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Abstract – 

Façade condition assessment for buildings is 

essential to public safety in cities. Currently, twelve 

major cities across the U.S. ensure the building façade 

safety with mandatory façade inspection programs. 

Even in major cities with the façade inspection 

programs, there have been seventeen falling debris 

accidents reported in 2019, three of which were fatal. 

These accidents indicate a need to improve the 

current façade inspection practice. Shadowing work 

conducted by the research team with expert 

inspectors on three buildings, and analysis of façade 

inspection programs and guidelines show that 

inspectors check façades based on defect types or on 

façade components, whereas existing documentation 

to guide inspectors are based on major material types. 

This mismatch results in inspectors checking façade 

components based on their experience, which might 

not align well with the expectations of agencies. 

Systematic and detailed assessment guidance is 

necessary to get a comprehensive and consistent 

façade inspection. Towards such systematic guidance 

and to understand the underlying reasons for 

continuing accidents, this paper provides the details 

of an approach to identify generic vocabularies and 

the relationships between major entities that play a 

role in the inspection domain for systematic 

inspection processes. To identify these, we developed 

a data-driven approach that analyzed around 100 

façade inspection reports that were filed to the NYC 

Department of Buildings (DOB) during the past 

inspection cycle (2014-2019). Among the twelve major 

cities, New York City (NYC) has the longest history of 

façade inspection, and most buildings (14,000) 

enrolled in the façade inspection program. We believe 

that study about NYC buildings can provide a general 

understanding of inspection requirements in other 

cities where similar problems exist. The developed 

mechanism is based on natural language processing 

and unsupervised machine learning techniques and is 

used to extract the vocabularies of façade elements, 

defect types, associated defect attributes, and 

mapping between them. The results also provide the 

mapping relationship of façade components and 

defect types for a specific façade type (e.g., 

stone/limestone). This work provides the foundation 

for an ontology to be used to systematically guide 

façade inspection for any given building. 
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1 Introduction 

Twelve major cities in the U.S. have a façade 
inspection program to ensure the safety of buildings. 

Accidents and incidents caused by debris falling from 

building façades, however, are still happening in cities. 

For example, in the past year (2019), 17 accidents due to 

debris falling occurred in the U.S., causing deaths and 

injuries. The past decade has shown that more than 700 

complaints about façade safety were received annually 

by the department of buildings (DOB) in the city of New 

York (NYC) [1]. These accidents and complaints indicate 

a need to improve the current façade inspection practice.  

Shadowing of façade inspectors by the authors 
resulted in the identification of several challenges in the 

current façade inspection practice [2]. One of these 

challenges is the lack of a comprehensive and detailed 

checklist that can serve as a guideline to a systematic 

inspection that is based on defect and façade component 

types instead of material types. Current façade inspection 

regulations in different cities and international guide for 

standard periodic façade inspections published by the 

standards organization [3] cover information on 

conditions of buildings that need an inspection, length of 

inspection cycles, general and close visual inspection of 

façade, and reports formulation and submission. 
Information about what defect types need to be checked 

and what associated attributes are essential for façade 

safety assessment, however, is missing from the 
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regulations and practice standard documents. Aside from 
the regulations and practice standards, a few glossaries 

formulated by industry professionals aim to provide 

descriptions and illustrations of defect types for different 

façade materials [4-6]. The glossaries are only for 

educational purposes and are not integrated into any 

guideline for defect identification in the façade 

inspection practice. Façade inspection is still a practice 

that relies solely on the personal experience of each 

inspector and company-specific templates. Figure 1 

shows an example of different inspection results in two 

inspection reports for the same brick masonry building 
and its roof.  

(a) 

(b) 

Figure 1. Examples of different inspection results for 

the same roof. (a) Previous inspector (Cycle 7) only 

mentioned the existence of a parapet. (b) The current 

inspector (Cycle 8) checked the height of the parapet 

with respect to the code compliance. 

For safety concerns, the height of parapets should 

comply with the construction code that was applicable 

when the building was constructed. The inspector, who 

conducted the inspection work in the prior cycle, only 

mentioned the existence of a parapet at the roof (Figure 

1a) and its material type as the information collected for 

the parapet. The inspector we shadowed, however, also 

checked the height of the parapet, compared it to the 

requirements in the code, and identified that the height of 

the parapet is not compliant with the applicable building 
code (Figure 1b). Such differences of what components 

to check, what specific parameters to check for each 

façade component are common, and show a need for a 

checklist that the inspectors can follow to conduct an in-

depth and comprehensive inspection regardless of their 
experience. 

Shadowing work and the review of submitted reports 

showed that the inspection is conducted per façade 

component and is not based on material types. For 

example, when an inspector is checking a balcony, he/she 

will check the concrete panels for cracks,  the railings for 

connection stability, and compliance of spacing between 

railings and their heights to the code altogether, instead 

of checking cracks in all concrete components at once. 

