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Abstract -
The evaluation of indoor risks is a paramount issue in

building design and construction. Conventional methods
that rely on handcrafted rules or drills are insufficient for
this task as they either fail to accurately depict the sophis-
ticated spatial attributes and people’s cognition abilities or
are not suitable during the design phase of the building. This
paper puts forward a novel computational framework with
a reinforcement learning-based paradigm to automatically
assess the evacuation risk posed by the indoor space through
intelligent agents. Our model focuses on the agent’s explo-
ration behaviours as it gains knowledge to locate the optimal
path from an initial location to an exit. The cost of this knowl-
edge acquisition process is then used to capture the risk posed
by the initial location of the building. The work aims to shed
new light on utilizing agent-based techniques in evaluating
building safety.
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1 Introduction
The evaluation of indoor risks posed by emergency situ-

ations such as fire and earthquake has been a critical issue
in building design and construction management. Imag-
ine a situation where a designer is planning the interior
space of a building. It is important to identify potential
emergency situations and assess the level of risks of the
designed indoor layout before commencing development.
One of the key safety criteria is how effective the interior
layout enables building occupants to evacuate during an
emergency. Awell-designed interior layout should in prin-
ciple enable people in the building to quickly find optimal
evacuation pathways and escape, thereby greatly reducing
human casualty. Yet, to characterise the indoor environ-
ment and hazards, a huge amount of variables need to be
taken into consideration that includes not only the spatial
features of each interior location, placement of structural
and non-structural elements, but also people’s behavioural

and cognitive traits. This demands an objective, cost-
effective, and general method to assess indoor risks which
differentiate risks of different indoor locations, truthfully
reflect the spatial features, and are not biased by human
input.
So far, however, most commonly used methods to eval-

uate indoor space risks rely on fixed sets of well-defined
criteria, e.g., the equations in SFPE handbook of fire pro-
tection engineering [1]. It is easy to see that limitationwith
this common practice: In a building with complex indoor
layout structures, applying a set of prescriptive rules to
evaluate risks is deemed to be too coarse to account for the
differences among the spatial features of the locations, and
the erratic and complex behaviours of building occupants
[2]. Another common way to evaluate evacuation effec-
tiveness is by conducting evacuation drills. However, this
approach introduced various issues related to ethical, prac-
tical, and financial constraints [3]. For example, drills will
hardly recreate the sense of urgency in a real-world emer-
gency and the effectiveness of evacuation drills greatly
relies on whether people actively engage in the training.
Moreover, conducting evacuation drills has one obvious
shortcoming: we can only perform evacuation drills af-
ter the entire interior layout has been developed. Thus, it
is not a suitable way to reveal potential risks during the
design phase [4].
A desirable scheme for assessing indoor evacuation ef-

fectiveness during the building design phase must satisfy
the following:

1. Firstly, as the evaluation should take place during
the design phase where no physical involvement of
human participants is possible, the scheme should
exploit computerised modeling and simulation tech-
niques to achieve its goals.

2. Secondly, the evacuation process’s effectiveness re-
lies on the evacuees’ physical and mental ability.
Therefore the assessment must be carried out based
on the behavioural patterns of evacuees.

3. At the design phase, however, no input will be avail-
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able on the specific features of the building occupants.
It is therefore desirable for the risk assessment to be
independent from the features of any specific evac-
uee. Similarly, the specific emergency situation that
triggers the evacuation may greatly impact the evac-
uation process. Therefore, the assessment should
also be independent from any specific emergency sit-
uation. In summary, the output of the assessment
would be a form of risk score that measures the level
of safety guaranteed by the indoor environment given
the interior building layout in a generic setting.

4. Then, as an indoor environment has complex layout
structure and locations may have vastly different spa-
tial features, it is important to have a location-based
risk assessment where risk scores are associated with
individual location points. This has the result of a
type of “heat map” that visually illustrates areas of
potential hazards in the building where building oc-
cupants may face a greater level of risks.

5. Lastly, the scheme should be sufficiently general so
that it can be applied to different layout plans and
reveal their differences.

