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Abstract – 

An Unmanned Aerial Vehicle (UAV), equipped 

with a Light Detection And Ranging (LiDAR) 

scanner, can collect high-accuracy point cloud data 

of facilities in cluttered indoor environment. Recent 

developments in aerial robotics have demonstrated 

navigation through designated waypoints, yet little 

has been investigated on the trajectory to complete a 

full scan of the environment. This study develops an 

automated approach to integrate scan planning and 

trajectory generation of a LiDAR-carrying UAV. 

The proposed approach converts an as-designed 

Building Information Model (BIM) into an 

occupancy map, where a set of waypoints are 

generated with a greedy algorithm. The shortest 

collision-free path to traverse all the waypoints is 

computed with the A* algorithm and Genetic 

Algorithm (GA). After that, the straight-line 

segments are transformed into a minimum snap 

trajectory formed of piecewise polynomials. The 

planned trajectory is validated with both a 

MATLAB numerical solver and a Hardware-In-the-

Loop (HIL) simulation in the Unreal Engine 4. 
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1 Introduction 

Terrestrial Laser Scanning (TLS) is commonly used 

in the Architecture, Engineering, Construction and 

Facility Management (AEC/FM) industry for site 

inspection, progress tracking and model generation. 

Traditional ways of TLS involve selection of scanner 

locations and registration of multiple point clouds. This 

process is usually conducted manually by surveyors, 

which is time-consuming and subject to coverage issues 

[1]. A wise approach is to integrate a Light Detection 

And Ranging (LiDAR) scanner with a ground or aerial 

robot, making it a versatile and efficient tool for Mobile 

Laser Scanning (MLS). An Unmanned Aerial Vehicle 

(UAV), owing to its autonomy and flexibility, is a good 

choice for the platform, especially in cluttered 

environments where the walkability is poor. In recent 

years, research in LiDAR-carrying UAVs has 

demonstrated robustness in Simultaneous Localization 

And Mapping (SLAM), as well as autonomous 

navigation in unknown environments [2]. However, 

most existing methods focus on navigation through a 

sequence of designated waypoints, while it is difficult to 

achieve an autonomous flight. The missing segment is 

planning for the essential waypoints to explore the 

environment and complete a full scan. This problem can 

be effectively addressed when prior knowledge of the 

environment is available, such as the design information 

of buildings and facilities.  

This study is proposed to close the loop of scan 

planning and UAV path finding, with the aim of 

facilitating a fully autonomous flight for LiDAR-

carrying UAVs. It starts from an as-designed Building 

Information Model (BIM), which retains the geometric 

and semantic information of a facility and is compatible 

with various data formats [3]. The sensor model is 

constructed based on an existing product [4] to represent 

the perception range, Field of View (FOV), and Level 

of Detail (LOD). A greedy algorithm is designed to 

iteratively maximize the coverage of the planned 

waypoints, followed by a Traveling Salesman Problem 

(TSP) to solve for an optimal path that consists of 

straight-line segments. This serves as a guiding path, 

which is transformed into a minimum snap trajectory 

with Quadratic Programming (QP).  

The planned trajectory is validated first with a 

MATLAB numerical solver, before conducting a 

Hardware-In-the-Loop (HIL) simulation with the Robot 

Operation System (ROS) [5] and Unreal Engine 4 (UE4) 

[6]. The HIL simulation builds on our previous work [7] 

with an extension of automated control input. The 

intended scene is a cluttered indoor environment filled 

with Mechanical, Electrical and Plumbing (MEP) 

components.  

This paper is organized as follows: section 2 

provides a comprehensive review of the related studies 
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on LiDAR-carrying UAVs. Section 3 illustrates the 

proposed methodology on scan planning and trajectory 

generation, followed by the simulation environments 

and results in section 4. In closing, the conclusion and 

future work will be presented in section 5. 

2 Literature Review 

2.1 Scan Planning 

The purpose of scan planning is to ensure coverage 

of the target objects while minimizing the cost of time 

or energy. Compared with traditional TLS, a mobile 

LiDAR scanner automatically enforces overlapping 

between consecutive scans for registration. However, 

similar techniques can be applied for visibility analysis 

and occlusion handling. For example, Argüelles-Fraga 
et al. [8] developed a method to parametrize the 
influencing factors of scan accuracy, based on a circular 
cross-section tunnel. Biswas et al. [1] proposed a BIM-
oriented approach to determine optimal scanner 
locations that maximize the covered surfaces while 
considering occlusions between components. Wang et 
al. [9] presented a greedy algorithm to iteratively 

generate scanner locations around concrete specimens. 

