
37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

BIM-Aided Scanning Path Planning for Autonomous

Surveillance UAVs with LiDAR

 Changhao Song a, Kai Wang a and Jack C.P. Cheng a

a
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology,

Hong Kong SAR

E-mail: csongae@connect.ust.hk, kwangaw@connect.ust.hk, cejcheng@ust.hk

Abstract –

An Unmanned Aerial Vehicle (UAV), equipped

with a Light Detection And Ranging (LiDAR)

scanner, can collect high-accuracy point cloud data

of facilities in cluttered indoor environment. Recent

developments in aerial robotics have demonstrated

navigation through designated waypoints, yet little

has been investigated on the trajectory to complete a

full scan of the environment. This study develops an

automated approach to integrate scan planning and

trajectory generation of a LiDAR-carrying UAV.

The proposed approach converts an as-designed

Building Information Model (BIM) into an

occupancy map, where a set of waypoints are

generated with a greedy algorithm. The shortest

collision-free path to traverse all the waypoints is

computed with the A* algorithm and Genetic

Algorithm (GA). After that, the straight-line

segments are transformed into a minimum snap

trajectory formed of piecewise polynomials. The

planned trajectory is validated with both a

MATLAB numerical solver and a Hardware-In-the-

Loop (HIL) simulation in the Unreal Engine 4.

Keywords –

UAV; LiDAR; BIM; Hardware-in-the-loop;

Motion planning

1 Introduction

Terrestrial Laser Scanning (TLS) is commonly used

in the Architecture, Engineering, Construction and

Facility Management (AEC/FM) industry for site

inspection, progress tracking and model generation.

Traditional ways of TLS involve selection of scanner

locations and registration of multiple point clouds. This

process is usually conducted manually by surveyors,

which is time-consuming and subject to coverage issues

[1]. A wise approach is to integrate a Light Detection

And Ranging (LiDAR) scanner with a ground or aerial

robot, making it a versatile and efficient tool for Mobile

Laser Scanning (MLS). An Unmanned Aerial Vehicle

(UAV), owing to its autonomy and flexibility, is a good

choice for the platform, especially in cluttered

environments where the walkability is poor. In recent

years, research in LiDAR-carrying UAVs has

demonstrated robustness in Simultaneous Localization

And Mapping (SLAM), as well as autonomous

navigation in unknown environments [2]. However,

most existing methods focus on navigation through a

sequence of designated waypoints, while it is difficult to

achieve an autonomous flight. The missing segment is

planning for the essential waypoints to explore the

environment and complete a full scan. This problem can

be effectively addressed when prior knowledge of the

environment is available, such as the design information

of buildings and facilities.

This study is proposed to close the loop of scan

planning and UAV path finding, with the aim of

facilitating a fully autonomous flight for LiDAR-

carrying UAVs. It starts from an as-designed Building

Information Model (BIM), which retains the geometric

and semantic information of a facility and is compatible

with various data formats [3]. The sensor model is

constructed based on an existing product [4] to represent

the perception range, Field of View (FOV), and Level

of Detail (LOD). A greedy algorithm is designed to

iteratively maximize the coverage of the planned

waypoints, followed by a Traveling Salesman Problem

(TSP) to solve for an optimal path that consists of

straight-line segments. This serves as a guiding path,

which is transformed into a minimum snap trajectory

with Quadratic Programming (QP).

The planned trajectory is validated first with a

MATLAB numerical solver, before conducting a

Hardware-In-the-Loop (HIL) simulation with the Robot

Operation System (ROS) [5] and Unreal Engine 4 (UE4)

[6]. The HIL simulation builds on our previous work [7]

with an extension of automated control input. The

intended scene is a cluttered indoor environment filled

with Mechanical, Electrical and Plumbing (MEP)

components.

