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Abstract – 

In typical heavy industrial construction projects, 

scaffolding can account for 30% to 40% of the total 

direct man-hours. However, most industrial 

contractors estimate scaffolding man power based on 

a certain percentage of the direct work, which leads 

to cost increase and schedule delay due to inaccurate 

estimation. In order to aid industrial companies to 

plan and allocate the resources for scaffolding 

activities before construction, this paper proposes a 

methodology which combines the classification tree 

and multiple linear regression to estimate scaffolding 

manhours based on available project features. The 

evaluation matrix involves R Squared value (R2), 

Adjusted R Squared value (Adj. R2), mean absolute 

error (MAE), root mean squared error (RMSE), and 

relative absolute error (RAE). The proposed 

methodology has been tested on the historical 

scaffolding data in a heavy industrial project and the 

results showed its effectiveness.   
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1 Introduction 

Occupational safety and health services [1] defines 

scaffolding as any structure (suspended structure) which 

is built for temporary purposes, used for the support 

and/or protection of the construction workers by 

providing easy access to work areas horizontally and 

vertically, and also helps in material transferring. Due to 

these functions, heavy industrial construction projects 

usually involve various types and a large amount of 

scaffoldings to feed the need for different disciplines 

(e.g., civil, mechanical, and electrical), leading to 

increased project costs. In the construction site, the 

scaffolding should be installed, modified and/or 

dismantled in accordance with the requirements of 

various disciplines on their demand times in order to 

prevent project schedule delays. Due to the demand-

based scaffolding operation, the construction domain 

has difficulty to plan scaffolding operation in the early 

phases of the project.  

In practice, planning of scaffolding activities is 

completely subjective and differs from company to 

company [2]. The scaffolding tends to be planned and 

operated as an ad hoc way which leading to schedule 

delays and cost overrun due to the inefficient utilization 

of resources. As an effort to develop a scientific and 

practical planning method for the scaffolding activities, 

the previous research [2] claims that most construction 

companies regard scaffolding as a part of indirect 

expense and calculated as a percentage of the total man-

hours of direct work . In this respect, previous study [3] 

has identified that scaffolding works accounts for up to 

30%-40% of the total direct man-hours in the heavy 

industrial project.   

Scaffolding has potential for significant productivity 

improvement with respect to project cost reduction in 

construction, especially industrial construction. 

However, planning and estimating of scaffolding works 

have received little attention in academia and practice. 

In its infancy, research on scaffolding mainly focused 

on structural performance [4]. With safety gaining 

prominence in scaffolding research, the factors 

contributing to scaffolding collapse have been studied 

more recently [5]. In terms of planning of scaffolding 

works as a temporary structure on-site, there are several 

research efforts that have investigated the application of 

artificial intelligence (AI) algorithms (e.g., fuzzy logic 

and genetic algorithm) and geometries of 3D models for 

temporary structure or facility planning [8]. However, 

these studies have not fully directed their efforts to 

developing methods or systems to improve efficiency of 

planning and estimating of scaffolding activities for 

productivity improvement based on the project time 

progress.  

Thus, this paper proposes an integrated method that 
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combines the classification tree with the multiple linear 

regression model in order to estimate the scaffolding 

man-hours efficiently and accurately in the heavy 

industrial construction projects. The proposed 

methodology mainly consists of five steps: (i) collecting 

data from construction site through cloud-based 

computer systems; (ii) identifying and cleaning potential 

outliers from the dataset; (iii) selecting and/or 

transforming the most important independent variables 

which affect the scaffolding man-hours through 

statistical diagnosis, (iv) developing classification tree 

based on selected text variables in the dataset, and at 

each tree node, the multiple linear regression performed 

to obtain a predictive model for man-hour estimation, 

and (v) evaluating the performance using the tenfold 

repeated cross-validation.  