While the above-mentioned studies aim at planning for 

fixed scanner locations, an integrated framework was 

proposed in [10] to generate waypoints of LiDAR-

carrying UAVs and connect them with the shortest path. 

This study provides a clear outline to plan for scanning 

paths, yet little has been discussed on trajectory 

generation and flight control for detailed 

implementation. 

2.2 Localization and Mapping 

Localization is a critical issue for UAVs in an indoor 

environment, where GPS signals are not available. It is 

often combined with mapping to form a SLAM problem. 

The objective of localization is to obtain the 6-DoF 

(Degrees of Freedom) state estimation, including 3 

positions (x, y, z) and 3 orientations (yaw, pitch, roll). 

This can be achieved with internal sensor suites, 

including Inertial Measurement Units (IMUs), LiDAR 

scanners, monocular and stereo cameras. IMUs are 

easily accessible, lightweight sensors that measure 

acceleration and angular velocity at high frequency. 

They are usually fused with other sensory data to 

produce odometry. LiDAR-based solutions, such as 

LOAM [11], outperform vision-based methods in terms 

of cumulative drifts. However, the demand for payload 

limits their application in Micro Aerial Vehicles 

(MAVs). There are also methods that take advantage of 

both types, such as V-LOAM [12], which is ranking the 

top on the KITTI odometry benchmark [13]. 

SLAM problems can be solved with filter-based 

algorithms, such as the commonly used Extended 

Kalman Filter (EKF), Unscented Kalman Filter (UKF) 

[14] that deals with highly nonlinear models and particle 

filter [15] that can handle non-Gaussian distributions. In 

recent years, it is a growing trend to switch from filters 

to graph optimization, integrated with loop closure to 

reduce cumulative drifts. Such examples include ORB-

SLAM [16] and VINS [17]. 

2.3 Motion Planning 

In UAV motion planning, the term “path” and 

“trajectory” are often used interchangeably. According 

to [18], a path can be a continuous curve or discrete line 

segments connecting two positions, while a trajectory 

refers to a path parametrized with time t. In this paper, 

we use “path” to denote straight-line segments 

connecting waypoints, and “trajectory” for high-degree 

polynomials to be followed by a UAV.  

The objective of UAV path planning is to determine 

the shortest collision-free path that connects the take-off 

position, a sequence of waypoints, and the landing 

position. Path planning problems can be solved 

efficiently with sampling-based methods, which 

generate random samples and connect to a search graph. 

Examples include Probabilistic Road Map (PRM), 

Rapid-exploring Random Tree (RRT), and RRT* [19] 

which converges to optimality as samples increase. 

Search-based methods, such as Dijkstra’s algorithm and 

A* algorithm, are also frequently used to find the 

optimal path from a search graph. A* is an extension of 

Dijkstra’s algorithm that evaluates each search node 

with a heuristic function before accessing it. As shown 

in [20], search algorithms can be combined with 

sampling methods to enable real-time processing.  

To transform a path into a trajectory, the simplest 

approach is to solve for the polynomial parameters with 

respect to t, by setting waypoint constraints. However, a 

UAV trajectory is supposed to be safe and feasible, at 

least twice differentiable to produce velocity and 

acceleration. Mellinger and Kumar [21] formulated the 

trajectory as an optimization problem to minimize 

energy consumption and solved with Quadratic 

Programming (QP). Richter et al. [19] extended their 

work to an unconstrained QP and ensured safety by 

adding intermediate waypoints. A different technique 

was proposed by Chen et al. [22] that generates flight 

corridors formed by safe regions, and constrain the 

trajectory within it.  

3 Methodology 

This section describes the proposed methods and 

implementation. An overview of the framework is 

illustrated in Figure 1. The planning phase consists of 

four steps: (1) map construction, (2) waypoint 
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determination, (3) path finding and (4) trajectory 

generation, which are detailed in 3.1-3.4, respectively. 

The target facility is a water treatment plant located in 

Tai Po, Hong Kong SAR. It is a cluttered indoor area 

filled with MEP components, such as pipelines and 

valves. One set of the pipelines, which is part of the 

duplicated layouts, is extracted as the test area. The 

planning phase is implemented in MATLAB, followed 

by the simulations in section 4. 