This paper is organized as follows: section 2

provides a comprehensive review of the related studies

1195

mailto:csongae@connect.ust.hk
mailto:kwangaw@connect.ust.hk
mailto:cejcheng@ust.hk

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

on LiDAR-carrying UAVs. Section 3 illustrates the

proposed methodology on scan planning and trajectory

generation, followed by the simulation environments

and results in section 4. In closing, the conclusion and

future work will be presented in section 5.

2 Literature Review

2.1 Scan Planning

The purpose of scan planning is to ensure coverage

of the target objects while minimizing the cost of time

or energy. Compared with traditional TLS, a mobile

LiDAR scanner automatically enforces overlapping

between consecutive scans for registration. However,

similar techniques can be applied for visibility analysis

and occlusion handling. For example, Argüelles-Fraga
et al. [8] developed a method to parametrize the
influencing factors of scan accuracy, based on a circular
cross-section tunnel. Biswas et al. [1] proposed a BIM-
oriented approach to determine optimal scanner
locations that maximize the covered surfaces while
considering occlusions between components. Wang et
al. [9] presented a greedy algorithm to iteratively

generate scanner locations around concrete specimens.

While the above-mentioned studies aim at planning for

fixed scanner locations, an integrated framework was

proposed in [10] to generate waypoints of LiDAR-

carrying UAVs and connect them with the shortest path.

This study provides a clear outline to plan for scanning

paths, yet little has been discussed on trajectory

generation and flight control for detailed

implementation.

2.2 Localization and Mapping

Localization is a critical issue for UAVs in an indoor

environment, where GPS signals are not available. It is

often combined with mapping to form a SLAM problem.

The objective of localization is to obtain the 6-DoF

(Degrees of Freedom) state estimation, including 3

positions (x, y, z) and 3 orientations (yaw, pitch, roll).

This can be achieved with internal sensor suites,

including Inertial Measurement Units (IMUs), LiDAR

scanners, monocular and stereo cameras. IMUs are

easily accessible, lightweight sensors that measure

acceleration and angular velocity at high frequency.

They are usually fused with other sensory data to

produce odometry. LiDAR-based solutions, such as

LOAM [11], outperform vision-based methods in terms

of cumulative drifts. However, the demand for payload

limits their application in Micro Aerial Vehicles

(MAVs). There are also methods that take advantage of

both types, such as V-LOAM [12], which is ranking the

top on the KITTI odometry benchmark [13].

SLAM problems can be solved with filter-based

algorithms, such as the commonly used Extended

Kalman Filter (EKF), Unscented Kalman Filter (UKF)

[14] that deals with highly nonlinear models and particle

filter [15] that can handle non-Gaussian distributions. In

recent years, it is a growing trend to switch from filters

to graph optimization, integrated with loop closure to

reduce cumulative drifts. Such examples include ORB-

SLAM [16] and VINS [17].

2.3 Motion Planning

In UAV motion planning, the term “path” and

“trajectory” are often used interchangeably. According

to [18], a path can be a continuous curve or discrete line

segments connecting two positions, while a trajectory

refers to a path parametrized with time t. In this paper,

we use “path” to denote straight-line segments

connecting waypoints, and “trajectory” for high-degree

polynomials to be followed by a UAV.

The objective of UAV path planning is to determine

the shortest collision-free path that connects the take-off

position, a sequence of waypoints, and the landing

position. Path planning problems can be solved

efficiently with sampling-based methods, which

generate random samples and connect to a search graph.

Examples include Probabilistic Road Map (PRM),

Rapid-exploring Random Tree (RRT), and RRT* [19]

which converges to optimality as samples increase.

Search-based methods, such as Dijkstra’s algorithm and

A* algorithm, are also frequently used to find the

optimal path from a search graph. A* is an extension of

Dijkstra’s algorithm that evaluates each search node

with a heuristic function before accessing it. As shown

in [20], search algorithms can be combined with

sampling methods to enable real-time processing.

