
37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Simulation-based Reinforcement Learning Approach

towards Construction Machine Automation

K. Matsumotoa, A. Yamaguchia, T. Okaa, M. Yasumotoa, S. Harab, M. Iidab and M. Teichmannc

aAraya inc., Japan
bInformation Services International-Dentsu, Ltd., Japan

cCM Labs Simulations, Canada

E-mail: matsumoto_k@araya.org, atsusysw@araya.org, t.oka@araya.org, yasumoto@araya.org, shara@isid.co.jp,

iida.michitaka@isid.co.jp, marek@cm-labs.com

Abstract –
Research towards automation of heavy

construction machines for efficient and safe

construction processes that are robust to various

environments and disturbances has been conducted

for many years. In this paper, we show two

contributions towards this objective. Firstly, we

explore the use of reinforcement learning to automate

construction machines. Secondly, we evaluate the

effectiveness of three methods to reduce learning time

of reinforcement learning: designing reward function,

pre-training with BC, and changing frame-skip rate.

The reinforcement learning approach is expected to

gain robustness against disturbances through

learning. We run experiments on two different

realistic tasks. The first task is to reduce sway of a

load suspended from a mobile boom crane, behaving

as a single pendulum. The second task is to load an

excavator bucket with soil with a hydraulic excavator.

We demonstrate the effectiveness of algorithms using

the reinforcement learning approach on the

commercial simulator, Vortex Studio developed by

CM Labs Simulations.

Keywords –

Reinforcement Learning; Imitation Learning;

Automation; Autonomous; Simulation

Figure 1. A construction machine that performs

tasks in a simulator. Anti-sway crane (left). Load

the soil with excavator (right).

1 Introduction

For many years, automation of heavy construction

machines has been studied to improve safety, work

productivity, and construction quality. However, it has

been pointed out that even recent studies lacks

consideration of model uncertainties [1], parameter

variations, and disturbances [2].

Reinforcement learning combined with neural

networks has been shown to be an effective framework

for solving complex problems. In reinforcement learning,

an agent interacts with the environment through trial and

error and learns the optimal control method based on

signals from the reward function. Various problems in

robotics are naturally expressed as reinforcement

learning problems [3]. Using reinforcement learning,

robots can autonomously find optimal movements and

gain robust movement by gaining experience in dealing

with various disturbances.

Reinforcement learning has had a great success in the

game field [4], but is more difficult to apply in robotics

[5]. Since reinforcement learning improves the

controlling policy in an incremental manner, an initial

movement is almost like a random movement, which can

be sometime dangerous in the real-world tasks.

Furthermore, agents need to learn in a wide variety of

environments in order to prevent over-fitting to the

specific environment and improve the robustness against

the environment changes. However, this type of learning
requires a lot of time and cost to prepare such

environment in the real world.

A simple way to solve the above problem is to use a

simulator [6][7]. One can easily create a wide variety of

environments and simulation is completely safe i.e. the

virtual construction machine will never be damaged even

if it accidentally crashes in the learning phase. We chose

to use Vortex Studio as a simulator which is specialized

in construction machine models and can perform high-

precision physical simulations quickly.

The biggest problem we face when using

457

mailto:matsumoto_k@araya.org
mailto:atsusysw@araya.org
mailto:t.oka@araya.org
mailto:yasumoto@araya.org
mailto:shara@isid.co.jp
mailto:iida.michitaka@isid.co.jp
mailto:marek@cm-labs.com

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

reinforcement learning is sample efficiency. Generally,

more than millions trial and error iterations are required

to achieve human-level performance. Although

simulators can generally run tasks much faster than real

time, it still needs a couple of weeks to complete learning

which hinders the efficiency of experiments.

Various reinforcement learning algorithms have been

proposed to improve sampling efficiency such as

distributed learning [8][9][10], transforming or adding

reward functions such as reward shaping[11] and

intrinsically motivated function[12], mixing imitation

learning and reinforcement learning [13] and changing

frame-skip, the number of frames an action is repeated

before a new action is selected [14].