This paper proposes a novel framework for computing
risk scores of indoor locations given a layout plan. The
risk score reflects in a generic sense how much the in-
terior layout supports effective evacuation of a building
occupant from a specific location spot. The computation
is agent-based in the sense that reinforcement learning
(RL), commonly seen in the development of artificial in-
telligence agents, as an integral part of risk assessment.
RL has demonstrated wide applicability in improving the
performance of AI systems in many fields [5, 6]. Yet, to
the authors’ knowledge, our work is the first to incorporate
RL in building risk assessments. The aptness of the RL
paradigm in our setting lies in the fact that we model an
evacuee as a reward-driven decision-maker, i.e., an agent
who can assess the physical space while finding an optimal
evacuation pathway.

In a nutshell, our framework defines the risk score us-
ing the efficiency of an agent – which is initialised with no
knowledge regarding the building layout – in finding the
optimal evacuation path through exploring the indoor en-
vironment. This framework has the following advantages:

Firstly, by applying machine learning algorithms on
evacuees who have no prior knowledge regarding the in-
door layout, the behaviours of the evacuees are generated
in run-time through their interactions with the indoor envi-
ronment. This avoids handcrafted behaviours of evacuees,
thereby giving an unbiased evaluation of the effectiveness
of evacuation.

Then, as we let the same agent start its exploration from
all location points in the indoor environment, the obtained

scores can be compared with each other in an objective
way. Through this, one can easily generate a unified heat
map of the indoor layout.
Thirdly, the proposed risk score takes into account the

cognitive aspect of the agent by focusing on the dimension
of knowledge acquisition. In other words, the risk score
of a location point is defined as the cost for an evacuee
who starts from the location points to identify the optimal
evacuation path through repeated simulated exploratory
evacuation. A location that facilitates higher safety is seen
as one that incurs the lower cost of knowledge acquisi-
tion, while a more risky location is one where an evacuee
needs to spend a lot more effort finding the optimal evacu-
ation path. In comparison with other classical methods for
evacuating location-based evacuation effectiveness such as
computing the distance between a location and the near-
est exit, our formulation is more realistic as it takes into
account the behavioural aspect of evacuees and thus is a
more reliable and robust safety index.
It is important to note that, while our formulation of

the risk score is based on a simulation of evacuation be-
haviours of an evacuee, the aim of this model is not to
mimic the actual evacuation during an emergency sce-
nario [7]. To do that, many factors such as dynamics of
the physical space during an emergency (e.g., fire), peo-
ple’s reaction to crowd movements (e.g., herding, stam-
pede, etc.), as well as behavioural traits such as panic and
altruism need to be addressed. Our work does not address
these factors, as they are specific to particular emergency
situations.

2 Related work
2.1 Building Safety Evaluation

The most standard practice to evaluate building safety is
to adhere to a set of rigid rules which lays out best practices
in building design. One of the main weaknesses of such
approaches is that it is not able to accurately and deeply
depict the erratic and complex behaviour and movement
pattern of evacuees in a building under urgent conditions.
Therefore, modeling and simulating emergency evacua-
tion is essential to provide valuable insights about building
safety and evacuation management [8].
In 1998, Ming [9] proposes a fire safety assurance ap-

proach including the fire safety assessment method for
high-rise buildings in Hong Kong. In 1999, Ming [10]
proposes a fuzzy fire safety assessment approach based on
fire risk ranking techniques. The research at this stage car-
ries out an emergency safety assessment on the completed
buildings, the purpose is to evaluate the emergency safety
risks of the buildings and formulate appropriate rectifica-
tion plans to ensure the safety of the buildings.
Since the 2000s, researchers have shifted their attention

towards the evaluation of building safety in real emer-
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gency situations. In 2001, Ellingwood [11] studied the
emergency safety of buildings under earthquake disasters.
In 2008, Anagnostopoulos et al. [12] studied the post-
earthquake emergency safety assessment of the building
and provided support for the post-disaster rescue work
plan. Carrying out research in a real emergency play an
important role in reducing casualties and property losses
under various disaster conditions.
In recent years, it has become a new research direction

to carry out safety evaluation on design and construction
stage. In 2010, Gangolells et al. [13] discussed the safety
considerations of building construction at the design stage
using a risk analysismethod, aiming to reduce construction
risks in advance. In 2011, Oien K et al. [14] conducted a
research on the theoretical basis of building safety evalua-
tion, which provided an important reference for subsequent
research. In addition, based on the behaviour of people in
the building under emergency evacuation conditions, car-
rying out building emergency safety evaluations to serve
the safe evacuation of people under emergency evacuation
conditions has become the focus of relevant research. In
2018, Bahr [15] conducted extensive discussions on the
safety engineering and risk assessment of system based on
practical methods in his work.