To transform a path into a trajectory, the simplest

approach is to solve for the polynomial parameters with

respect to t, by setting waypoint constraints. However, a

UAV trajectory is supposed to be safe and feasible, at

least twice differentiable to produce velocity and

acceleration. Mellinger and Kumar [21] formulated the

trajectory as an optimization problem to minimize

energy consumption and solved with Quadratic

Programming (QP). Richter et al. [19] extended their

work to an unconstrained QP and ensured safety by

adding intermediate waypoints. A different technique

was proposed by Chen et al. [22] that generates flight

corridors formed by safe regions, and constrain the

trajectory within it.

3 Methodology

This section describes the proposed methods and

implementation. An overview of the framework is

illustrated in Figure 1. The planning phase consists of

four steps: (1) map construction, (2) waypoint

1196

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

determination, (3) path finding and (4) trajectory

generation, which are detailed in 3.1-3.4, respectively.

The target facility is a water treatment plant located in

Tai Po, Hong Kong SAR. It is a cluttered indoor area

filled with MEP components, such as pipelines and

valves. One set of the pipelines, which is part of the

duplicated layouts, is extracted as the test area. The

planning phase is implemented in MATLAB, followed

by the simulations in section 4.

3.1 Map Construction

The UAV motion planning is performed on an

occupancy grid map, where each cell is attached with a

label, indicating obstacles or free space. The map is

constructed based on an as-designed BIM of the target

object, as shown in Figure 2. The model is exported as

an OBJ file with an add-in [23] of Revit, and meshed in

CloudCompare [24] to produce a reference point cloud,

displayed in Figure 3. The reference point cloud

consists of evenly distributed points, covering the

surface of the objects. It is represented with the KD-tree

data structure, which enables fast K-Nearest Neighbor

(KNN) search for computing safe distance. An empty

voxel grid is created with resolution s, and a KNN

search is applied between the grid points and the

reference point cloud. Depending on the nearest

neighbor distance d, and the safe threshold θd, each cell

in the voxel grid is labeled as obstacle (d < 0.5s), safe

region (d > θd), or buffer zone. Considering the scale of

the facility, s and θd are determined as 0.5m and 1m,

respectively. This completes the construction of the

occupancy grid map.

Figure 2. The as-designed BIM of the target

components in Revit

Figure 3. The meshed point cloud in

CloudCompare. Surface density = 1000. RGB

entries are obtained from the texture.

3.2 Waypoint Determination

The objective of waypoint determination is to bridge

the problem of traditional TLS with that of LiDAR-

carrying UAVs. A greedy algorithm was proposed in [9]

that maximizes the number of covered surfaces at each

selection. However, this method is not model-based and

works only for concrete specimens. In this study, we

adopt a similar idea that tries to achieve the local

optimum when generating each waypoint and iterate

until the requirements are satisfied. Besides, we

describe the coverage based on the LiDAR model and

consider occlusion handling.

3.2.1 LiDAR Model

The sensor model in this paper is constructed based

on an existing product, RS-LiDAR-32 [4], of which the

specifications are listed in Table 1. Geometrically, the

sensor coverage can be described as the volume

between two conic surfaces, bounded by the sphere of

perception range (Figure 4). Given the LOD

requirement δ and angular resolution θ, the perception

range L should be reduced according to Equation (1):

𝐿 = 𝛿/𝜃 (1)

In this case, the smallest element has a diameter of 5cm.

Considering the typical measurement error of ±2cm and

the worst-case resolution 0.4°, the perception range is

determined as 4m to ensure detection of the pipes. As

for the FOV, UAVs will not stay horizontal during the

flight because the pitch, roll angles change according to

the x-y motion. Therefore, the vertical FOV can be

reduced to account for the inclination. In this study, the

Figure 1. Workflow of the planning phase

Map
Construction

•KD-tree

Waypoint
Determination

•Greedy algorithm

Path Finding

•A* algorithm

•Genetic Algorithm

Trajectory
Generation

•Unconstrained QP

1197

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

reduction is taken as 10%.