One example of this component-based practice is 

provided in Figure 2. The inspector, who submitted the 
report, grouped the observed conditions based on the 

façade components (i.e., openings). The current façade 

condition glossaries, however, summarize the defect 

types based on façade materials (e.g., concrete, metal) 

and there is a need to know which defects are applicable 

to which façade components for a comprehensive and 

consistent façade inspection.  

Figure 2. Façade inspection report grouping the 

conditions based on façade components. 

Towards a comprehensive façade inspection 

guidance, what is needed is the knowledge of how defect 

types (and defect-related attributes) map to façade 

component types, and the comprehensive vocabularies 

for these defect types, defect attributes, and façade 

component types. The objective this paper is to identify 

this mapping and the vocabularies of the defect, attribute, 

and façade component types. With this objective, we 

developed an approach using bidirectional long short-
term memory (bi-LSTM) model to automatically analyze 

around 100 façade inspection reports that were submitted 

in the past inspection cycle (2014-2019) for buildings in 

NYC. Here, the assumption is that inspectors’ practice is 

reflected on the inspection reports they submit and can be 

leveraged for investigating the relationships between 

façade components and defects, and expanding the 

available material-specific vocabularies towards 

component-specific vocabularies.  This paper provides 

an overview of the developed bi-LSTM model and the 

results of this mapping and resulting vocabularies of 
façade components, defect types, and defect attributes. 

These findings also lay the foundation for an ontology for 

systematic and comprehensive façade inspection. 
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2 Literature Review 

Here we present a synthesis of previous researches on 

urban façade inspection, structural health monitoring, 

and the application of natural language processing (NLP) 

in the civil engineering domain.    

Previous researches on façade inspection and 

structural health monitoring were mainly focused on 

automatic defect detection using digital data, particularly 
point clouds and images. Researchers developed 

algorithms to detect cracks [7-9], moisture [10], spalling 

[8, 9], vegetation [8], and efflorescence [9] on concrete, 

masonry, and steel surfaces. Several algorithms are able 

to quantify the defects, such as the area of spalling [11] 

and the width of cracks [7] automatically or manually on 

3D models [12]. Although these studies provide a 

handful of defect types/attributes on a select type of 

materials, their focus is not aligned with this study that 

aims to define the vocabularies of defects, component 

types, and the mapping between them for improvement 
of the façade inspection practice.  

Previous NLP applications in the civil engineering 

domain aim to extract essential information such as 

condition assessment information from bridge inspection 

reports, or project relevant information from unstructured 

construction documents, or regulatory information from 

building codes with different machine learning models 

[13-15]. Although there are NLP applications in the 

domain, the analyzed documents are semi-structured or 

structured with logical-connected words (e.g., “equal to” 

and “less than” represent quantification compliance in 

the building codes) or with known defect types (e.g., 
crack, spall, efflorescence, etc.) and rating categories 

(e.g., minor, moderate, severe) [16], which can be 

analyzed with rule-based information pattern matching. 

Different from previously studied document types, 

façade inspection reports are personal narrative 

descriptions written without guidance or specific 

templates. Thus, this unstructured nature of the 

inspection reports requires unsupervised learning to find 

relevant words (e.g., parapet, crack, diagonal), label them 

correctly (e.g., façade component, defect type, defect 

attribute) within the context of a report, and maintain the 
relationships between these labels. We implemented a 

natural language processing (NLP) algorithm to identify 

the vocabularies for façade components, defect types, 

defect attributes, and the hidden relationships between 

façade components and defect types. Long short term 

memory network (LSTM) is one of the Recurrent Neural 

Network (RNN) architectures and is known to be suitable 

for processing sequence data (e.g., time-series, speech 

sequence, and text) because LSTM preserves information 

about the data that the model sees earlier in a sequence. 

Unlike general sequential data processing, NLP has a 
feature that the context in a sentence is defined by the 

interrelationships among words in both backward and 

forward directions. Since the unidirectional LSTM 
passes input information forward only, bidirectional 

LSTM is more proper for automated understanding of 

natural language. In addition, the conditional random 

field (CRF) is a statistical modeling method that is widely 

known for its high performance in predicting a label for 

sequence data. Adding CRF as an output layer in the bi-

LSTM model (i.e., bi-LSTM-CRF model) is proved to 

outperform previous state-of-the-art models in the 

information labeling tasks [17]. It has been utilized in the 

approach presented in this paper. To further improve the 

performance of NLP models, skip-gram models, which 
are unsupervised learning models and can precisely 

capture the semantic (i.e., meaning) and syntactic (i.e., 

grammatical structure) relationships between words 

[18]in a context. Previous research studies trained skip-

gram models with general English text and used them to

improve the performance of machine learning models on

extracting information from documents (e.g., [13]). In

this study, we trained a skip-gram model with domain-

specific text (i.e., façade inspection reports text). We

used it to generate the dependency information that was

included in the input of the machine learning model to

boost the performance of the model.

