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Abstract –
Research towards automation of heavy 

construction machines for efficient and safe 

construction processes that are robust to various 

environments and disturbances has been conducted 

for many years. In this paper, we show two 

contributions towards this objective. Firstly, we 

explore the use of reinforcement learning to automate 

construction machines. Secondly, we evaluate the 

effectiveness of three methods to reduce learning time 

of reinforcement learning: designing reward function, 

pre-training with BC, and changing frame-skip rate. 

The reinforcement learning approach is expected to 

gain robustness against disturbances through 

learning. We run experiments on two different 

realistic tasks. The first task is to reduce sway of a 

load suspended from a mobile boom crane, behaving 

as a single pendulum. The second task is to load an 

excavator bucket with soil with a hydraulic excavator. 

We demonstrate the effectiveness of algorithms using 

the reinforcement learning approach on the 

commercial simulator, Vortex Studio developed by 

CM Labs Simulations. 

Keywords – 
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Figure 1. A construction machine that performs 

tasks in a simulator. Anti-sway crane (left). Load 

the soil with excavator (right). 

1 Introduction 

For many years, automation of heavy construction 

machines has been studied to improve safety, work 

productivity, and construction quality. However, it has 

been pointed out that even recent studies lacks 

consideration of model uncertainties [1], parameter 

variations, and disturbances [2]. 

Reinforcement learning combined with neural 

networks has been shown to be an effective framework 

for solving complex problems. In reinforcement learning, 

an agent interacts with the environment through trial and 

error and learns the optimal control method based on 

signals from the reward function. Various problems in 

robotics are naturally expressed as reinforcement 

learning problems [3]. Using reinforcement learning, 

robots can autonomously find optimal movements and 

gain robust movement by gaining experience in dealing 

with various disturbances. 

Reinforcement learning has had a great success in the 

game field [4], but is more difficult to apply in robotics 

[5]. Since reinforcement learning improves the 

controlling policy in an incremental manner, an initial 

movement is almost like a random movement, which can 

be sometime dangerous in the real-world tasks. 

Furthermore, agents need to learn in a wide variety of 

environments in order to prevent over-fitting to the 

specific environment and improve the robustness against 

the environment changes. However, this type of learning 
requires a lot of time and cost to prepare such 

environment in the real world. 

A simple way to solve the above problem is to use a 

simulator [6][7]. One can easily create a wide variety of 

environments and simulation is completely safe i.e. the 

virtual construction machine will never be damaged even 

if it accidentally crashes in the learning phase.  We chose 

to use Vortex Studio as a simulator which is specialized 

in construction machine models and can perform high-

precision physical simulations quickly. 

The biggest problem we face when using 
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reinforcement learning is sample efficiency. Generally, 

more than millions trial and error iterations are required 

to achieve human-level performance. Although 

simulators can generally run tasks much faster than real 

time, it still needs a couple of weeks to complete learning 

which hinders the efficiency of experiments. 

Various reinforcement learning algorithms have been 

proposed to improve sampling efficiency such as 

distributed learning [8][9][10], transforming or adding 

reward functions such as reward shaping[11] and 

intrinsically motivated function[12], mixing imitation 

learning and reinforcement learning [13] and changing 

frame-skip, the number of frames an action is repeated 

before a new action is selected [14]. 

In this paper, we define two tasks for the construction 

machines and apply reinforcement learning for these 

tasks. We also introduce and evaluate some of the 

techniques for improving sample efficiency. In order to 

implement these techniques, we made some modification 

to the Vortex Studio simulator, which was originally not 

intended for reinforcement learning use and convert it to 

a “Reinforcement learning ready” simulator. In this paper, 

our contributions are: 

• We introduce reinforcement learning for the 

following two tasks as shown in Figure 1: The first 

task is to reduce sway of a load suspended from a 

mobile boom crane, behaving as a single pendulum. 

The second task is to load an excavator bucket with 

soil with a hydraulic excavator. We show that 

reinforcement learning is one of the effective 

methods that can perform as well as humans in the 

automation of construction machine. 