Table 1. RS-LiDAR-32 specifications

Horizontal FOV 360°

Vertical FOV –25° ~ +15°

Horizontal Resolution 0.1°/ 0.2°/ 0.4°

Vertical Resolution ≥ 0.33°

Range 200m

Range accuracy (typical) ±2cm

Figure 4. Coverage of the LiDAR model. The

donut shape bounded by two conic surfaces

(FOV) and a sphere (perception range)

3.2.2 Greedy Algorithm

The greedy algorithm is designed to generate a set of

waypoints by maximizing the number of newly covered

cells at each iteration, until the stopping criteria are met.

The algorithm takes all the occupied cells (i.e. obstacles)

as the target to be covered, and the safe regions as

potential waypoints. A greedy search is applied to

determine the safe cell with maximum coverage and add

to the waypoint list. Detailed procedures are illustrated

in Algorithm 1. The coverage examination is explained

as follows.

For each safe cell, the range search is applied to

return all the target cells within the sphere of perception

range. This is also achieved with the KD-tree structure.

After that, the sphere is reduced according to the FOV

with Equation (2), where γ is the angle between the

vector u from the safe cell to the target cell, and the

body frame z-axis z. This represents the volume

sandwiched between two conic surfaces from the

vertical FOV, as illustrated in Figure 4.

𝛾 = cos−1 (
𝒖 · 𝒛

‖𝒖‖‖𝒛‖
) ∈

𝜋

2
− 𝐹𝑂𝑉

(2)

The occlusion handling is realized with similar

techniques. The vector l, which connects the safe cell

with an obstacle cell, is checked against u. When

Equation (3) and (4) are both satisfied, the ray to the

target cell is considered as occluded by the obstacle.

These equations indicate the cylindrical volume

centered around u, with radius 1/2 of the grid size. An

illustration is available in Figure 5. The occlusion check

is applied for the obstacle cells within the spherical

range. When all the obstacles return false, the target cell

is considered as within the coverage.

ℎ =
‖𝒍 × 𝒖‖

‖𝒖‖
<
1

2
𝑠

(3)

𝑝 =
‖𝒍 · 𝒖‖

‖𝒖‖
∈ (0, ‖𝒖‖)

(4)

Figure 5. Illustration of Equation (2), (3) and (4).

γ is the angle between u and z, h is the point-to-

line distance and p is the projection of l on u

Algorithm 1 Greedy algorithm

i ← 0

waypoints ← empty()

uncovered_map ← obstacles

while i < max_iteration

max_coverage ← empty()

max_cell ← null

for cell in safe_region

sphere ← range_search(cell, uncovered_map, L)

cone ← reduce_by_FOV(sphere)

coverage ← reduce_by_occlusion(cone)

if coverage > max_coverage

max_coverage ← coverage

max_cell ← cell

end if

end for

uncovered_map ← uncovered_map \ max_coverage

waypoints ← waypoints ∪ max_cell

i ← i+1

if max_coverage < quit_threshold

break

end if

end while

return waypoints

1198

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

3.3 Path Finding

After a set of waypoints are determined, the problem

is to compute an optimal path to traverse all of them.

According to [10], this can be formulated as a TSP and

solved efficiently with Genetic Algorithm (GA). We

adopt similar techniques to solve for a collision-free

path that ensures the shortest summed Euclidean

distance. However, this path contains straight-line

segments and sharp turns that are unsuitable for flight

control. Therefore, it serves as the waypoint constraints

for trajectory generation.

To form the TSP, a cost matrix is required to

represent the pairwise path cost between the nodes. In

this problem, it is constructed with the A* algorithm,

which is applied on every pair of the waypoints. The

occupancy map is treated as a search graph, where the

successors of a cell are generated from the 26 adjacent

cells. The heuristic function is taken as the Euclidean

distance to the goal, which is guaranteed to be

admissible.

After the cost matrix is obtained, the GA is

implemented as follows:

1. The initial population is generated with random

permutation of the waypoints, in bit arrays.

2. The tournament selection is applied to obtain a set

of parents based on the fitness function, which is

the summed path cost of the ordered sequence.