In this paper, we define two tasks for the construction

machines and apply reinforcement learning for these

tasks. We also introduce and evaluate some of the

techniques for improving sample efficiency. In order to

implement these techniques, we made some modification

to the Vortex Studio simulator, which was originally not

intended for reinforcement learning use and convert it to

a “Reinforcement learning ready” simulator. In this paper,

our contributions are:

• We introduce reinforcement learning for the

following two tasks as shown in Figure 1: The first

task is to reduce sway of a load suspended from a

mobile boom crane, behaving as a single pendulum.

The second task is to load an excavator bucket with

soil with a hydraulic excavator. We show that

reinforcement learning is one of the effective

methods that can perform as well as humans in the

automation of construction machine.

• We evaluate the effectiveness of the three methods

to improve sample efficiency for reinforcement

learning: designing reward function, pre-training,

and changing frame-skip rate.

• We provide examples of practical methods on how

to parallelize learning when applying reinforcement

learning algorithms to domain-specific simulators

that are not for reinforcement learning.

The paper has been organized as follows. Section 2

describes the fundamental concept of reinforcement

learning. Section 3 describes the methods applied to

improve sample efficiency. In Section 4, we describe the

detail setup of the experiments. In Sections 5, we mention

some considerations and ideas for performing high-speed

learning with a simulator that is not built for

reinforcement learning. In Section 6, we describe the

experimental results performed on crane or excavator

tasks. Section 7 presents the summary and conclusions of

this paper and discusses future work.

2 Preliminary

2.1 Reinforcement learning

In this section, we provide a definition used in

reinforcement learning [15] focusing on the case the

environment 𝐸 as a finite-state Markov decision

processes (MDP). An agent maximizes cumulative

rewards by selecting an optimal action from all actions

𝐴 = {𝑎1 , … , 𝑎𝑘} an agent can select, in discretized

timesteps in some state 𝑠 ∈ 𝑆 of an environment

𝐸,where k is the number of actions the agent has.

Rewards are the criteria by which an agent learns good

or bad behavior. At every timestep 𝑡, an agent takes an

action 𝑎𝑡 ∈ 𝐴 when in state 𝑠𝑡. After that, an

environment transitions to next state 𝑠𝑡+1 by transition

function 𝑠𝑡+1 = 𝑇(𝑠𝑡 , 𝑎𝑡) and the agent gets a reward

𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑠𝑡+1) where 𝑇 gives the state transition and

𝑅 gives the reward. To evaluate how much the action

performed in a certain time step has contributed to the

total cumulative reward, we consider the estimated

reward

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡−1𝑟T

= 𝑟𝑡+1 + 𝛾𝐺𝑡
(1)

 , where 𝛾 ∈ (0, 1] is the discount factor, and T is the

time when the episode ends. An agent learns a policy

𝜋(𝑠𝑡) that maximize cumulative expected rewards until

the end of episode. In reinforcement learning, an

optimal policy 𝜋∗is obtained by interacting with the

environment until the action-value function

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ∑ 𝑇(𝑠𝑡 , 𝑎𝑡) (𝑅(𝑠𝑡 , 𝑠𝑡+1) + 𝛾𝐺𝑡+1)

𝑠𝑡+1

 (2)

 converges.

Generally, it is difficult to model real transition

functions 𝑇. The use of model-free algorithms to

approximate action-value function

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) ≈ 𝑅(𝑠𝑡 , 𝑠𝑡+1)
+ 𝛾 max

𝑎𝑡+1
𝐸[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]

(3)

is now mainstream [16].

In this paper, we use the PPO algorithm[9], which is

well known as the stable model-free algorithm and

support distributed learning. Distributed learning is the

way to learn effectively by replicating the agent and the

environment, having the agents act in each environment

and gaining a lot of experience. With distributed learning

we can speed up the learning. The algorithms in [9] is

composed of Actor-Critic network architecture. Actor-

Critic is common methodology for Critic to encourage

Actor to update the policy, and there are various

implementations such as making the Actor and the Critic

in different networks or sharing a part of the network.