The proposed methodology has been implemented in 

Python 3.7 environment. It was tested with the historical 

scaffolding data in a heavy industrial project in Alberta, 

Canada, provided by an industrial collaborator.   

2 Scaffolding Related Research 

Based on the investigation of the previous studies 

done by authors in planning the scaffolding-related 

resources in construction domain, previous research has 

mainly focused on structural performance and safety 

management. Peng et al. [4] introduced a scaffolding 

design system in terms of the performance of steel and 

bamboo scaffolding. Yue et al. [5] studied the effect of 

wind load on scaffolding in order to promote safety in 

the design of integral-lift scaffolds. Based on 

optimization of the scaffolding schedule, which can help 

in coordinated safety management and control efforts, 

Hou et al. [6] introduced an operational framework by 

integrating mathematical models with virtual simulation 

to optimize scaffolding erections. According to the 

introduction of advanced technologies, Kim et al. [7] 

have actively integrated building information modelling 

(BIM), image processing or wireless sensors with 

optimization algorithms, to not only identify and 

mitigate the safety risks but also plan the scaffolding 

schedules to eliminate potential hazards. Furthermore, 

Cho et al. [10] have used machine learning algorithms 

(support vector machine) to assess real-time safety and 

unsafety status of the scaffolds based on different 

conditions of scaffolds (safe, overturning, overloading 

or uneven settlement), which adopts actual strain data of 

scaffolding members obtained by wireless sensors. 

Construction Owners Association of Alberta (COAA) 

reports that scaffolding plan must provide the estimated 

scaffolding types, location, duration and quantity 

requirements including materials and labours [11]. 

Based on the result of planning and estimating the 

scaffolding activities, previous studies [12] have 

suggested that the effective management of the 

scaffolding in construction projects can improve 

productivity by: (i) preventing the delays of crews due 

to absence of scaffolding materials or even man-power; 

and (ii) understanding the resource requirements to 

avoid work space conflicts. However, in practice, 

industrial company plans and estimates the scaffold 

activities subjectively, which can be up to 40% of total 

direct man power of an industrial project, based on the 

regulations of company and engineer’s experience 

which may cause excessive use of man-power, schedule 

delays and resource shortage. 

As scaffolds and their supporting structures being a 

temporary work platform, there are several research 

efforts to investigate the applications of artificial 

intelligence (AI) algorithms and geometries of 3D 

models for temporary structure or facility planning [9]. 

However, these studies have not discovered the field of 

improving efficiency and accuracy of planning and 

estimating scaffolding man powers. Therefore, several 

studies [2-3] made an effort to analyse the factors 

affecting industrial scaffolding estimation based on 

historical data provided by a construction company. A 

simulation tool and linear regression models have been 

developed to predict a range of man-hour values for 

only scaffold erection on site in their works. However, 

since the lack of available scaffolding data, the analysis 

merely regarding scaffolding erection is insufficient. 

The authors also suggested that further analysis is 

required with more historical data from other industrial 

projects and other optimization algorithms in order to 

generalize a general methodology for estimation and 

planning of scaffolding works. As a recent study, Moon 

et al. [13] have investigated the effect on productivity of 

resource configurations measured during scaffolding 

operation as part of the construction of an actual 

liquefied natural gas (LNG) plant. Hou et al. [14] have 

proposed a feasible multi-object discrete firefly 

algorithm for optimizing scaffolding project resources 

and scheduling. However, this model needs to not only 

be improved in terms of accuracy for scheduling the 

scaffolding resources, but also be made generically 

applicable to other projects by incorporating various 

types of scaffolding constraint. In addition, these 

previous studies have had difficulty for further analysis 

or better models to plan and/or schedule the scaffolding 

activities due to the insufficient scaffolding data since it 

has not been attention and tends to be ignored in 

practice. As a result, the development of scientific and 

systematic methods is still required in the planning and 

estimating of scaffolding activities due to the lack of 

accuracy, efficiency, and applicability in the existing 

systems for various types of construction projects, 

especially heavy industrial projects.  
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3 Research Methodology 

In order to predict the required man-hours for 

scaffolds accurately in the early planning phase of the 

project, this paper proposes an integrated method that 

combines the classification tree with the multiple linear 

regression model. As shown in Figure 1, there are in 

total five steps in the proposed methodology, which are 

data collection, data cleaning, input data determination, 

development of classification tree structure, and the 

final model evaluation with all the outputs from the 

previous steps.  