2.2 Evacuation modeling

We now review theories and models for evacuation sim-
ulation.
Flow-based models. Flow-based models use the density
of nodes in flows to simulate the features of the people
flow. Henderson [16] firstly argued that the behaviour pat-
terns of pedestrian crowds are similar to gases or fluids.
Bradley [17] applied Navier–Stokes equations to describe
the motion of high-density pedestrian crowds. Helbing
et al. [18] summarised that for medium and high-density
pedestrian crowds, its motion patterns are very similar to
fluids. For instance, people’s footprints in snow look sim-
ilar to streamlines of fluids. Flow-based models could
apply the complete network model to develop the opti-
mal evacuation plan in terms of the minimum evacuation
time. However, the main restriction of flow-based models
is it makes wrong assumptions of people’s homogeneity.
These assumptions make this type of model difficult to
simulate people’s different physical abilities, behaviour
patterns, and characters. That is, the sociological factors
of group decision-making processes that play a crucial
rule in all emergency evacuation scenarios could not be
simulated and defined in flow-based models.
Cellular automata. Cellular automata evacuation models
involve discretization space andmodel people’s evacuation
process by single individual cells. One of the earliest cel-
lular automata evacuation models was proposed by Perez
et al. [19]. Daoliang et al. [20] applied a two-dimensional

cellular automata model to simulate the evacuation dy-
namics of occupants. Yu and Song [21] proposed a model
to simulate pedestrian counter flow in an corridor consid-
ering the surrounding environment. Kirchner et al. [22]
proposed a stochastic cellular automata model to simu-
late the friction effects and clogging phenomenons in the
crowd during the evacuation process.
Due to the simple shape of grids and predefined be-

haviour rules of evacuees, cellular automatamodels hardly
to simulate unique characteristics and behaviour patterns
for different types of evacuees, like women or kids. There-
fore, most of the complex sociological factors among evac-
uees cannot be simulated in cellular automata models.
Agent-based models. An agent-based model is a sys-
tem that comprises many intelligent agents which can be
used to build heterogeneous characteristics and behaviour
patterns. Instead of a global goal, each of the agents
has a local goal to achieve [23]. Camillen et al. [24]
evaluated different evacuation strategies in closed spatial
environments, they demonstrated that due to the dynamic
environment, traditional simulation models are difficult to
simulate the evacuation process accurately. Only agent-
based models are able to capture the dynamic characteris-
tics of certain closed spatial environments properly. More
recently, Sumam et al. [25] focused on the impacts of
various evacuation behaviours and determined their effi-
ciency in terms of the final evacuation rate. Yang et al.
[26] present a prototype that uses agent-based modeling
to simulate deep foundation pit evacuation in the presence
of a collapse disaster. Şahin et al. [27] proposed an ap-
proach which combines a multi-agent model with fuzzy
logic to simulate common human and group behaviour
during safety evacuation. Kasereka et al. [28] proposed
an intelligent Agent-Based Model enabling the modeling
and simulation of the evacuation of people from a building
on fire. Gonzalez et al. [29] propose a simulation model
to find out optimum evacuation routes during a tsunami
using Ant Colony Optimization (ACO) algorithms.

3 A New Agent-based Framework for As-
sessing Risk Score

We describe our computational framework to assess
the risk score given input layouts. A prototype of our
framework is implemented using the NetLogo platform.
NetLogo is a programmable agent-based modeling envi-
ronment designed and authored by Wilensky [30]. The
physical space in a NetLogo environment is realised by a
set of patches that represent location points. An agent is a
special entity in the framework which can be in a patch at
any given time instance. The NetLogo platform has built
in function that enable us to define the states, perception
and decision making functionalities of the agent, before
letting the agent to start its simulated runs, i.e., evacuation
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in the building.

Figure 1. Framework of our approach, with three
main modules.

Broadly speaking, our framework consists of three main
modules (as shown in Figure1): the floor plan generation
module, evacuation simulation module, and risk score as-
sessment module.