458

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

2.2 Imitation learning

Imitation learning is another approach to create an

agent. It learns an optimal policy from demonstrations of

expert human by imitating. A simple approach to

imitation learning is behavior cloning (BC) [17], which

learns a policy from demonstrations of successful

behavior through supervised learning.

Pure imitation learning methods cannot exceed the

capabilities of the demonstrations. In addition, a huge

number of demonstrations is required when applying it to

actual tasks because it is not possible to respond to scenes

that are not in the demonstration.

Imitation learning can also be used to boost the

learning efficiency of reinforcement learning by using

the learned policy of BC as an initial policy of

reinforcement learning.

3 Method

In this section, we describe three methods to improve

the sample efficiency of reinforcement learning in detail.

All of these methods are ways to simplify the state space

that the agent explores. Figure 2 shows how the state

space is simplified by each method. Even if the state

space is continuous, the reachable state space is

discretized by time, so we represent the state space by

grid world.

Figure 2. State space is how simplified by each

method.

3.1 Designing Reward function

The simplest form of reward is a binary reward, that

is, an agent gets a positive reward when an agent achieves

the desired state at the end of an episode, otherwise a

negative reward. This form of reward leads an agent to

get desired policy. The problem with this reward is that

the agent is essentially exploring by random actions at

first, and therefore cannot learn good behavior at all until

the agent is able to earn the reward. This is especially

problematic when the state space or action space is large,

as it takes longer to explore and the possibility that the

agent gets a reward is lower.

To avoid this problem, there is a way to give a reward

at each action or state that will lead to the final goal. This

type of reward is called as a dense reward. While this can

improve learning speed, you need to design dense reward

function carefully otherwise the learned behavior may be

different from what we actually want.

In this paper, we presented two results for each task:

sparse reward and dense reward.

3.2 Pre-training with BC

In general, RL uses random behavior as an initial

policy, which is one of the reasons for low sample

efficiency of the RL algorithms. As mentioned in 2.2,

exploration can be performed efficiently by properly

initializing the policy using imitation learning[13].

In this paper, we combine BC [17] with the PPO

algorithms[9]. Unlike [13], we use the model trained in

BC as the initial value of the model for reinforcement

learning.

3.3 Changing frame-skip rate

Another way to speed up learning is to change the

frame-skip rate[14]. Frame skipping is the technique to

repeat the same action for several frames. Increasing the

frame-skip rate has the effect of coarsening the

granularity of action. The coarsening of the granularity

of the action reduces the state that can be reached within

a certain time step. As a result, the combination of state

and action spaces is reduced, which simplifies the task.

Increasing the frame-skip rate will also be very

important when applying reinforcement learning to real

construction machines because it allows the granularity

of a single action choice to be changed and the overall

action to be smoother. Increasing the frame-skip rate

reduce not only productivity but also fuel efficiency and

machine fouling and wear. However, simply increasing

the frame-skipping rate does not allow for fine-grained

action, and thus does not explore the state space that

makes the task successful and may prevent agents from

achieving their goals. Trade-offs between fineness of

action and learning time should be considered, depending

on the task and state in order to decide the appropriate

number of frame skips. In this paper we tried two patterns

about frame-skip rate, no frame skip and 19 frame skips.

4 Experiments

In our experiments we aim at answering the following

questions:

1. Does reinforcement learning work to solve realistic

construction machine tasks?

2. Which is the most effective method to reduce

learning time?

We evaluate our approach on two different realistic

construction tasks, anti-sway crane and loading the soil

with an excavator. We used the stable baselines

framework [18] as the basis for our implementation in

(a) Normal state action space

Start state

Goal state

Explore randomly

(b) Designing Reward function

Intermediate goal

(c) Pre-training with BC (d) Changing frame-skip rate

Explore is based

on policies learned

by BC.

The number of actions per period

is reduced, so the state space

available for exploration is reduced.

459

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

this experiment. The network architecture of our system

is depicted in Figure 3. Both policy network and value

network have 3 fully connected layers, and each network

are independent.

Figure 3. The network architecture of our system.