Figure 1. Flowchart of proposed methodology 

3.1 Data Collection 

As mentioned in Figure 1, the data collection 

process can be simplified as: scaffolding requests 

generated for approval along with detailed scope of 

work, and once the requests are approved and 

completed, the actual man-hours and work details are 

recorded. Individual scaffold component details are 

documented, and the weights summed up for each 

request by date. The information that can be tracked in 

the scaffolding activities may vary, but by nature, the 

key ones are work classification (i.e. erection, 

modification, and dismantle), scaffolding type (i.e. 

platform deck, tower, barricade, etc.), actual man-hours, 

total scaffolding weights. Meanwhile, other project 

related data that maybe likely to affect the manhour 

prediction should be extracted from other sources and 

consolidated for analysis, such as the average 

temperature during each scaffolding task, the elevation 

of the scaffold built according to the ground level, and 

the average aluminum percentage of the scaffolding.  

3.2 Data Cleaning 

The objective of data cleaning is to remove the 

outliers in the collected dataset. Outliers are extreme 

observations in the dataset that are not consistent with 

the trend of correlation in the data. In data collection 

process, the outliers may result from errors in data entry. 

There are generally, two ways of filtering outliers: (i) 

using statistical approaches to identify outliers 

mathematically regardless of the nature of data; and (ii) 

using user experience-based approaches to identify 

outliers based on users’ logics. Often, the statistical 

approaches take less efforts than the user experience-

based approaches due to the experience-based approach 

do not have a certain criterion but based on 

understanding, experience and trail-and-error tests. In 

this paper, an integrated data cleaning process has been 

adopted using both statistical and experience-based 

methods. 

At first, the interquartile range (IQR), one of the 

statistical approaches, is used to identify the outliers. 

IQR is a measure of the location of middle 50% data in 

the dataset, and it is calculated by subtracting the first 

quartile (Q1) from the third quartile of the dataset (Q3). 

Potential outliers are defined as observations that fall 

below Q1 – 1.5* IQR or above Q3 + 1.5 * IQR. 

Moreover, under the guidance of the scaffolding experts, 

the following experience-based rules should be applied 

to further filter out the outliers: (i) value of man-hours is 

null or less than 5 hours; (ii) value of scaffolding 

weights is null or less than 20 lbs; and (iii) productivity 

(i.e. weight per man hour) is less than 6 lbs/hr, or 

greater than 125 lbs/hr. These experience-based rules 

may vary in different project scenario. However, the 

core concept is to remove data observations that are not 

physically feasible in scaffolding work, normally 

reflected by manhours, weight of scaffolding, and 

scaffolding weight divided by manhours (productivity). 

3.3 Input Data Determination 

In order to ensure the effectiveness of results from 

multiple linear regression model, there are five 
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assumptions need to be fulfilled before the analysis [15]. 

The assumptions are (i) the relationship between 

dependent variables and independent variable should be 

approximately linear; (ii) the error term ɛ has zero mean; 

(iii) the error term ɛ has constant variance σ2; (iv) the

independent variables are uncorrelated; and (v) the

errors are normally distributed. Among these

assumptions, the linearity between the dependent

variables and independent variable and the

independence among the independent variables are of

the utmost importance. The zero mean of error term can

be fulfilled by involving the intercept term in the

regression equation and the normally distributed error

generally is not a must-have check. The following

model feature selection section and model feature

transformation section are responsible for check

independence and linearity among the dataset,

separately.