3.1 Map Construction 

The UAV motion planning is performed on an 

occupancy grid map, where each cell is attached with a 

label, indicating obstacles or free space. The map is 

constructed based on an as-designed BIM of the target 

object, as shown in Figure 2. The model is exported as 

an OBJ file with an add-in [23] of Revit, and meshed in 

CloudCompare [24] to produce a reference point cloud, 

displayed in Figure 3. The reference point cloud 

consists of evenly distributed points, covering the 

surface of the objects. It is represented with the KD-tree 

data structure, which enables fast K-Nearest Neighbor 

(KNN) search for computing safe distance. An empty 

voxel grid is created with resolution s, and a KNN 

search is applied between the grid points and the 

reference point cloud. Depending on the nearest 

neighbor distance d, and the safe threshold θd, each cell 

in the voxel grid is labeled as obstacle (d < 0.5s), safe 

region (d > θd), or buffer zone. Considering the scale of 

the facility, s and θd are determined as 0.5m and 1m, 

respectively. This completes the construction of the 

occupancy grid map. 

  

Figure 2. The as-designed BIM of the target 

components in Revit 

  

Figure 3. The meshed point cloud in 

CloudCompare. Surface density = 1000. RGB 

entries are obtained from the texture. 

3.2 Waypoint Determination 

The objective of waypoint determination is to bridge 

the problem of traditional TLS with that of LiDAR-

carrying UAVs. A greedy algorithm was proposed in [9] 

that maximizes the number of covered surfaces at each 

selection. However, this method is not model-based and 

works only for concrete specimens. In this study, we 

adopt a similar idea that tries to achieve the local 

optimum when generating each waypoint and iterate 

until the requirements are satisfied. Besides, we 

describe the coverage based on the LiDAR model and 

consider occlusion handling. 

3.2.1 LiDAR Model 

The sensor model in this paper is constructed based 

on an existing product, RS-LiDAR-32 [4], of which the 

specifications are listed in Table 1. Geometrically, the 

sensor coverage can be described as the volume 

between two conic surfaces, bounded by the sphere of 

perception range (Figure 4). Given the LOD 

requirement δ and angular resolution θ, the perception 

range L should be reduced according to Equation (1): 

𝐿 =  𝛿/𝜃 (1) 

In this case, the smallest element has a diameter of 5cm. 

Considering the typical measurement error of ±2cm and 

the worst-case resolution 0.4°, the perception range is 

determined as 4m to ensure detection of the pipes. As 

for the FOV, UAVs will not stay horizontal during the 

flight because the pitch, roll angles change according to 

the x-y motion. Therefore, the vertical FOV can be 

reduced to account for the inclination. In this study, the 

 

Figure 1. Workflow of the planning phase 

Map 
Construction

•KD-tree

Waypoint 
Determination

•Greedy algorithm

Path Finding

•A* algorithm

•Genetic Algorithm

Trajectory 
Generation

•Unconstrained QP
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reduction is taken as 10%. 

Table 1. RS-LiDAR-32 specifications 

Horizontal FOV 360° 

Vertical FOV –25° ~ +15° 

Horizontal Resolution 0.1°/ 0.2°/ 0.4° 

Vertical Resolution ≥ 0.33° 

Range 200m 

Range accuracy (typical) ±2cm 

 

Figure 4. Coverage of the LiDAR model. The 

donut shape bounded by two conic surfaces 

(FOV) and a sphere (perception range) 

3.2.2 Greedy Algorithm 

The greedy algorithm is designed to generate a set of 

waypoints by maximizing the number of newly covered 

cells at each iteration, until the stopping criteria are met. 

The algorithm takes all the occupied cells (i.e. obstacles) 

as the target to be covered, and the safe regions as 

potential waypoints. A greedy search is applied to 

determine the safe cell with maximum coverage and add 

to the waypoint list. Detailed procedures are illustrated 

in Algorithm 1. The coverage examination is explained 

as follows.  

For each safe cell, the range search is applied to 

return all the target cells within the sphere of perception 

range. This is also achieved with the KD-tree structure. 

After that, the sphere is reduced according to the FOV 

with Equation (2), where γ is the angle between the 

vector u from the safe cell to the target cell, and the 

body frame z-axis z. This represents the volume 

sandwiched between two conic surfaces from the 

vertical FOV, as illustrated in Figure 4. 

𝛾 = cos−1 (
𝒖 · 𝒛

‖𝒖‖‖𝒛‖
) ∈

𝜋

2
− 𝐹𝑂𝑉 

(2) 

The occlusion handling is realized with similar 

techniques. The vector l, which connects the safe cell 

with an obstacle cell, is checked against u. When 

Equation (3) and (4) are both satisfied, the ray to the 

target cell is considered as occluded by the obstacle. 