• We evaluate the effectiveness of the three methods 

to improve sample efficiency for reinforcement 

learning: designing reward function, pre-training, 

and changing frame-skip rate.  

• We provide examples of practical methods on how 

to parallelize learning when applying reinforcement 

learning algorithms to domain-specific simulators 

that are not for reinforcement learning. 

The paper has been organized as follows. Section 2 

describes the fundamental concept of reinforcement 

learning. Section 3 describes the methods applied to 

improve sample efficiency. In Section 4, we describe the 

detail setup of the experiments. In Sections 5, we mention 

some considerations and ideas for performing high-speed 

learning with a simulator that is not built for 

reinforcement learning. In Section 6, we describe the 

experimental results performed on crane or excavator 

tasks. Section 7 presents the summary and conclusions of 

this paper and discusses future work. 

2 Preliminary 

2.1 Reinforcement learning 

In this section, we provide a definition used in 

reinforcement learning [15] focusing on the case the 

environment 𝐸 as a finite-state Markov decision 

processes (MDP). An agent maximizes cumulative 

rewards by selecting an optimal action from all actions 

𝐴 = {𝑎1 , … , 𝑎𝑘} an agent can select, in discretized 

timesteps in some state 𝑠 ∈ 𝑆  of an environment 

𝐸,where k is the number of actions the agent has. 

Rewards are the criteria by which an agent learns good 

or bad behavior. At every timestep 𝑡, an agent takes an 

action 𝑎𝑡 ∈ 𝐴 when in state 𝑠𝑡. After that, an 

environment transitions to next state 𝑠𝑡+1 by transition 

function 𝑠𝑡+1 =  𝑇(𝑠𝑡 , 𝑎𝑡) and the agent gets a reward 

𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑠𝑡+1) where  𝑇 gives the state transition and 

𝑅 gives the reward. To evaluate how much the action 

performed in a certain time step has contributed to the 

total cumulative reward, we consider the estimated 

reward 

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡−1𝑟T

= 𝑟𝑡+1 + 𝛾𝐺𝑡 
(1) 

 , where 𝛾 ∈ (0, 1] is the discount factor, and  T is the 

time when the episode ends. An agent learns a policy 

𝜋(𝑠𝑡) that maximize cumulative expected rewards until 

the end of episode. In reinforcement learning, an 

optimal policy 𝜋∗is obtained by interacting with the 

environment until the action-value function 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) =  ∑ 𝑇(𝑠𝑡 , 𝑎𝑡) (𝑅(𝑠𝑡 , 𝑠𝑡+1) + 𝛾𝐺𝑡+1)

𝑠𝑡+1

 (2) 

 converges. 

Generally, it is difficult to model real transition 

functions 𝑇. The use of model-free algorithms to 

approximate action-value function 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) ≈ 𝑅(𝑠𝑡 , 𝑠𝑡+1)
+ 𝛾 max

𝑎𝑡+1
𝐸[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)] 

(3) 

is now mainstream [16]. 

In this paper, we use the PPO algorithm[9], which is 

well known as the stable model-free algorithm and 

support distributed learning. Distributed learning is the 

way to learn effectively by replicating the agent and the 

environment, having the agents act in each environment 

and gaining a lot of experience. With distributed learning 

we can speed up the learning. The algorithms in [9] is 

composed of Actor-Critic network architecture. Actor-

Critic is common methodology for Critic to encourage 

Actor to update the policy, and there are various 

implementations such as making the Actor and the Critic 

in different networks or sharing a part of the network. 
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2.2 Imitation learning 

Imitation learning is another approach to create an 

agent. It learns an optimal policy from demonstrations of 

expert human by imitating. A simple approach to 

imitation learning is behavior cloning (BC) [17], which 

learns a policy from demonstrations of successful 

behavior through supervised learning.  