3.3.1 Model Feature Selection 

The model feature selection is one of the most 

important part in the field of machine learning since (i) 

the irrelevant input features can induce greater 

computational cost; (ii) the irrelevant input features may 

lead to overfitting, which in turn leads to poor results on 

the validation datasets. Feature selection methods can 

also adapt the dataset to better suit the selected machine 

learning algorithm, given that different algorithm may 

have various requirement for the features. In terms of 

multiple linear regression, a reliable set of features 

contains independent variables that are highly correlated 

to a dependent variable (i.e., scaffolding manhour), also 

called as a predicted variable, but uncorrelated with 

each other. 

The condition that some of the independent variables 

are highly correlated is called collinearity [16]. 

Collinearity can lead to imprecise coefficient estimates 

during the development of the predictive model since it 

inflates the standard errors of the coefficients of 

collinear variables. In this respect, this paper uses 

correlation matrix which supports users to identify the 

collinearity problem. The correlation matrix for all the 

independent variables should be developed at each 

classification tree node. The Spearman method [17] has 

been adopted here to perform the correlation analysis 

since (i) it is a non-parametric procedure in which the 

observations are replaced by their ranks in the 

calculation of the correlation coefficient so that it can 

deal with data with outliers; (ii) it does not carry any 

assumptions about the distribution of the data (e.g. 

Pearson method requires both variables to be normally 

distributed) [18]. In the correlation matrix M, it is easy 

to identify that which two variables are highly 

correlated (> 0.5) [19] and which one of them should be 

removed to avoid collinearity. 

While collinearity means the correlation between 

only two independent variables are high, 

multicollinearity can exist between one variable and 

linear combination of more than two variables [16]. As 

another indicator of model feature selection for linear 

regression, multicollinearity can cause regression 

coefficients to change dramatically in response to small 

changes in the model or the data. Thus, it may cause 

serious difficulty with the reliability of regression 

coefficients. In order to detect whether a regression 

model exists multicollinearity, Variance Inflation Factor 

(VIF) [20] of each independent variable need to be 

checked in the model. VIF is a traditional measure to 

detect the presence of multicollinearity in multi-linear 

regression model. It shows how much the variance of 

the estimator is inflated due to the linear relation 

between the regressors. Typically, a VIF, which is 

larger than ten, has been used as a rule of thumb to 

indicate serious multicollinearity. 

3.3.2 Model Feature Transformation 

Given a selected feature set, the quality of data can 

be enhanced by feature transformation. It is common 

that the real-world data may not show strong linearity 

between independent variables and predicted variable. 

However, there are several data transformation methods, 

such as logarithm, square root, reciprocal, cube root and 

square, can be applied to enhance the linear trend in 

data. There are also some guidelines for the selection of 

transformation method, such as if the standard deviation 

is proportional to the mean, the distribution can be 

positively skewed and logarithmic transformation can 

be performed, or if the variance is proportional to the 

mean, squared root transformation may be preferred etc. 

[21].  

Among various transformation methods, logarithmic 

transformation is the most popular one. Using natural 

logs for variables on both sides of the linear regression 

equation can be called log-log model. Theoretically, any 

log transformation can be used in the transformation and 

all of them tend to generate similar results. However, 

using the natural log can be seen as the convention since 

the interpretation of the regression coefficients is 

obvious using the natural log. The coefficient in the 

natural log-log model represents the estimated percent 

change in the dependent variable for a percent change in 

the correspondent independent variable [22] . 

3.4 Model Development 

The classification tree structure determines the way 

how the overall dataset can be divided into several 

groups in which the regression model can be separately 

developed. The function of the classification tree is to 

cluster the similar observations together to obtain more 

accurate regression sub-models instead of messing all 
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the data together and get only one model. The proper 

classification may largely alleviate the effort to achieve 

the required model efficiency and accuracy. To 

efficiently build the classification tree, the key 

categorical variables used to split the tree are of the 

utmost importance. There are several available 

categorical variables such as work classification, 

scaffold type and discipline. The repeated tenfold cross-

validation can be used to compare the effectiveness of 

different classification tree structures developed using 

various combinations of categorical variables.  