These equations indicate the cylindrical volume 

centered around u, with radius 1/2 of the grid size. An 

illustration is available in Figure 5. The occlusion check 

is applied for the obstacle cells within the spherical 

range. When all the obstacles return false, the target cell 

is considered as within the coverage. 

ℎ =
‖𝒍 × 𝒖‖

‖𝒖‖
<
1

2
𝑠 

(3) 

𝑝 =
‖𝒍 · 𝒖‖

‖𝒖‖
∈ (0, ‖𝒖‖) 

(4) 

 

Figure 5. Illustration of Equation (2), (3) and (4). 

γ is the angle between u and z, h is the point-to-

line distance and p is the projection of l on u 

 

Algorithm 1 Greedy algorithm 

i ← 0 

waypoints ← empty() 

uncovered_map ← obstacles 

while i < max_iteration 

max_coverage ← empty() 

max_cell ← null 

for cell in safe_region 

sphere ← range_search(cell, uncovered_map, L) 

cone ← reduce_by_FOV(sphere) 

coverage ← reduce_by_occlusion(cone) 

if coverage > max_coverage 

max_coverage ← coverage 

max_cell ← cell 

end if 

end for 

uncovered_map ←  uncovered_map \ max_coverage 

waypoints ← waypoints ∪ max_cell 

i ← i+1 

if max_coverage < quit_threshold 

break 

end if 

end while 

return waypoints 
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3.3 Path Finding 

After a set of waypoints are determined, the problem 

is to compute an optimal path to traverse all of them. 

According to [10], this can be formulated as a TSP and 

solved efficiently with Genetic Algorithm (GA). We 

adopt similar techniques to solve for a collision-free 

path that ensures the shortest summed Euclidean 

distance. However, this path contains straight-line 

segments and sharp turns that are unsuitable for flight 

control. Therefore, it serves as the waypoint constraints 

for trajectory generation.  

To form the TSP, a cost matrix is required to 

represent the pairwise path cost between the nodes. In 

this problem, it is constructed with the A* algorithm, 

which is applied on every pair of the waypoints. The 

occupancy map is treated as a search graph, where the 

successors of a cell are generated from the 26 adjacent 

cells. The heuristic function is taken as the Euclidean 

distance to the goal, which is guaranteed to be 

admissible. 

After the cost matrix is obtained, the GA is 

implemented as follows:  

1. The initial population is generated with random 

permutation of the waypoints, in bit arrays.  

2. The tournament selection is applied to obtain a set 

of parents based on the fitness function, which is 

the summed path cost of the ordered sequence.  

3. Three operations are applied to produce the next 

generation: (1) copy: select a member and copy 

directly to the next generation. (2) crossover: 

select two parents to produce offspring. Here, the 

order crossover operator is used, which takes a 

subset from parent 1, and arrange the remaining 

bits according to their order in parent 2. (3) 

mutation: select a member and randomly switch 

two bits in it.  

4. Iterate from step 2, until N generations. 

For this study, a population size of 1000 is applied on a 

set of 10 waypoints. The rate of copy, crossover and 

mutation are 9%, 90% and 1%, respectively. The 

optimal solution first appeared after 9 generations. 

3.4 Trajectory Generation 

The UAV trajectories are usually represented as 

piecewise polynomials parametrized with time t, in 

three dimensions, respectively. To ensure kinodynamic 

feasibility, the trajectory is subject to the derivative 

constraints which come from the specified end 

derivatives, and the continuity constraints which ensures 

smoothness. The expression in one dimension is shown 

in Equation (5) and (6), where the trajectory is an N-

degree polynomial with M pieces: 

 

𝑓(𝑡) =  

{
 
 
 

 
 
 𝑓1(𝑡) =∑ 𝑝1,𝑖(𝑡 − 𝑇0)

𝑖
𝑁

𝑖=1
     𝑇0 ≤ 𝑡 ≤ 𝑇1

𝑓2(𝑡) =∑ 𝑝2,𝑖(𝑡 − 𝑇1)
𝑖

𝑁

𝑖=1
     𝑇1 ≤ 𝑡 ≤ 𝑇2

⋮

𝑓𝑀(𝑡) = ∑ 𝑝𝑀,𝑖
𝑁

𝑖=1
(𝑡 − 𝑇𝑀−1)