Pure imitation learning methods cannot exceed the 

capabilities of the demonstrations. In addition, a huge 

number of demonstrations is required when applying it to 

actual tasks because it is not possible to respond to scenes 

that are not in the demonstration.  

Imitation learning can also be used to boost the 

learning efficiency of reinforcement learning by using 

the learned policy of BC as an initial policy of 

reinforcement learning.  

3 Method 

In this section, we describe three methods to improve 

the sample efficiency of reinforcement learning in detail. 

All of these methods are ways to simplify the state space 

that the agent explores. Figure 2 shows how the state 

space is simplified by each method. Even if the state 

space is continuous, the reachable state space is 

discretized by time, so we represent the state space by 

grid world. 

 

Figure 2. State space is how simplified by each 

method. 

3.1 Designing Reward function 

The simplest form of reward is a binary reward, that 

is, an agent gets a positive reward when an agent achieves 

the desired state at the end of an episode, otherwise a 

negative reward. This form of reward leads an agent to 

get desired policy. The problem with this reward is that 

the agent is essentially exploring by random actions at 

first, and therefore cannot learn good behavior at all until 

the agent is able to earn the reward. This is especially 

problematic when the state space or action space is large, 

as it takes longer to explore and the possibility that the 

agent gets a reward is lower. 

To avoid this problem, there is a way to give a reward 

at each action or state that will lead to the final goal. This 

type of reward is called as a dense reward. While this can 

improve learning speed, you need to design dense reward 

function carefully otherwise the learned behavior may be 

different from what we actually want. 

In this paper, we presented two results for each task: 

sparse reward and dense reward. 

3.2 Pre-training with BC 

In general, RL uses random behavior as an initial 

policy, which is one of the reasons for low sample 

efficiency of the RL algorithms. As mentioned in 2.2, 

exploration can be performed efficiently by properly 

initializing the policy using imitation learning[13]. 

In this paper, we combine BC [17] with the PPO 

algorithms[9]. Unlike [13], we use the model trained in 

BC as the initial value of the model for reinforcement 

learning. 

3.3 Changing frame-skip rate 

Another way to speed up learning is to change the 

frame-skip rate[14]. Frame skipping is the technique to 

repeat the same action for several frames. Increasing the 

frame-skip rate has the effect of coarsening the 

granularity of action. The coarsening of the granularity 

of the action reduces the state that can be reached within 

a certain time step. As a result, the combination of state 

and action spaces is reduced, which simplifies the task.  

Increasing the frame-skip rate will also be very 

important when applying reinforcement learning to real 

construction machines because it allows the granularity 

of a single action choice to be changed and the overall 

action to be smoother. Increasing the frame-skip rate 

reduce not only productivity but also fuel efficiency and 

machine fouling and wear. However, simply increasing 

the frame-skipping rate does not allow for fine-grained 

action, and thus does not explore the state space that 

makes the task successful and may prevent agents from 

achieving their goals. Trade-offs between fineness of 

action and learning time should be considered, depending 

on the task and state in order to decide the appropriate 

number of frame skips. In this paper we tried two patterns 

about frame-skip rate, no frame skip and 19 frame skips. 

4 Experiments 

In our experiments we aim at answering the following 

questions: 

1. Does reinforcement learning work to solve realistic 

construction machine tasks? 

2. Which is the most effective method to reduce 

learning time? 

We evaluate our approach on two different realistic 

construction tasks, anti-sway crane and loading the soil 

with an excavator. We used the stable baselines 

framework [18] as the basis for our implementation in 

(a) Normal state action space 

Start state

Goal state

Explore randomly

(b) Designing Reward function

Intermediate goal

(c) Pre-training with BC (d) Changing frame-skip rate 

Explore is based 

on policies learned

by BC.

The number of actions per period 

is reduced, so the state space 

available for exploration is reduced.
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this experiment. The network architecture of our system 

is depicted in Figure 3. Both policy network and value 

network have 3 fully connected layers, and each network 

are independent. 

 

Figure 3. The network architecture of our system. 