3. Three operations are applied to produce the next

generation: (1) copy: select a member and copy

directly to the next generation. (2) crossover:

select two parents to produce offspring. Here, the

order crossover operator is used, which takes a

subset from parent 1, and arrange the remaining

bits according to their order in parent 2. (3)

mutation: select a member and randomly switch

two bits in it.

4. Iterate from step 2, until N generations.

For this study, a population size of 1000 is applied on a

set of 10 waypoints. The rate of copy, crossover and

mutation are 9%, 90% and 1%, respectively. The

optimal solution first appeared after 9 generations.

3.4 Trajectory Generation

The UAV trajectories are usually represented as

piecewise polynomials parametrized with time t, in

three dimensions, respectively. To ensure kinodynamic

feasibility, the trajectory is subject to the derivative

constraints which come from the specified end

derivatives, and the continuity constraints which ensures

smoothness. The expression in one dimension is shown

in Equation (5) and (6), where the trajectory is an N-

degree polynomial with M pieces:

𝑓(𝑡) =

{

 𝑓1(𝑡) =∑ 𝑝1,𝑖(𝑡 − 𝑇0)

𝑖
𝑁

𝑖=1
 𝑇0 ≤ 𝑡 ≤ 𝑇1

𝑓2(𝑡) =∑ 𝑝2,𝑖(𝑡 − 𝑇1)
𝑖

𝑁

𝑖=1
 𝑇1 ≤ 𝑡 ≤ 𝑇2

⋮

𝑓𝑀(𝑡) = ∑ 𝑝𝑀,𝑖
𝑁

𝑖=1
(𝑡 − 𝑇𝑀−1)

𝑖 𝑇𝑀−1 ≤ 𝑡 ≤ 𝑇𝑀

(5)

s. t. {
𝑓𝑗
(𝑘)(𝑇𝑗) = 𝑥𝑇,𝑗

(𝑘)

𝑓𝑗
(𝑘)(𝑇𝑗) = 𝑓𝑗+1

(𝑘)(𝑇𝑗)

(6)

To solve for the polynomial parameters pj,i, we refer

to the method in [21], which formulates the trajectory as

an optimization problem: the objective is to minimize

the fourth order derivative (i.e. snap) of the trajectory,

subject to the continuity constraints and derivative

constraints. Equation (7) and (8) illustrate the problem

definition in vector form, where p is the collection of

polynomial parameters and Q is the Hessian matrix, Aeq

and deq are the collection of constraints. The minimum

snap trajectory is a seventh degree (N=7) piecewise

polynomial, which optimizes the least energy

consumption. The variable p can be solved with QP.

min. 𝐽 = ∫ (𝑓(4)(𝑥))
2

𝑑𝑥
𝑇

𝑜

= [

𝒑𝟏
⋮
𝒑𝑴
] [

𝑸𝟏(𝑇1)

⋱
𝑸𝑴(𝑇𝑀)

] [

𝒑𝟏
⋮
𝒑𝑴
]

𝑇

= 𝒑𝑻𝑸𝒑

(7)

s. t. 𝑨𝒆𝒒 [

𝒑𝟏
⋮
𝒑𝑴
] = 𝒅𝒆𝒒

(8)

 However, direct optimization of polynomial

parameters is numerically unstable, because the values

are usually very small as time t increases. Therefore,

we adopt the method in [19] to reformulate the problem

as an unconstrained QP. A mapping matrix M is

constructed to transform the variable from polynomial

parameters p into the end derivatives d. Additionally, a

binary selection matrix C containing 1s and 0s is

constructed to separate the fixed derivatives dF and free

derivatives dP. The derivative constraints and continuity

constraints are automatically enforced by the selection

matrix. In this way, the problem is transformed into an

unconstrained QP. The composition matrix in the

middle can be further split according to the size of dF

and dP, as shown in Equation (9) and the close-form

solution is obtained with Equation (10). The optimized

end derivatives are transformed back to polynomial

parameters to compute the trajectory.

