increased re-
quirement that Certainmode has with regards to detection
confidence. An alert will only be sent when the system has
gained increased confidence in the likelihood that there is

Dataset Mode
Default Reactive Certain

Precision

Vehicle 0.845 0.826 0.891
Infra. 0.751 0.547 0.863

Indoor 0.925 0.868 0.955
AVG 0.841 0.747 0.903

Recall

Vehicle 0.771 0.961 0.660
Infra. 0.829 0.849 0.726

Indoor 0.872 0.925 0.796
AVG 0.824 0.912 0.727

Alert
%

Vehicle 100.00% 100.00% 93.33%
Infra. 100.00% 100.00% 96.67%

Indoor 100.00% 100.00% 100.00%
AVG 100.00% 100.00% 96.67%

Table 1. Performance of TBS on all datasets. Alert
% refers to the number of correctly alerted people
per clip. Both the Default and Reactive mode are
able to correctly detect all occurrences. Certain
mode significantly increases precision, resulting in
fewer false positive alerts, at a cost of Alert %. Con-
sideration of the cost of false alarms versus missed
alerts is required in real world usage.

a person present. Whilst this does lead to slower reaction
times, it also greatly reduces the number of unnecessary
alerts, as reflected by the increased precision in Certain
mode. It should be noted that the Infra dataset yielded a
large number of delayed alerts for all modes. As the Infra
dataset is significantly smaller than either the Vehicle or
Indoor datasets (see Section 4.1), it is likely that some sig-
nificantly harder clips have a greater detrimental influence
on the resulting metrics. This can also be seen to a lesser
extent in the Vehicle and Infra datasets in which minor
second peaks occurs.

5.1 Difficult Scenarios and Failure Cases

Performance on the ‘Outlier Clips’ set (described in
Section 4.1) is shown in Table 2 and Figure 8. As ex-
pected, the performance is significantly lower than that on
the three main datasets, however the system still detects
the majority of occurrences in Default and Reactive, with
the majority of these alerts having a delay of <1s. This
performance would still be beneficial when used to aug-
ment existing safety measures, especially considering the
difficulty that a human has in perceiving a detection in
these examples. Additionally, these results highlight the
importance of correct installation, as situations where the
camera’s field of view does not line up well with the actual
area of interest can result in similar cases to Figure 7.

6 Discussion
The TBS was able to successfully detect and alert the

user to the presence of all people in the test dataset in
both Default and Reactive modes. However, there is a
clear trade off between alert delay and frequency of false
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Figure 7. Example frames from videos in ‘Outlier
Clips’ set with the person highlighted in each frame.
Both (a) and (b) are the frame selected by a human
labeller as being the easiest frame in each respective
clip to identify the person.

positives that must take into account the actual usage of
the system in the real world. The TBS is a human in the
loop safety system that does not operate in isolation, but
instead augments the existing perception of workers with
regards to their ability to detect hazards in their working
environment. Human reaction time to a visual stimulus
in perfect conditions has been shown to be between 200-
250ms [17, 18]. This time grows significantly in the pres-
ence of distractions, with the addition of just two coloured
images alongside the target image of a stop sign increasing
reaction time to over 550ms [19]. In the presence of tasks
requiring significant mental focus, such as those carried
out in all heavy industries, workers can even experience
inattentional blindness, resulting in the complete missing
of hazards altogether [20]. The Alert Delays reported in
this work are comparable to those of a human applying
their entire focus on the task of detecting a hazard with-
out any distractions. The results from this work are taken
from real world use cases in which the system is currently
being applied, and involve cluttered and distracting envi-
ronments in which human reaction time has been shown
to greatly deteriorate. The TBS can achieve these results
whilst not suffering from fatigue of lapses of attention.
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Figure 8. Delays when testing on the ‘Outlier Clips’
data subset, displaying noisier alerts as expected.

Outlier Clips Mode
Default Reactive Certain

Precision 0.915 0.771 0.884
Recall 0.463 0.482 0.378
Alert % 53.3% 53.3% 46.7%

Table 2. Performance of TBS on ‘Outlier clips’ (de-
tailed in Section 4.1) which have been chosen by
a human labeller as being difficult to identify any
person in the video.

An understanding of how the system is used is required
when considering the importance of each metric reported
in this work. Recall, a measure of how many frames were
correctly classified for each person, is not as important in
pratice as the metrics of alert % and delay due to how
the alerts are interpreted by a human user. As each alert
sent across the AlertWear network results in a two second
window of notification, as described in Section 3.4, any
incorrect classifications during this time are filtered out
and not noticed by the user.
The results of this work additionally highlight how dif-

ferent modes are appropriate for different use cases. De-
fault and Reactive both suit safety critical situations where
delayed response to hazards is the crucial factor, while
Certain would be more useful for less time pertinent uses,
such as security or site access control in which false pos-
itives would want to be minimised. Whilst a number of
alerts were missed in the ‘Outlier Clip’ set, these examples
were based on videos in which a human labeller operating
in perfect conditions struggled to identify the hazard, and
so would likely have also been missed by a worker.

7 Conclusion
We have evaluated the performance of the TBS system

for the detection of people in safety critical environments,
validating its use as a tool for improving situational aware-
ness in heavy industries. Evaluating the TBS system as
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‘fit for purpose’ cannot be achieved by simply compar-
ing Detection % on the test datasets to a given acceptable
threshold. Instead, as the system is intended to augment
a human’s perception in real world use, it should be eval-
uated based on it’s ability to improve this perception. It
is clear when we compare the performance of TBS to
human workers operating in similarly demanding environ-
ments, as discussed in Section 6, that the TBS provides a
significant benefit with regards to the detection and com-
munication of hazards in safety critical environments, and
is able to do so without being subject to issues of fatigue
and attention.
With the benchmark set in this paper, future work in

testing the complete TBS will involve evaluation of addi-
tional detection classes and validation of additional sens-
ing nodes, and will be conducted on a larger and more
diverse dataset.
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