First, the indoor space is represented by a digital model
that is to be processed by the NetLogo platform. This
digital model captures the interior layout and regions that
are reachable by the evacuee. The many spatial attributes
of the interior layout are represented in the floor plans,
such as pathways, exits, corridors, furniture, etc. This
digital representation is going to serve as the input to the
next module which performs RL algorithm to assess the
evacuation risk and generate risk scores.

The second module is the core part of the framework
and it simulates the exploratory behaviour of an evacuee in
the building. The main idea is we focus on the exploration
behaviours of the agent as it gains knowledge in order to
locate the optimal path from an initial location to an exit.
This corresponds to a process of knowledge acquisition.
As discussed above, the cost of the knowledge acquisition
process is then used to capture the risk posed by the initial
location of the building.

The third module is used to generate risk scores. In par-
ticular, we apply the evacuation simulation assuming the
evacuee starts from every location points of the physical
space. In this way, this module will generate a risk score
for every location point. Using these risk scores, one may
derive an overall risk score for the entire floor plan, that
is, a quantitative measurement of the input floor plans’
safety level in terms of emergency evacuation. Moreover,
we will generate a heat map based on each patches’ risk
score.

3.1 Module 1: Floor Plan Generation

The first module performs preliminary processing of
floor-plans: we label the inaccessible areas (like walls or

large cabinets) and the exits, and then import the modified
floor plan. The system will generate a virtual plan base
on the coloured floor-plan. Figure 2 shows the coloured
original real-world floor-plan of a hospital and the gener-
ated virtual plan in Netlogo separately. The black patches
represent the inaccessible area, and the white patches rep-
resent the accessible area, that is agents could arbitrarily
move in white areas. Finally, the blue patches represent
the exits.

Figure 2. The coloured original real-world floor-plan
of a hospital (left) and the digital representation in
Netlogo (right).

3.2 Module 2: Evacuation Simulation Module

The main task performed by this module is to assess
the evacuation risk posed by the indoor space automat-
ically. Here we use one of the well-known machine-
learning paradigm, reinforcement learning (RL), to model
a person’s cognitive behaviours. An RL agent is a reward-
driven decision-maker who’s able to adjust behaviours and
improve performance based on the external environment
through repeated trial-and-error. In this way, RL aims to
mimic the cognitive process of operant conditioning in
humans and animals. Imagine someone starting from an
arbitrary location in a building that aims to escape the
building by finding the nearest exit. Suppose that this per-
son has no knowledge regarding the physical space. The
person may explore the space by conducting trials, i.e.,
walking in the indoor area until reaching an exit point, or
coming to a location that has already been visited in the
same trial. Within each trial, certain knowledge is devel-
oped by the person that indicates how easy it is to find the
nearest exit from this location.

To realise the exploration and learning process above,
we formalise the evacuation situation using finite Markov
decision processes (MDP): AnMDP is a tuple 〈S,A, X, A〉
whereS is the finite set contain all the states,A is the finite
set contain all the actions, X : S × S × A → [0, 1] is the
dynamic function, A : S × A → R is the reward function.
The goal of MDPs is to determine a policy c : S ↦→ �, a
function which maps states to actions, with the maximum
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expected reward:

arg max
c

E

[
) −1∑
C=0

A (BC , 0C )
]

(1)

where BC+1 = X (BC , 0C ) , 0C = c (BC ) and ) is a final time
step.
In our setting, the MDP represents the indoor environ-

ment of the agent. The set S of states represents the set
of all patches in the digital representation of indoor space.
Note that there are only three types of patches in our digital
floor-plan layout: black (inaccessible area), white (acces-
sible area), and blue (exits). Agents are only able to walk
on the white patches. The action set A consists of four
elements: up, down, left, and right. We assume that these
actions will deterministically causes the agent to move
from one white patch to another patch in the respective
direction. If the target patch is a black wall, the agent will
stay put in this time step. An policy directs the agent’s
movements. To realise the knowledge acquisition pro-
cess, we assume that the MDP is unknown to the agent,
and through a model-free RL algorithm, the agent itera-
tively improves its knowledge regarding the environment
by keeping track of a valuation function.
This scenario can be handled by a well-established RL

algorithm, Q-learning. Q-learning has been the most
widely-used approach with demonstrated efficiency and
reliability guarantee [31]. The key idea of Q-learning is
incrementally approximating the valuation (&) function
of each state-action pair based on the rewards received.
To be more specific, in each round, the Q-value will be
updated from &C to &C+1 base on old value (i.e., &C ) and
the maximum Q-values of the next state (i.e., BC+1) using
a temporal difference mechanism:

&:+1 (BC , 0C ) = &: (BC , 0C )

+ U
(
AC + Wmax

0
&: (BC+1, 0) −&: (BC , 0C )

)
(2)

Wenow introduce theworkflowof the safety assessment
module below: A path is a contiguous sequence of patches
?1, ?2, . . . , ?ℓ where every patch ?8 where 1 ≤ 8 < ℓ is
white and ?8+1 is reachable from ?8 by one of the moves.
From a patch ?, the shortest path to exit is the path that
starts from ? and ends at an exit that contains the least
number of patches.
Our agent performs trials to explore the indoor area

from every white patch ?. In each trial, the agent starts by
initialising the &(B, 0)-values to 0 for every patch B and
action 0 ∈ A. As the agent traverses through the patches,
it will update its Q-value as defined above. When the agent
arrives at the exit patch, the module checks whether the
agent has found a shortest path to the closest exists in terms

(a) Original layout (b) Output heat map

Figure 3. Original layout and heat map of
an theater. Retrieved May 22, 2019, from
https://www.cadpro.com/draw-floor-plans/

of its Q-values for each patch-action pair. If no shortest
path is identified based on the Q-value, we will start a
new trial from the starting patch; on the other hand, if the
shortest path has been identified, the module will record
the total number of patches this agent has walked through
during the all the trials which started from the same initial
patch ?, this number is denoted by �? .

3.3 Module 3: Risk Score Assessment

For any white patch ? ∈ S, let 3? be the length of the
shortest path that starts from ?. To account for the impact
made by different sizes of the floor plan (i.e., the number
of patches |S|), we divide �? by 3 and set:

f? = �?/? (3)

We define this value f? as the risk score of the patch ?.
We will generate a heat map base on each patches’

risk score. We calculate the overall average of f? and
denote the result f as the risk score of the entire indoor
space. We try to use this risk score f to make the indoor
location-based risk quantitative and allow people to judge
the configuration of the floor plan as a whole.

4 Experimental Validation

Parameters setup. We apply frequently-used parame-
ters in Q-learning here. In the following experiments,
we set n as 20%, U equal to 0.2, W equal to 0.9, respec-
tively. Here n = 20% means random actions are taking
20% in all actions for the agent’s behaviour. We set the
path reward −1 to correspond to the time cost during the
exploration, and we set the exit-reward to 10 as the re-
ward of finding the exit. Since the Q-learning process is
non-deterministic, the choice of the agent’s move is not the
same in each episode, so we run our model 20 independent
episodes for each experiment.
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4.1 Case Study 1: A Theater

Figure 3 is a floor plan of a theater1. Here, we execute
our program on this floor plan and output the heat map.
The area near the exit door have a relatively low output
risk score (green area), which means such areas are easy
to evacuate; meanwhile, the areas far from the exit get
high output risk score. This result is matching our expec-
tation and common sense. Moreover, the top left corner is
covered with dark red. The reason is there are too many
obstacles (i.e., chairs.) around. So it is difficult to quickly
evacuate from this area in an emergency situation. If a
shooter stormed into this theater and starting hurt people,
this dark red area might become a dead-end corner. The
heat map shows that our prototype program can judge and
measure the safety of different sub-areas. From this heat
map, we could get some useful design suggestions: we
might need to open an exit door at this red area for safety
concerns.
One main advantage of our framework is, we could

calculate sub-area risk score base on the risk score of each
patch. For example, the risk score of the green left-bottom
corner is 471; the risk score of the red left-top corner is
1466; the average risk score value of the whole theater is
848.6. This makes our program has more flexibility and
capability. We could only focus on the important part of
the building which we are interested in.