The Learning is performed on a single machine with 

an Intel Core i7-8700 and GeForce GTX 1070. 

The hyperparameters we used, are same as the default 

values defined in [18].  

4.1 Simulators 

CM Labs' Vortex Studio provides a virtual 

environment for real-time simulation of complex 

multibody systems. In Vortex, each rigid body is 

formulated using six degrees of freedom, and these 

bodies can be connected with several constraint types 

with varying numbers of linear and/or angular degrees of 

freedom. The toolkit supports equality as well as 

inequality constraints, e.g., contacts, which can be 

holonomic or nonholonomic. Vortex employs the method 

of Lagrange multipliers together with a direct solver and 

a semi-implicit integration scheme for stable and fast 

multi-body simulation. With its optimized core for fast 

and real-time simulation and its advanced graphical 

capabilities, Vortex has various applications including 

operator training, mission planning and design. 

Furthermore, there are some modules provided in Vortex 

for particular applications. We used the Cable system 

module and the Earthwork system module for this study 

which differentiates Vortex Studio from other real-time 

simulations [19]. 

4.1.1 Vortex Cable system simulation 

Vortex Studio’s Cable Systems provides a realistic 

simulation of heavy-equipment cables. These extended 

capabilities ensure real-time behavior by allowing cables 

to adjust to bends while distributing mass and forces 

correctly. It can predict cable behavior with minimum 

number of segments to simulate, which the number of 

segments changes depending on the curvature of the 

cable using Adaptive Cable method. This allows Vortex 

to consider all bending/axial/torsion stiffness and 

damping to simulate the real cable behavior without 

falling behind the time step as required by real-time 

simulation. 

4.1.2 Vortex Earthworks system simulation 

The Vortex Earthwork Systems module is tailored to 

the needs of high-fidelity, real-time earth-moving 

simulations, and employs physically based soil 

deformation algorithms. Terrain deformations, caused by 

earth-moving tools such as buckets, and the 

corresponding terrain reaction forces, are captured in 

real-time and full two-way force coupling with other 

simulation entities is modelled. The interactions between 

machine and soil are fully simulated, allowing soil to be 

cut, compressed and spilled, all inside an interactive 

environment by using a hybrid particle-based and mesh-

based soil simulation method [20]. 

4.2 Task 1: Crane 

In this task, the goal is to control the relative position 

shift and speed of the suspended load (the rotation of the 

load is not taken into account in this experiment) as 

shown in Figure 4, so this crane is regarded as a single 

pendulum.  

 

Figure 4. At first, the load suspended by the crane 

is intentionally shaken a certain amount. After a 

certain time, the operational agent reduces sway 

of a load suspended from a mobile boom crane. 

4.2.1 Experimental setup 

We model the components of the crane task as shown 

in Figure 5. In this figure, 𝑥𝑑𝑖𝑓𝑓  and 𝑦𝑑𝑖𝑓𝑓  are distance 

between boom tip coordinate to load center coordinate, 

|𝑣|  is absolute value of speed of the load, |𝑎| is 

acceleration of the load. We stack these 4-dimensional 

data for 3 timesteps and use them as input for 

reinforcement learning model. 

 

Figure 5. (a) Components of crane task (b) Input 

Fully connected layer

Fully connected layer

Fully connected layer

Fully connected layer

Fully connected layer

Fully connected layer

Input

Policy network Value network

Action Probability State Value
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sensor data. 

We define the agent actions as elevation and boom as 

shown in the Figure 6. While PPO [9] can handle both 

continuous and discrete action spaces, we use the 

discretized elevation action out of 3 and the discretized 

boom action out of 5. The reason to use the discretized 

action is to speed up the learning. 

 

Figure 6. (a) Crane elevation action (b) Crane 

swing action. 