The Learning is performed on a single machine with

an Intel Core i7-8700 and GeForce GTX 1070.

The hyperparameters we used, are same as the default

values defined in [18].

4.1 Simulators

CM Labs' Vortex Studio provides a virtual

environment for real-time simulation of complex

multibody systems. In Vortex, each rigid body is

formulated using six degrees of freedom, and these

bodies can be connected with several constraint types

with varying numbers of linear and/or angular degrees of

freedom. The toolkit supports equality as well as

inequality constraints, e.g., contacts, which can be

holonomic or nonholonomic. Vortex employs the method

of Lagrange multipliers together with a direct solver and

a semi-implicit integration scheme for stable and fast

multi-body simulation. With its optimized core for fast

and real-time simulation and its advanced graphical

capabilities, Vortex has various applications including

operator training, mission planning and design.

Furthermore, there are some modules provided in Vortex

for particular applications. We used the Cable system

module and the Earthwork system module for this study

which differentiates Vortex Studio from other real-time

simulations [19].

4.1.1 Vortex Cable system simulation

Vortex Studio’s Cable Systems provides a realistic

simulation of heavy-equipment cables. These extended

capabilities ensure real-time behavior by allowing cables

to adjust to bends while distributing mass and forces

correctly. It can predict cable behavior with minimum

number of segments to simulate, which the number of

segments changes depending on the curvature of the

cable using Adaptive Cable method. This allows Vortex

to consider all bending/axial/torsion stiffness and

damping to simulate the real cable behavior without

falling behind the time step as required by real-time

simulation.

4.1.2 Vortex Earthworks system simulation

The Vortex Earthwork Systems module is tailored to

the needs of high-fidelity, real-time earth-moving

simulations, and employs physically based soil

deformation algorithms. Terrain deformations, caused by

earth-moving tools such as buckets, and the

corresponding terrain reaction forces, are captured in

real-time and full two-way force coupling with other

simulation entities is modelled. The interactions between

machine and soil are fully simulated, allowing soil to be

cut, compressed and spilled, all inside an interactive

environment by using a hybrid particle-based and mesh-

based soil simulation method [20].

4.2 Task 1: Crane

In this task, the goal is to control the relative position

shift and speed of the suspended load (the rotation of the

load is not taken into account in this experiment) as

shown in Figure 4, so this crane is regarded as a single

pendulum.

Figure 4. At first, the load suspended by the crane

is intentionally shaken a certain amount. After a

certain time, the operational agent reduces sway

of a load suspended from a mobile boom crane.

4.2.1 Experimental setup

We model the components of the crane task as shown

in Figure 5. In this figure, 𝑥𝑑𝑖𝑓𝑓 and 𝑦𝑑𝑖𝑓𝑓 are distance

between boom tip coordinate to load center coordinate,

|𝑣| is absolute value of speed of the load, |𝑎| is

acceleration of the load. We stack these 4-dimensional

data for 3 timesteps and use them as input for

reinforcement learning model.

Figure 5. (a) Components of crane task (b) Input

Fully connected layer

Fully connected layer

Fully connected layer

Fully connected layer

Fully connected layer

Fully connected layer

Input

Policy network Value network

Action Probability State Value

460

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

sensor data.

We define the agent actions as elevation and boom as

shown in the Figure 6. While PPO [9] can handle both

continuous and discrete action spaces, we use the

discretized elevation action out of 3 and the discretized

boom action out of 5. The reason to use the discretized

action is to speed up the learning.

Figure 6. (a) Crane elevation action (b) Crane

swing action.

We set one episode to consist of a maximum of 600

steps to use the framework of reinforcement learning. We

define the episode success condition as maintaining

|𝑥𝑑𝑖𝑓𝑓| and |𝑦𝑑𝑖𝑓𝑓| below 1.5 m and speed |𝑣| below 1.5

m/s for 60 steps. We define the episode failure conditions

as follows:

• The acceleration of the suspended load exceeds a

certain threshold

• The suspended load collides with another object

(ground or crane body)

• 600 timesteps elapse without reaching episode

success condition

4.2.2 Method detail

Details of each method to be compared in the crane

task are presented below.