The classification tree needs to be utilized with 

multiple linear  regression model. After developing the 

classification tree structure based on selected key 

categorical variables, multiple linear  regression can be 

implemented at each tree end node, as long as there are 

sufficient number of records at the tree node. Previous 

researchers discovered that when the number of 

observations n >= 15 * k where k represents the number 

of independent variables, the model parameter 

estimation tends to achieve a prescribed level of 

accuracy [23]. On the other hand, if the number of 

records at certain nodes cannot meet this requirement, 

the upper level model should be used to complement the 

miss of model under certain classification category. 

Normally, the multiple linear  regression model at each 

classification tree node can be denoted as Eq. (1).  

𝑦 = 𝛽 + ∑ 𝛼𝑖 𝑥𝑖  (1) 
Where: y is the predicted variable (i.e. scaffolding 

manhour) for the ith record at current classification tree 

node; β is the intercept value; 𝛼𝑖  is the coefficient for

independent variable 𝑥𝑖.

3.5 Model evaluation 

Repeated tenfold cross validation has been selected 

to evaluate the regression models. Kim has found that 

the repeated cross-validation estimator is recommended 

for general use regardless of the sample size [24]. 

Moreover, Witten et al. have conducted extensive tests 

with different machine learning techniques, and the 

results have shown that, by repeating the tenfold cross 

validation 10 times, the results can reliably estimate 

errors [25]. Tenfold cross validation means to split the 

whole dataset into ten stratified subsets of equal size ten 

times, and each subset can be used for testing once and 

the combination of the rest can be used for training. The 

final error estimates are averages across each of the fold. 

Repeat the tenfold cross validation ten times and the 

mean value would be the final validation result. The 

evaluation matrix has five parameters in all, including R 

Square (R2), Adjusted R Square (Adj.R2), Mean 

Absolute Error (MAE), Root Mean-Squared Error 

(RMSE) and Relative Absolute Error (RAE). All the 

calculation equations can be found in a book [25] .  

4 Case study 

      The proposed methodology has been implemented 

in the Python 3.7 environment and the case study is 

based on a heavy industrial project with data provided 

by a construction company. The scaffolding related data 

has been collected onsite through cloud-based data 

systems, as well as company’s internal systems (e.g. 

project control systems, payroll systems, etc). There are 

in total three categorical variables and twelve numerical 

variables have been collected. The categorical variables 

are work classification, scaffolding type, discipline of 

trade that scaffolding is built/modified for. 

The numerical variables are: average temperature, 

apprenticeship ratio (the ratio of work carried out by 

apprentices), night-time ratio, overtime ratio, aluminium 

percentage of the scaffolding, percentage of completed 

project, scaffolding weight, workable area (available 

space for building scaffolds), average scaffolding 

employee time on site, elevation of the scaffolds, major 

pieces and minor pieces (number of large/small pieces 

of scaffolding materials). After data consolidation and 

cleaning, the dataset contains 12,087 valid observations 

in total. Figure. 2 compares the manhour distribution of 

the raw dataset and the dataset after data cleaning.  

Figure 2. Manhour distribution comparison 

     After the data collection and data cleaning, the 

independence in the dataset should be checked. Table 1 

illustrates a part of the sample correlation matrix of a 

classification tree branch (classification: Erection). The 

independent variables that have much lower correlation 

with others have been trimmed in the table due to the 

space limitation; only the most correlated variables were 

kept: workable area, scaffolding weight, major pieces, 

and minor pieces. It can be seen that almost all the 

values in Table 1 are larger than 0.5, which means the 

four variables are all highly correlated to each other. It 

should also be noted that all these variables are also 

highly correlated to the scaffolding manhours which is 

the predicted variable. According to the previous 

research, the collinearity can be simply addressed by 

keeping only one highly correlated independent variable 

but removing the others [26]. From the industrial view, 
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these four variables describe the scaffolding work from 

a similar perspective. To determine which variable is of 

the most importance, the multi-linear regression models 

have been developed based on one of these four 

variables in turn with the rest un-collinear eight 

variables. The sample results using classification as key 

variable can be found in Table 2.  