1199

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

𝐽 = [
𝒅𝟏
⋮
𝒅𝑴

]𝑴−𝑇𝑸𝑴−1 [
𝒅𝟏
⋮
𝒅𝑴

]

𝑇

= [
𝒅𝑭
𝒅𝑷
]
𝑻

𝑪𝑴−𝑻𝑸𝑴−𝟏𝑪𝑻 [
𝒅𝑭
𝒅𝑷
]

= [
𝒅𝑭
𝒅𝑷
]
𝑻

[
𝑹𝑭𝑭 𝑹𝑭𝑷
𝑹𝑷𝑭 𝑹𝑷𝑷

] [
𝒅𝑭
𝒅𝑷
]

(9)

𝒅𝑷
∗ = −𝑹𝑷𝑷

−𝟏𝑹𝑭𝑷
𝑻 𝒅𝑭 (10)

To construct the Hessian matrix Q and mapping

matrix M, the time duration Ti for each segment is

required. In this study, the time is allocated according to

the Euclidean path cost, based on the predefined

average velocity at 1m/s. Another critical issue in

trajectory generation is that the piecewise polynomial

may deviate from the collision-free guiding path. To

reinforce safety, collision check is performed along the

trajectory with KNN search. The positions at each

timestamp are checked against the nearest obstacle cell.

The midpoint of guiding path segments will be added as

an intermediate waypoint if collision is detected.

4 Validation

This section describes two separate experiments to

validate the planned trajectory. The first one is

performed in MATLAB with the numerical solver

ode45. A simple PID controller is implemented to

realize the motion control. The second experiment is an

HIL simulation in the UE4 environment, where a

physical flight controller is employed to communicate

with the simulator. Details are explained in 4.1 and 4.2,

respectively.

4.1 MATLAB simulation

The UAV trajectories are executed with a flight

controller, which takes in the desired states and true

states of the UAV at each moment to produce the

desired motor output. The planned trajectory is

published in a stream of state vectors [x, y, z, vx, vy, vz,

ψ, θ, φ, ωx, ωy, ωz]T∈R12, with a fixed frequency. It was

demonstrated in [21] that the full state vector can be

reduced to the 3D position and yaw angle [x, y, z, ψ]T,

due to the differential flatness property. For this study,

only the 3D position is enforced while the yaw planning

is left as future work. A PID controller is constructed

following the nested loops in [25], where the position

control lies in the outer loop and influence the attitude

control in the inner loop. The governing equation is

shown in Equation (11), where e(t) is the error between

the desired state and true state. The control output u(t) is

Figure 6. Simulation results in MATLAB. In subplot (1), the planned trajectory and the ground truth

trajectory are plotted with green and blue curves, respectively. The grey cells indicate the obstacles. In (2)-

(9), the desired states and the true states are plotted with blue and red curves, respectively. For the roll and

pitch angle, the desired values are not commanded, but determined by the horizontal motion, instead.

1200

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

related to the Force and Moment with the Newton-Euler

equations, as shown in Equation (12) and (13). The

weight mg and moment of inertia matrix I are

determined according to the UAV model in [26]. The

gain parameters Kp and Kd are tuned manually, while the

Integral term is omitted for simplicity. During the

simulation, the desired states are the input from the

trajectory generator, while the true state is computed

with the ode45 solver, based on rigid body dynamics.

𝒖(𝑡) = �̈�𝒅𝒆𝒔(𝑡) + 𝐾𝑑�̇�(𝑡) + 𝐾𝑝𝒆(𝑡) (11)

𝑚�̈� = [
0
0

−𝑚𝑔
] + 𝑹 ∙ [

0
0
𝛴𝐹𝑖

]

(12)

𝑰 ∙ [
�̈�
�̈�
�̈�

] + [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] × 𝑰 ∙ [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = [

𝛴𝑀𝑥

𝛴𝑀𝑦

𝛴𝑀𝑧

]

(13)

The simulation result is plotted in Figure 6, where

subplot (1) is a 3D view of the trajectory and (2)-(9) are

the UAV states against time.