Base condition: We define the base method as follows:

• +1.0 reward when episode reaches success

condition, and −1.0 reward when episode reaches

failure condition (sparse reward)

• Learning starts from scratch (random actions)

• No frame-skip

Designing reward function: We design the dense

reward function as follows:

• For every step, reward is given according to the

following function

𝑟𝑡 =
1.0

max (1, √𝑥𝑑𝑖𝑓𝑓
2 + 𝑦𝑑𝑖𝑓𝑓

2)

 (3)

• +(960 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝) reward when episode

success condition

• −1.0 reward when episode failure condition

Pre-training with BC: We do not attempt pre-training

with BC because the algorithm in [18] doesn’t support

BC with multi-discrete actions.

Changing frame-skip rate: We change frame-skip rate

to 19.

4.3 Task 2: Excavator

In this task, the goal is to load more soil in a single

excavation with a hydraulic excavator as shown in Figure

7.

Figure 7.The agent operates only the bucket part.

The agent scoops as much soil as possible in

accordance with the movement of the excavator

that follows a certain trajectory.

4.3.1 Experimental setup

We model the components of the excavator task as

shown in Figure 8. In this figure, 𝑦𝑑𝑖𝑓𝑓 and 𝑧𝑑𝑖𝑓𝑓 are

distance between the excavator body to the bucket, 𝑣𝑦

and 𝑣𝑧 are value of speed of the bucket, 𝑛 is an actuator

force of the bucket cylinder, 𝜃 is a bucket angle, 𝑤 is the

Weight of the soil in the bucket. We stack this 7-

dimensional data for 3 timesteps and use them as input

for reinforcement learning model.

Figure 8. (a) Components of excavator task (b)

Input sensor data.

We define the agent bucket action as shown in Figure

9. We discretize the bucket action into 11 values.

(a) Crane elevation action (b) Crane swing action

x

y

y

z

Elevation action

Swing action

461

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Figure 9. Excavator action.

We set one episode to consist of up to 460 steps to use

the framework of reinforcement learning. We define the

episode success condition to be 𝑤 ≥ 1800 after 460

steps have elapsed. We define the episode failure

condition to be the lack of satisfaction of the success

condition after 460 steps have elapsed.

4.3.2 Method detail

Details of each method to be compared in the

excavator task are presented below.

Base condition: We define base method as follows:

• +𝑤/1800 reward when episode reaches success

condition, and −1.0 reward when episode reaches

failure condition (sparse reward)

• Learning starts from scratch (random actions)

• No frame-skip

Designing reward function: We design the dense

reward function as follows:

• Every step, +1.0 reward is given when 𝑤 ≥ 1800

• +𝑤/1800 reward when episode success condition

is satisfied

• −1.0 reward when episode failure condition is

satisfied

Pre-training with BC: To perform pre-training with BC,

we collected 120 expert demonstration data on the

simulator.

Changing frame-skip rate: We change frame-skip rate

to 19.

5 Implementation

In order to implement distributed learning with

Vortex simulator, we consider three options, as shown in

the Figure 10.

Figure 10. (a) Launching multiple processes on a

single machine. (b) Creating multiple

environments on a single physical simulator

process. (c) Provide multiple machines on which

the physical simulator process can run.

There are cases that GUI operation is the only way to

advance the time of the simulator. In this case, Method 1

take much time due to the interaction with the GUI, but

this can be resolved by using the Vortex python language

scripting API to run the simulation. However, each

process of the multiple simulators needs memory and

CPU which requires a high-performance computer.

Method 2 needs only one process, so it is efficient in

terms of memory and CPU. However, if the simulator is

unable to reset each separate environment in the process

to its initial state individually (synchronous parallel

environment) as in Vortex, one needs to develop a new

function module to summarize the environment state in

the process because it is a requirement of the OpenAI

gym interface, which is de facto interface and is assumed

by many reinforcement learning frameworks. Moreover,

as shown in the Figure 10, in the case of synchronous

parallel environments, unlike asynchronous parallel

environments, all environments need to reach the end of

the episode. This may lead to a deterioration of the

sample efficiency.