𝑖   𝑇𝑀−1 ≤ 𝑡 ≤ 𝑇𝑀

 

 

 

 

(5) 

s. t.       {
𝑓𝑗
(𝑘)(𝑇𝑗) = 𝑥𝑇,𝑗

(𝑘)

𝑓𝑗
(𝑘)(𝑇𝑗) = 𝑓𝑗+1

(𝑘)(𝑇𝑗)
 

 

(6) 

To solve for the polynomial parameters pj,i, we refer 

to the method in [21], which formulates the trajectory as 

an optimization problem: the objective is to minimize 

the fourth order derivative (i.e. snap) of the trajectory, 

subject to the continuity constraints and derivative 

constraints. Equation (7) and (8) illustrate the problem 

definition in vector form, where p is the collection of 

polynomial parameters and Q is the Hessian matrix, Aeq 

and deq are the collection of constraints. The minimum 

snap trajectory is a seventh degree (N=7) piecewise 

polynomial, which optimizes the least energy 

consumption. The variable p can be solved with QP. 

min.        𝐽 = ∫ (𝑓(4)(𝑥))
2

𝑑𝑥
𝑇

𝑜

= [

𝒑𝟏
⋮
𝒑𝑴
] [

𝑸𝟏(𝑇1)

⋱
𝑸𝑴(𝑇𝑀)

] [

𝒑𝟏
⋮
𝒑𝑴
]

𝑇

 

= 𝒑𝑻𝑸𝒑 

 

 

 

(7) 

s. t.        𝑨𝒆𝒒 [

𝒑𝟏
⋮
𝒑𝑴
] = 𝒅𝒆𝒒 

 

(8) 

 However, direct optimization of polynomial 

parameters is numerically unstable, because the values 

are usually very small as time t increases.  Therefore, 

we adopt the method in [19] to reformulate the problem 

as an unconstrained QP. A mapping matrix M is 

constructed to transform the variable from polynomial 

parameters p into the end derivatives d. Additionally, a 

binary selection matrix C containing 1s and 0s is 

constructed to separate the fixed derivatives dF and free 

derivatives dP. The derivative constraints and continuity 

constraints are automatically enforced by the selection 

matrix. In this way, the problem is transformed into an 

unconstrained QP. The composition matrix in the 

middle can be further split according to the size of dF 

and dP, as shown in Equation (9) and the close-form 

solution is obtained with Equation (10). The optimized 

end derivatives are transformed back to polynomial 

parameters to compute the trajectory.  
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𝐽 = [
𝒅𝟏
⋮
𝒅𝑴

]𝑴−𝑇𝑸𝑴−1 [
𝒅𝟏
⋮
𝒅𝑴

]

𝑇

 

= [
𝒅𝑭
𝒅𝑷
]
𝑻

𝑪𝑴−𝑻𝑸𝑴−𝟏𝑪𝑻 [
𝒅𝑭
𝒅𝑷
] 

= [
𝒅𝑭
𝒅𝑷
]
𝑻

[
𝑹𝑭𝑭 𝑹𝑭𝑷
𝑹𝑷𝑭 𝑹𝑷𝑷

] [
𝒅𝑭
𝒅𝑷
] 

 

 

 

(9) 

𝒅𝑷
∗ = −𝑹𝑷𝑷

−𝟏𝑹𝑭𝑷
𝑻 𝒅𝑭 (10) 

To construct the Hessian matrix Q and mapping 

matrix M, the time duration Ti for each segment is 

required. In this study, the time is allocated according to 

the Euclidean path cost, based on the predefined 

average velocity at 1m/s. Another critical issue in 

trajectory generation is that the piecewise polynomial 

may deviate from the collision-free guiding path. To 

reinforce safety, collision check is performed along the 

trajectory with KNN search. The positions at each 

timestamp are checked against the nearest obstacle cell. 

The midpoint of guiding path segments will be added as 

an intermediate waypoint if collision is detected.  

4 Validation 

This section describes two separate experiments to 

validate the planned trajectory. The first one is 

performed in MATLAB with the numerical solver 

ode45. A simple PID controller is implemented to 

realize the motion control. The second experiment is an 

HIL simulation in the UE4 environment, where a 

physical flight controller is employed to communicate 

with the simulator. Details are explained in 4.1 and 4.2, 

respectively.  