4.2 HIL simulation

The UE4 is an advanced game engine that provides

highly realistic virtual environment. Besides, it enables

a wide range of robotics applications, such as navigation,

computer vision, deep learning, etc. This is the main

reason why it is selected as the platform for experiment.

The HIL simulation is carried out based on our previous

work [7], in which a software pipeline was developed to

integrate UE4 with ROS. The former provides the

physics engine and high-quality sensor data, while the

latter contains abundant packages for robotics

perception and odometry. The communication between

them is realized with the ROS master.

In this simulation, the as-designed BIM of the target

facility is exported in FBX format and then imported

into UE4 to create a scene, as shown in Figure 7. The

planned trajectory is coded into a script as a stream of

messages with timestamp, position and orientation. The

script is passed into the UE4 server through an API

layer, AirSim [27]. The trajectory is executed with a

hardware flight controller, Pixhawk 4 [28], which

subscribes desired states and ground truth states from

the UE4 environment and publish motor outputs to the

UAV model. A screenshot during the simulation is

displayed in Figure 8.

5 Conclusion and Future Work

This paper presents an integrated framework to

bridge the robotics problem of UAV navigation with the

civil engineering application of as-built point cloud

generation. The framework comprises BIM-aided map

construction, waypoint-based scan planning, static path

planning, and dynamic trajectory generation. These

techniques are verified with a numerical simulation and

a highly realistic HIL simulation. The results

demonstrated that the motion planning algorithms can

deal with complex environments with MEP components.

The proposed framework can be improved in several

aspects. First, the yaw planning for trajectory can be

completed, which is critical for vision-based odometry

and navigation. Secondly, the quality of scanning is not

evaluated. This can be addressed by setting a LiDAR

sensor model into the UE4 environment to perform a

virtual scan. Furthermore, it is promising if the

framework can run in parallel with ROS to achieve real-

time application. This is possible with the MATLAB

ROS Bridge and it is expected to conduct a real-world

experiment in future.

Figure 7. The scene constructed from the FBX

file in UE4.

Figure 8. Trajectory following with the Pixhawk

4 flight controller.

References

[1] Biswas H. K., Bosché F., and Sun M. Planning for

scanning using building information models: A

novel approach with occlusion handling.

In Symposium on Automation and Robotics in

Construction and Mining (ISARC 2015), 2015.

1201

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

[2] Gao F. et al. Flying on point clouds: Online

trajectory generation and autonomous navigation

for quadrotors in cluttered environments. Journal

of Field Robotics, vol. 36, (4), pp. 710-733, 2019.

[3] Shirowzhan S. et al. BIM compatibility and its

differentiation with interoperability challenges as

an innovation factor. Autom. Constr., vol. 112, pp.

103086, 2020.

[4] RS-LiDAR-32. Online:

https://www.robosense.ai/rslidar/rs-lidar-32.

Accessed: 12/06/2020

[5] Quigley M. et al. ROS: An open-source robot

operating system. In ICRA Workshop on Open

Source Software, 2009.

[6] Unreal Engine 4. Online:

https://www.unrealengine.com/en-US/?lang=en-

US. Accessed: 12/06/2020

[7] Wang K. and Cheng J. C. Integrating hardware-in-

the-loop simulation and BIM for planning UAV-

based as-built MEP inspection with deep learning

techniques. In Proceedings of the 36th

International Symposium on Automation and

Robotics in Construction, 2019.

[8] Argüelles-Fraga R. et al. Measurement planning

for circular cross-section tunnels using terrestrial

laser scanning. Autom. Constr., vol. 31, pp. 1-9,

2013.

[9] Wang Q., Sohn H., and Cheng J. C. Automatic as-

built BIM creation of precast concrete bridge deck

panels using laser scan data. J. Comput. Civ.

Eng., vol. 32, (3), pp. 04018011, 2018.