Figure 11. Progress of episodes in synchronous

and asynchronous parallel environments

Method 3 is very simple but requires multiple

computers.

Method 1 or 2 and Method 3 can be used together,

and faster learning is expected. In our experiment, we

adopt Method 2, which requires the lowest machine cost

and is expected to achieve better performance than

Method 1.

Note that Vortex simulator plan to develop an

asynchronous parallel environment, so it will resolve the

problem of sample efficiency in the future.

6 Results

In this section, we evaluate how each method

contributes to each task success rate and learning speed.

The results are showed in the Figure 12. The success rate

is measured through 100 trials. We also show the task

Bucket action

y

z

Machine
Physical simulator process

Environment

(a) Method 1 (b) Method 2 (c) Method 3

462

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

success rate using the best performance model after

learning. Table 1 shows the best success rate for each

method on the simulator.

Figure 12. Learning efficiency for each method

(left) crane (right) excavator

Table 1. Task success rate

Task

Success rate by methods, %

Base Designing

Reward

function

Pre-

training

with

BC

Changing

Frame-

skip

Crane 0 63 - 0

Excavator 0 34 80 96

6.1 Base condition

In both tasks, the base condition had no success, while

other methods are starting to succeed at the same point in

learning time. This indicates that the base condition

needs more learning time and the other methods make

learning more efficient.

6.2 Designing the reward function

In the crane task (see Figure 12 left), this method was

the only one that worked. It reached about 60% success

rate, and then the success rate dropped off. And also, in

the excavator task (see Figure 12 right), this method had

about 30% success rate. This indicates that the designed

reward function is not directly related to the success of

the task.

6.3 Pre-training with BC

Pre-training with BC took almost 1 hour wall-clock

time to converge. In the early stages of learning, BC gave

a high performance, but as the learning progressed, the

performance gradually decreased. We believe that it is

because the form of reward is different between BC and

PPO.

6.4 Changing Frame-skip

The frame skip method achieved 96% success rate in

the excavator task, whereas the crane task did not succeed

at all. This indicates that the exploration for a good frame

skip rate for each task or scene will yield good results.

7 Conclusion & Future work

In this paper, we demonstrated through simulations

that reinforcement learning works effectively for two

tasks: reducing sway of a load suspended from a mobile

boom crane and loading an excavator bucket with soil

with a hydraulic excavator. In addition, we confirmed the

effectiveness of three methods to reduce learning time of

reinforcement learning: designing the reward function,

pre-training, and changing frame-skip rate. Finally, we

provided examples of practical methods on how to

parallelize learning when applying reinforcement

learning algorithms to domain-specific simulators that

were not originally designed for reinforcement learning.

In future work, we intend to compare our

reinforcement learning algorithms with an existing

control method on simulation. We also consider that the

current learning on simulation is not tolerant to transfer

to the real world. In recent years, methods to close the

reality gap has been widely studied [21][22][23]. It is

necessary to apply these methods to smoothly transfer

learning result of simulation to real world operation.

References

[1] S. Dadhich, U. Bodin, and U. Andersson, Key cha-

llenges in automation of earth-moving machines.

Automation in Construction, 68:212-222, 2016.

[2] L. Ramli, Z.Mohamed, A. M. Abdullahi, H. I. Jaa-

far, and I. M. Lazio, Control strategies for crane

systems: A comprehensive review. Mechanical

Syst-ems and Signal Processing, 95:1-23, 2017.

[3] J. Kober, J. A. Bagnell, J. Peters, Reinforcement

Learning in Robotics: A Survey, The International

Journal of Robotics Research, 32.11: 1238-1274,

2013.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, L.

Antonoglou, D. Wierstra, and M.

Riedmiller, Playing Atari with Deep Reinforcement

Learning, arX-iv preprint arXiv: 1312.5602, 2013.

[5] L. Tai, J. Zhang, M. Liu, J. Boedecker, and W.