We set one episode to consist of a maximum of 600 

steps to use the framework of reinforcement learning. We 

define the episode success condition as maintaining 

|𝑥𝑑𝑖𝑓𝑓| and |𝑦𝑑𝑖𝑓𝑓| below 1.5 m and speed |𝑣| below 1.5 

m/s for 60 steps. We define the episode failure conditions 

as follows: 

• The acceleration of the suspended load exceeds a 

certain threshold 

• The suspended load collides with another object 

(ground or crane body) 

• 600 timesteps elapse without reaching episode 

success condition 

4.2.2 Method detail 

Details of each method to be compared in the crane 

task are presented below. 

Base condition: We define the base method as follows: 

• +1.0  reward when episode reaches success 

condition, and −1.0 reward when episode reaches 

failure condition (sparse reward) 

• Learning starts from scratch (random actions) 

• No frame-skip 

Designing reward function: We design the dense 

reward function as follows: 

• For every step, reward is given according to the 

following function 

𝑟𝑡 =
1.0

max (1, √𝑥𝑑𝑖𝑓𝑓
2 + 𝑦𝑑𝑖𝑓𝑓

2 )

  (3) 

• +(960 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝)  reward when episode 

success condition 

• −1.0 reward when episode failure condition 

Pre-training with BC: We do not attempt pre-training 

with BC because the algorithm in [18] doesn’t support 

BC with multi-discrete actions. 

Changing frame-skip rate: We change frame-skip rate 

to 19. 

4.3 Task 2: Excavator 

In this task, the goal is to load more soil in a single 

excavation with a hydraulic excavator as shown in Figure 

7. 

 

Figure 7.The agent operates only the bucket part. 

The agent scoops as much soil as possible in 

accordance with the movement of the excavator 

that follows a certain trajectory. 

4.3.1 Experimental setup 

We model the components of the excavator task as 

shown in Figure 8. In this figure, 𝑦𝑑𝑖𝑓𝑓  and 𝑧𝑑𝑖𝑓𝑓  are 

distance between the excavator body to the bucket, 𝑣𝑦 

and 𝑣𝑧 are value of speed of the bucket, 𝑛 is an actuator 

force  of the bucket cylinder, 𝜃 is a bucket angle, 𝑤 is the 

Weight of the soil in the bucket. We stack this 7-

dimensional data for 3 timesteps and use them as input 

for reinforcement learning model. 

 

Figure 8. (a) Components of excavator task (b) 

Input sensor data. 

We define the agent bucket action as shown in Figure 

9. We discretize the bucket action into 11 values. 

(a) Crane elevation action (b) Crane swing action

x

y

y

z

Elevation action

Swing action
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Figure 9. Excavator action. 

We set one episode to consist of up to 460 steps to use 

the framework of reinforcement learning. We define the 

episode success condition to be 𝑤 ≥ 1800  after 460 

steps have elapsed. We define the episode failure 

condition to be the lack of satisfaction of the success 

condition after 460 steps have elapsed. 

4.3.2 Method detail 

Details of each method to be compared in the 

excavator task are presented below. 

Base condition: We define base method as follows: 

• +𝑤/1800  reward when episode reaches success 

condition, and −1.0 reward when episode reaches 

failure condition (sparse reward) 

• Learning starts from scratch (random actions) 

• No frame-skip 

Designing reward function: We design the dense 

reward function as follows: 

• Every step, +1.0 reward is given when 𝑤 ≥ 1800 

• +𝑤/1800 reward when episode success condition 

is satisfied 

• −1.0  reward when episode failure condition is 

satisfied 

Pre-training with BC: To perform pre-training with BC, 

we collected 120 expert demonstration data on the 

simulator.  

Changing frame-skip rate: We change frame-skip rate 

to 19. 

5 Implementation 

In order to implement distributed learning with 

Vortex simulator, we consider three options, as shown in 

the Figure 10. 

 

Figure 10. (a) Launching multiple processes on a 

single machine. (b) Creating multiple 

environments on a single physical simulator 

process. (c) Provide multiple machines on which 

the physical simulator process can run. 

There are cases that GUI operation is the only way to 

advance the time of the simulator. In this case, Method 1 

take much time due to the interaction with the GUI, but 

this can be resolved by using the Vortex python language 

scripting API to run the simulation. However, each 

process of the multiple simulators needs memory and 

CPU which requires a high-performance computer.  