Table 1. Sample correlation matrix 

Workable 

Area 
Weight 

Major 

Pieces 

Minor 

Pieces 

Workable 

Area 
1.00 0.66 0.63 0.49 

Weight 0.66 1.00 0.87 0.62 

Major Pieces 0.63 0.87 1.00 0.67 

Minor Pieces 0.49 0.62 0.67 1.00 

Manhour 0.51 0.60 0.61 0.59 

Table 2. Result using different variables 

Index 
Workable 

Area 
Weight 

Major 

Pieces 

Minor 

Pieces 

R2 0.54 0.73 0.69 0.58 

Adj.R2 0.54 0.73 0.68 0.58 

MAE 70.69 51.51 52.18 61.82 

RMSE 134.65 107.56 115.32 145.36 

RAE 1.30 0.69 0.72 1.01 

It can be clearly seen from Table 2 that R2, Adj.R2 are 

the highest while MAE, RMSE, and RAE are the lowest 

when selecting the scaffolding weight variable. Since 

the weight variable can give less error and better 

predicted results, it has been kept in the model feature 

set but the other three have been excluded to prevent the 

collinearity. 

      Moreover, Table 3 shows VIF of all the numerical 

independent variables in the model at the branch of 

Erection-Tower as an example. The result shows that 

there are four variables with VIF factor value larger 

than 10, which are night-time ratio, project complete 

percentage, employee time on site, and apprenticeship 

ratio. Thus, these four variables have been excluded 

from the analysis to address the multicollinearity 

problem. Table 4 has been created to detect 

multicollinearity one more time after the adjustments. It 

can be seen that the multicollinearity has been solved 

since all the VIF values are lower than 10 when regress 

the model using the selected variables. 

Table 3. VIF of each numerical variable 

VIF Factor Features 

3.61 Temperature 

3.52 Aluminum percentage 

1.58 Weights 

2.69 Elevation meters 

1.07 Night-time ratio 

28.00 Overtime ratio 

70.06 Project complete percentage 

223.20 Employee time on site 

76.84 Apprenticeship ratio 

Table 4. VIF of modified variable 

VIF Factor Features 

1.13 Temperature 

1.22 Aluminum percentage 

2.03 Weights 

1.04 Elevation meters 

2.04 Night-time ratio 

      The regression model has been built using the 

selected five variables which are temperature, aluminum 

percentage,  weight, scaffolding elevation, and night-

time ratio. However, some negative manhours are 

predicted by the model. This phenomenon prompts the 

discovery of the exact contribution of each explanatory 

variable. According to the summary of previous work 

[27], the Standardized Regression Coefficients (SRC) 

method is suitable to conduct the sensitivity analysis for 

the linear model. Table 5 shows the result of sensitivity 

analysis for the classification tree built upon work 

classification and scaffolding type. It should be noted 

that the average value of night-time is negative, which 

indicates that with the increase of night-time working, 

the required manhours decreases. Thus, the night-time 

ratio has been removed not only due to its minimum 

contribution to predict manhours, it is also counter-

intuitive to industry experts. 