4.1 MATLAB simulation 

The UAV trajectories are executed with a flight 

controller, which takes in the desired states and true 

states of the UAV at each moment to produce the 

desired motor output. The planned trajectory is 

published in a stream of state vectors [x, y, z, vx, vy, vz, 

ψ, θ, φ, ωx, ωy, ωz]T∈R12, with a fixed frequency. It was 

demonstrated in [21] that the full state vector can be 

reduced to the 3D position and yaw angle [x, y, z, ψ]T, 

due to the differential flatness property. For this study, 

only the 3D position is enforced while the yaw planning 

is left as future work. A PID controller is constructed 

following the nested loops in [25], where the position 

control lies in the outer loop and influence the attitude 

control in the inner loop. The governing equation is 

shown in Equation (11), where e(t) is the error between 

the desired state and true state. The control output u(t) is 

 

Figure 6. Simulation results in MATLAB. In subplot (1), the planned trajectory and the ground truth 

trajectory are plotted with green and blue curves, respectively. The grey cells indicate the obstacles. In (2)-

(9), the desired states and the true states are plotted with blue and red curves, respectively. For the roll and 

pitch angle, the desired values are not commanded, but determined by the horizontal motion, instead. 
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related to the Force and Moment with the Newton-Euler 

equations, as shown in Equation (12) and (13). The 

weight mg and moment of inertia matrix I are 

determined according to the UAV model in [26]. The 

gain parameters Kp and Kd are tuned manually, while the 

Integral term is omitted for simplicity. During the 

simulation, the desired states are the input from the 

trajectory generator, while the true state is computed 

with the ode45 solver, based on rigid body dynamics.  

𝒖(𝑡) = �̈�𝒅𝒆𝒔(𝑡) + 𝐾𝑑�̇�(𝑡) + 𝐾𝑝𝒆(𝑡) (11) 

𝑚�̈� = [
0
0

−𝑚𝑔
] + 𝑹 ∙ [

0
0
𝛴𝐹𝑖

] 
 

(12) 

𝑰 ∙ [
�̈�
�̈�
�̈�

] + [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] × 𝑰 ∙ [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = [

𝛴𝑀𝑥

𝛴𝑀𝑦

𝛴𝑀𝑧

] 

 

(13) 

The simulation result is plotted in Figure 6, where 

subplot (1) is a 3D view of the trajectory and (2)-(9) are 

the UAV states against time. 

4.2 HIL simulation 

The UE4 is an advanced game engine that provides 

highly realistic virtual environment. Besides, it enables 

a wide range of robotics applications, such as navigation, 

computer vision, deep learning, etc. This is the main 

reason why it is selected as the platform for experiment. 

The HIL simulation is carried out based on our previous 

work [7], in which a software pipeline was developed to 

integrate UE4 with ROS. The former provides the 

physics engine and high-quality sensor data, while the 

latter contains abundant packages for robotics 

perception and odometry. The communication between 

them is realized with the ROS master.  

In this simulation, the as-designed BIM of the target 

facility is exported in FBX format and then imported 

into UE4 to create a scene, as shown in Figure 7. The 

planned trajectory is coded into a script as a stream of 

messages with timestamp, position and orientation. The 

script is passed into the UE4 server through an API 

layer, AirSim [27]. The trajectory is executed with a 

hardware flight controller, Pixhawk 4 [28], which 

subscribes desired states and ground truth states from 

the UE4 environment and publish motor outputs to the 

UAV model. A screenshot during the simulation is 

displayed in Figure 8.  

5 Conclusion and Future Work 

This paper presents an integrated framework to 

bridge the robotics problem of UAV navigation with the 

civil engineering application of as-built point cloud 

generation. The framework comprises BIM-aided map 

construction, waypoint-based scan planning, static path 

planning, and dynamic trajectory generation. These 

techniques are verified with a numerical simulation and 

a highly realistic HIL simulation. The results 

demonstrated that the motion planning algorithms can 

deal with complex environments with MEP components.  

The proposed framework can be improved in several 

aspects. First, the yaw planning for trajectory can be 

completed, which is critical for vision-based odometry 

and navigation.  Secondly, the quality of scanning is not 

evaluated. This can be addressed by setting a LiDAR 

sensor model into the UE4 environment to perform a 

virtual scan. Furthermore, it is promising if the 

framework can run in parallel with ROS to achieve real-

time application. This is possible with the MATLAB 

ROS Bridge and it is expected to conduct a real-world 

experiment in future. 

 

Figure 7. The scene constructed from the FBX 

file in UE4. 

 

Figure 8. Trajectory following with the Pixhawk 

4 flight controller. 
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