4.2 Case Study 2: Auckland Hospital

(a) Original layout (b) Generated heat map

Figure 4. Original layout and generated heat map of
Auckland hospital [32]

Figure 4 shows the original layout and generated heat
map of one floor of Auckland hospital, respectively [32].
There are six exits in the original map, as shown in Figure
4(a). Now we remove four of them and generate corre-
sponding heat map, as shown in Figure 4(b), and see what
difference it will make. From the graph, we can see the
map was separated into two different parts: the left part
got two exits and fewer obstacles. Therefore, it has a much
lower risk score; the right part has a very complex layout,
many obstacles around, some narrow corridors, and dead

1retrieved May 22, 2019, from
https://www.cadpro.com/draw-floor-plans/

ends. Sowe can guess there should be some exits in the red
part, just like the original layout. This case study shows
that our program does have some ability to understand the
structure information embedding in the floor plans.

4.3 Case Study 3: Rational Configuration Design

(a) Original generated floor
plan (f = 652.1)

(b) Two exits floor plan (f =
1655.3)

(c) Narrower corridors floor
plan (f = 803.1)

Figure 5. Rational configuration design

This case study aims to demonstrate that our framework
has the potential to provide decision support to designers
by allowing flexible adjustment to the indoor layout and
observing the resulting risk score. For this, we manually
generate an artificial indoor environment that consists of
several rooms linked by two corridors. We imagine the
situation where a designer is facing a number of design
decisions that include setting the number of exists and
adjusting the width of the corridors. By applying our
model, the designer is able to predict the likely impact to
risk scores of the interior space of tuning these parameters.

The number of exits. We first check the difference of
the risk score by varying the number of exits. We apply the
control variate method here, which means the only thing
we change is the number of exits. Figure 5(a) shows the
orignal floor plan with six rooms and three exits. The risk
score f is 652.1.
Now we reduce the number of exit to two and rerun our

program. We give the output heatmap in Figure 5(b). Now
the floor plan has a much higher risk score: f = 1655.3.
From the heat maps we generated, we could have some
insight view of the whole layout of the current building,

1401



37Cℎ International Symposium on Automation and Robotics in Construction (ISARC 2020)

like if a certain area has a relevantly high risk score, we
might consider adding an exit in this area. The more exit
we have, the lower risk score we will achieve. We could
set up a proper threshold risk score value to balance the
risk score f and the number of exits.

The width of corridors. We then check how the width
of corridors affects the risk score of a floor plan. We
reduce the width of the original vertical corridors from
four grids to two grids and the original horizontal corri-
dors from four grids to a single grid, as shown in Fig-
ure 5(c). By comparing the original floor plan, we find
that the narrower corridors floor plan has a higher risk
score: f = 803.1 compared to the original risk score:
f = 652.1. This means narrower corridors make people
difficult to evacuate, especially for the two rooms in the
middle. This experiment is causing alarm that wemust not
use the main corridors for storage or rebuild the corridor
without permission. We should keep all escape route free
and unobstructed evacuation from the premises.

5 Conclusion
The evaluation of indoor risks is a paramount issue in

building design and construction. This paper puts forward
a novel computational framework to automatically assess
the evacuation risk posed by the indoor space through
intelligent agents. In particular, we model a person’s cog-
nitive process when exploring the indoor space in search
for an exit, and then capture the risk using the cost of
such process. Such an automated process to evaluate the
safety conditions of indoor spaces could help evaluate the
risk without deploying safety inspectors or conducting an
evacuation drill. Our framework is a cost-effective solu-
tion than rule-based risk evaluation or evacuation drills
since we perform the evaluation procedure in a simula-
tion environment instead of requiring expensive expertise
or conducting an evacuation drill in real buildings. Our
framework has also high flexibility because the evaluation
procedure could be conduct at any stage of construction,
even in the sketch stage, if deemed necessary. Our case
studies show that the proposed framework can understand
the structure information embedded in the floor plan and
offer some reference suggestions for structural design and
risk evaluation.
We believe that the proposed method provides a new

perspective to evaluating building safety through the lens
of computational agents. There are many ways to extend
the current work. Future studies could consider a dynamic
environment where multiple agents interact through ex-
ploring the environment. We also could extend our proto-
type to the multi-agent system to provide insights into the
mechanisms and interactions for panic and crowding un-
der urgent situations. From an application perspective, the

idea proposed in the paper can be developed as a plug-in
in a building information management (BIM) system that
automate the evaluation of evacuation risks.
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