Table 5. Average result of sensitivity analysis 

Temp Weight Elevation Night

time 

Aluminum 

percentage 

Avg -0.05 0.83 0.05 -0.02 0.07 

     Thus, there are four independent variables have been 

selected at the end. Next, the linearity between the 

independent variables and predicted variable should be 

checked. From the sensitivity analysis, it is obvious that 

in the linear regression model, the scaffolding weight is 

far more important than other variables. As the most 

prominent variable, the relationship between weight and 

manhour has been discovered and some sample 

scattered figures have been plotted in Figure 3. It can be 

seen that the dots in the upper left figure are scattered. 

The original manhour do not show strong linear trend 

with original scaffold weights. However, after taking 

the natural logarithm of both manhour and weights, 

there exists clear linearity between log(weight) and 

log(manhour). Other data transformation ways have 

been tried out as well, such as reciprocal transformation 

(weights versus reciprocal of manhour) shown in the 

lower left figure, and single logarithmic transformation 
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which means only transforming one side of variable 

(log(weight) versus manhour) as shown in the lower 

right figure. Nevertheless, the log-log model is 

obviously the best to generate linearity. 

Figure 3. Comparison of data transformation 

Furthermore, the log-log model should be applied to all 

the independent variables instead of only scaffolding 

weights. It is worth mentioning that since the log-log 

model can only be applied to positive variables, the 

temperature variable has been normalized in the range 

[0°, 10°]. In addition, to deal with the zeros in the 

dataset, a constant λ has been added to the log-log 

transformation equation as shown in Eq. (2).  

log(𝑦) = 𝛽 + ∑ 𝛼𝑖 ∗ log (𝑥𝑖 +  𝜆) (2)

where λ can be one half of the smallest value in the 

dataset . In this study,  λ = 0.001 has been adopted. 

      As for the classification tree structure, the trail-and-

error method has been used to determine the best 

classification method. The repeated tenfold cross-

validation results for various classification structures 

can be found in Table 6. Overall, the work classification 

works as the best classification tool since it gives the 

highest Adj. R2, way more than 0.7 which is the 

criterion to check whether a linear model is a good fit. 

Also, it produces less error than using other 

classification methods. After the regression models have 

been built at each tree node in the classification tree, the 

correspondent coefficient tables are stored for the future 

use. 

Table 6. Cross-validation results 

CT R2 Adj.R2 MAE RMSE RAE% 

WC 0.81 0.8 38.24 82.53 37.93 

DIS 0.78 0.78 48.17 101.93 42.54 

ST 0.76 0.76 47.49 87.94 41.09 

WC+DIS 0.79 0.79 41.52 94.33 38.84 

WC+ST 0.82 0.82 44.5 94.06 36.02 

DIS+ST 0.79 0.78 48.04 99.36 40.5 

5 Conclusion 

      As one of the largest temporary works, scaffolding 

is indispensable, but difficult to manage. Over decades, 

its requirement has been generally determined based on 

a percentage factor of the direct work in that project and 

the expert’s opinion. It may result in an ineffective 

management of scaffolding-related resources and 

project cost. To address this practical issue, this paper 

proposes an integrated methodology to predict the 

required man-hours in the planning stage of the project. 

There are five main steps in the proposed methodology, 

which are the data collection, data cleaning, input data 

determination, development of classification tree 

structure, and model evaluation.  

      A case study has been implemented to validate the 

methodology. From the methodology, four independent 

variables have been selected at the end. Moreover, it has 

been found that when use the log-log transformation in 

the model, the linearity can be built between 

independent variables and dependent variable. After that, 

the results show that when using the work classification 

to build up the classification tree, the performance can 

be maximized. The best model produces R2= 0.81, Adj. 

R2=0.8, MAE=38.24, RMSE=82.53, and RAE=37.93%.  

     The current work has been proven to be effective to 

predict the manhours based on four independent 

variables which should be available in the early stage of 

scaffolding construction. However, with the increase of 

the amount of the available and reliable scaffolding data, 

the model can be further fine-tuned and trained. 

Moreover, the non-linear regression such as neural 

network is still a further research direction and needs to 

be discovered and compared with the proposed 

methodology in this research. 
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