Burgard, A Survey of Deep Network Solutions for

Learning Control in Robotics: From Reinforcement

to Imitation, arXiv preprint arXiv: 1612.07139v4,

2018.

[6] J. García, and F. Fernández, A Comprehensive

Survey on Safe Reinforcement Learning, Journal of

Machine Learning Research 16.1: 1437-1480, 2015.

[7] D. Amodei, C. Olah, J. Schulman, J. Steinhardt, P.

Christiano, D. Mané, Concrete Problems in AI

463

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Safety. arXiv preprint arXiv:1606.06565v2, 2016.

[8] V. Mnih, A. P. Badia, M. Mirza, A.Graves, T.

Harley, T. P. Lillicrap, D. Silver, and K.

Kavukcauoglu, Asynchronous Methods for Deep

Reinforcement Learning. International conference

on machine learning:1928-1937, 2016.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,

and O. Klimov, Proximal Policy Optimization

Algorithms. arXiv preprint arXiv:1707.06347,

2017.

[10] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan,

and R. Munos. Recurrent experience replay in

distributed reinforcement learning. In International

Conference on Learning Representations, Louisiana,

United States, 2019.

[11] A. Y. Ng, D. Harada, and S. Russell, Policy

invariance under reward transformations: Theory

and application to reward shaping. ICML. Vol.

99:278-287, 1999.

[12] S. P. Singh, A. G. Barto, and N. Chentanez.

Intrinsically motivated reinforcement learning. In

Advances in neural information processing systems:

pages 1281–1288, 2005.

[13] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T.

Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris,

G. Dulac-Arnold, L. Osband, J. Agapiou, J. Z.

Leibo, A. Gruslys, Deep Q-learning from

Demonstrations. arXiv preprint arXiv:1704.03732,

2018.

[14] A. Braylan, M. Hollenbeck, E. Meyerson and R.

MiikkulainenFrame Skip Is a Powerful Parameter

for Learning to Play Atari. Workshops at the

Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2015.

[15] R. S. Sutton, and G. B. Andrew, Introduction to

reinforcement learning. Vol. 135. Cambridge: MIT

press, 1998.

[16] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y.

Mansour, Policy gradient methods for

reinforcement learning with function

approximation. In Advances in neural information

processing systems:1057-1063, 2000.

[17] D. A. Pomerleau, Efficient training of artificial

neural networks for autonomous navigation. Neural

Computation, 3(1):88–97, 1991.

[18] H. Asheley, R. Antonin, E. Maximilian, G. Adam,

K. Anssi, T. Rene, D. Prafulla, H. Christopher, K.

Oleg, N. Alex, P. Matthias, R. Alec, S. John, S.

Szymon, and W. Yuhuai, Stable Baselines. Online:

https://github.com/hill-a/stable-baselines, Accessed:

04/03/2020.

[19] Daniel Holz, Ali Azimi, and Marek

Teichmann,Virtual Reality Simulation of Vehicles

and Tools Interacting with Deformable Terrain,

CM-Labs Simulations Inc.,2012

[20] CM-Labs Simulations Inc., Vortex Studio 2018a

Product Capability Specifications, Online:

https://cmlabsnew.kamacom.com/vortexstudiodoc

umentation/Vortex_User_Documentation/Content/

Resources/Vortex_Studio_2018a_Product_Specifi

cations.pdf, 06/05/2020.

[21] J. Tobin, R. Fong, A. Ray, J. Schineider, W.

Zaremba, P. Abbeel, Domain Randomization for

Transferring Deep Neural Networks from

Simulation to the Real World. arXiv preprint

arXiv:1703.06907, 2017.

[22] X. B. Peng, M. Andrychowicz, W. Zaremba, and P.

Abbeel, Sim-to-Real Transfer of Robotic Control

with Dynamics Randomization. arXiv preprint

arXiv:1804.10332, 2018.

[23] I. Clavera, D. Held and P. Abbeel, Policy Transfer

via Modularity. in IROS. IEEE, 2017.

464

https://github.com/hill-a/stable-baselines