[10] Bolourian N. and Hammad A. LiDAR-equipped

UAV path planning considering potential locations

of defects for bridge inspection. Autom.

Constr., vol. 117, pp. 103250, 2020.

[11] Zhang J. and Singh S. LOAM: Lidar odometry and

mapping in real-time. In Robotics: Science and

Systems, 2014.

[12] Zhang J. and Singh S. Visual-lidar odometry and

mapping: Low-drift, robust, and fast. In 2015

IEEE International Conference on Robotics and

Automation (ICRA), 2015.

[13] Geiger A. et al. Vision meets robotics: The kitti

dataset. The International Journal of Robotics

Research, vol. 32, (11), pp. 1231-1237, 2013.

[14] Jung J. et al. Development of kinematic 3D laser

scanning system for indoor mapping and as-built

BIM using constrained SLAM. Sensors, vol.

15, (10), pp. 26430-26456, 2015.

[15] Özaslan T. et al. Inspection of penstocks and

featureless tunnel-like environments using micro

UAVs. In Field and Service Robotics, 2015.

[16] Mur-Artal R., Montiel J. M. M., and Tardos J. D.

ORB-SLAM: a versatile and accurate monocular

SLAM system. IEEE Transactions on

Robotics, vol. 31, (5), pp. 1147-1163, 2015.

[17] Qin T., Li P., and Shen S. Vins-mono: A robust

and versatile monocular visual-inertial state

estimator. IEEE Transactions on Robotics, vol.

34, (4), pp. 1004-1020, 2018.

[18] Yang L. et al. A literature review of UAV 3D path

planning. In Proceeding of the 11th World

Congress on Intelligent Control and

Automation, 2014.

[19] Richter C., Bry A., and Roy N. Polynomial

trajectory planning for aggressive quadrotor flight

in dense indoor environments. In Robotics

Research (pp. 649-666), Springer, Cham, 2016.

[20] Gao F. and Shen S. Online quadrotor trajectory

generation and autonomous navigation on point

clouds. Presented at the 2016 IEEE International

Symposium on Safety, Security, and Rescue

Robotics (SSRR), 2016, pp. 139–146.

[21] Mellinger D. and Kumar V. Minimum snap

trajectory generation and control for quadrotors.

Presented at the 2011 IEEE International

Conference on Robotics and Automation, 2011, pp.

2520–2525.

[22] Chen J., Liu T., and Shen S. Online generation of

collision-free trajectories for quadrotor flight in

unknown cluttered environments. Presented at the

2016 IEEE International Conference on Robotics

and Automation (ICRA), 2016, pp. 1476–1483.

[23] Revit OBJ converter. Online:

https://visionworkplace.com/products/obj-

converter-for-autodesk-revit. Accessed:

12/06/2020.

[24] CloudCompare. Online:

https://www.danielgm.net/cc/. Accessed:

12/06/2020.

[25] Michael N. et al. The grasp multiple micro-uav

testbed. IEEE Robotics & Automation

Magazine, vol. 17, (3), pp. 56-65, 2010.

[26] Mellinger D., Michael N., and Kumar V.

Trajectory generation and control for precise

aggressive maneuvers with quadrotors. The

International Journal of Robotics Research, vol.

31, (5), pp. 664-674, 2012.

[27] Shah S. et al. Airsim: High-fidelity visual and

physical simulation for autonomous vehicles.

In Field and Service Robotics, 2018.

[28] Meier L. et al. PIXHAWK: A micro aerial vehicle

design for autonomous flight using onboard

computer vision. Autonomous Robots, vol. 33, (1-

2), pp. 21-39, 2012.

1202

https://www.robosense.ai/rslidar/rs-lidar-32
https://www.unrealengine.com/en-US/?lang=en-US
https://www.unrealengine.com/en-US/?lang=en-US
https://visionworkplace.com/products/obj-converter-for-autodesk-revit
https://visionworkplace.com/products/obj-converter-for-autodesk-revit
https://www.danielgm.net/cc/