Method 2 needs only one process, so it is efficient in 

terms of memory and CPU. However, if the simulator is 

unable to reset each separate environment in the process 

to its initial state individually (synchronous parallel 

environment) as in Vortex, one needs to develop a new 

function module to summarize the environment state in 

the process because it is a requirement of the OpenAI 

gym interface, which is de facto interface and is assumed 

by many reinforcement learning frameworks. Moreover, 

as shown in the Figure 10, in the case of synchronous 

parallel environments, unlike asynchronous parallel 

environments, all environments need to reach the end of 

the episode. This may lead to a deterioration of the 

sample efficiency. 

 

Figure 11. Progress of episodes in synchronous 

and asynchronous parallel environments 

Method 3 is very simple but requires multiple 

computers. 

Method 1 or 2 and Method 3 can be used together, 

and faster learning is expected. In our experiment, we 

adopt Method 2, which requires the lowest machine cost 

and is expected to achieve better performance than 

Method 1. 

Note that Vortex simulator plan to develop an 

asynchronous parallel environment, so it will resolve the 

problem of sample efficiency in the future. 

6 Results 

In this section, we evaluate how each method 

contributes to each task success rate and learning speed. 

The results are showed in the Figure 12. The success rate 

is measured through 100 trials. We also show the task 

Bucket action

y

z

Machine
Physical simulator process

Environment

(a) Method 1 (b) Method 2 (c) Method 3
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success rate using the best performance model after 

learning. Table 1 shows the best success rate for each 

method on the simulator.  

 

Figure 12. Learning efficiency for each method 

(left) crane (right) excavator 

Table 1. Task success rate 

Task 

Success rate by methods, % 

Base Designing 

Reward 

function 

Pre-

training 

with 

BC 

Changing 

Frame-

skip 

Crane 0  63 - 0 

Excavator 0 34 80 96 

 

6.1 Base condition  

In both tasks, the base condition had no success, while 

other methods are starting to succeed at the same point in 

learning time. This indicates that the base condition 

needs more learning time and the other methods make 

learning more efficient. 

6.2 Designing the reward function 

In the crane task (see Figure 12 left), this method was 

the only one that worked. It reached about 60% success 

rate, and then the success rate dropped off. And also, in 

the excavator task (see Figure 12 right), this method had 

about 30% success rate. This indicates that the designed 

reward function is not directly related to the success of 

the task.  

6.3 Pre-training with BC  

Pre-training with BC took almost 1 hour wall-clock 

time to converge. In the early stages of learning, BC gave 

a high performance, but as the learning progressed, the 

performance gradually decreased. We believe that it is 

because the form of reward is different between BC and 

PPO. 

6.4 Changing Frame-skip 

The frame skip method achieved 96% success rate in 

the excavator task, whereas the crane task did not succeed 

at all. This indicates that the exploration for a good frame 

skip rate for each task or scene will yield good results. 

7 Conclusion & Future work 

In this paper, we demonstrated through simulations 

that reinforcement learning works effectively for two 

tasks: reducing sway of a load suspended from a mobile 

boom crane and loading an excavator bucket with soil 

with a hydraulic excavator. In addition, we confirmed the 

effectiveness of three methods to reduce learning time of 

reinforcement learning: designing the reward function, 

pre-training, and changing frame-skip rate. Finally, we 

provided examples of practical methods on how to 

parallelize learning when applying reinforcement 

learning algorithms to domain-specific simulators that 

were not originally designed for reinforcement learning. 

In future work, we intend to compare our 

reinforcement learning algorithms with an existing 

control method on simulation. We also consider that the 

current learning on simulation is not tolerant to transfer 

to the real world. In recent years, methods to close the 

reality gap has been widely studied [21][22][23]. It is 

necessary to apply these methods to smoothly transfer 

learning result of simulation to real world operation. 
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