3 Research Method 

To obtain comprehensive vocabularies for façade 

components, defect types, and their attributes together 

with the mapping relationship among those, we 

developed an algorithm that is capable of extracting key 

information in unstructured inspection reports.  In a 

nutshell, this algorithm includes a trained bi-directional 
long short term memory (bi-LSTM) model, boosted with 

outputs of an unsupervised skip-gram model developed 

by the research team to capture semantic and syntactic 

relationships between words (as detailed in section 4). 

For the training of the bi-LSTM models that we 

enhanced with domain-specific skip-gram models, first, 

we needed to generate initial vocabularies of façade 

components, defect types, and defect attributes. For this 

purpose, we reviewed current façade inspection practice 

standards [3], local laws/regulations [19], and façade 

condition glossaries [4-6] to generate defect types and 
attributes vocabularies. Similarly, we reviewed building 

component libraries of 3D modeling tools (e.g., Revit 

libraries) and building classification models (e.g., 

Uniformat) to prepare the façade components vocabulary. 

We defined four labels, which are façade-component, 

defect-type, defect-attribute, and others (i.e., 

information that is irrelevant to façade conditions), to 

automatically label worlds in reports. The details of this 

approach are provided in the next section.  
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4 Boosted Bi-LSTM model for mining of 

inspection reports 

Figure 3 provides an overview of our approach. Data 
preprocessing (step 1) and labeling (step 2) steps are 

provided in section 4.1, dependency information 

provided by the skip-gram model (step 3) is presented in 

section 4.2, and the utilization of the model to identify 

vocabularies and mapping relationships (step 4) is 

discussed in section 4.3. 

4.1 Preprocessing and labeling of the text 

We obtained around 3,000 façade inspection reports 

that cover all the seven façade types in document format 
from the NYC DOB database. For this study, we 

analyzed 100 inspection reports for only stone limestone 

façade buildings. Preprocessing starts with using a parser 

to extract the raw text from the sections where inspectors 

describe their findings and splitting the raw text into 

indexed sentences with the sentence tokenizer. The 

indexed sentences were tokenized into words (i.e., 

separating a given sentence into the list of its words), then 

lemmatized (i.e., returning to the root form of the words) 

to eliminate the influence of different tenses, plural forms, 

verb/noun differences. The part-of-speech (POS) 
information of each token (e.g., noun, verb, adverb, 

adjective, etc.) was used to achieve a more accurate 

lemmatization. For instance, the word “rose” can be the 

past tense of “rise” or the flower. Depending on the POS 

of the word, the result of lemmatization differs. These 

lemmatized sentences were temporarily used in the 

labeling process to eliminate labeling errors due to the 

different formats of the words in the text and the 

identified vocabulary list. Next, we labeled the 

preprocessed and lemmatized text using the Inside-

outside-beginning (IOB) tagging mechanism. With this 

tagging mechanism, we are able to label compound 
words that are consisted of multiple words with the 

beginning token (i.e., a word in this context) and inside 

tokens. The “I-” tag stands for “inside” of a label, 

referring to the subsequent word in a compound word 

(e.g., “escape” in “fire escape”). The “O” tag stands for 

“outside” of a label, referring to the irrelevant word. The 

“B-” tag stands for “beginning” of a label, referring to the 

first word in a compound word (e.g., “fire” in “fire 

escape”). For example, in the term “the window lintel”, 

“window lintel” should be labeled as a single façade-

component. Using IOB tagging mechanism, the word 
“the” is labeled as “O”, and “window lintel” will be 

automatically labeled as [window (B: façade-component) 

lintel (I: façade-component)]. The label categories we 

used are façade components, defect types, defect 

attributes (i.e., length, width/depth, direction, location, 

material, number of floors, and façade sections), and 

others. 

        Figure 3. Overview of the developed approach. 

 Figure 4 provides an example of a sentence from the 

reports and its labeling result. If there are no compound 

words, each identified word that corresponds to one of 

the four label categories will be labeled with “B”. All the 

other words that are not of interest in this labeling process 

are to be labeled as “O” (i.e., others).  

Figure 4. An example of a sentence preprocessed and 

labeled with the IOB tagging mechanism. 
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4.2 Obtaining dependency information 

through the domain-specific skip-gram 

model 

Word embedding is the process of vectorization of 

words to convert natural language into a computer-
readable format based on the extracted features of the 

language. Word embedding approach takes a large input 

of tokens, projects them to a vector space, and assigns 

each unique token a corresponding vector for the 

representation in the vector space. In this study, we used 

two word embedding approaches to compare the results 

of the bi-LSTM model with and without dependency 

information. These two embedding approaches are the 

one-hot encoding, which does not provide dependency 

information between words, and the skip-gram model, 

which includes the dependency information in the word 

embedding process. One-hot encoding is a vector 
representation of word in binary vector format (e.g., 

crack = [1,0,0], window = [0,1,0], maintenance = 

[0,0,1]). Since the vectors represent words in binary 

value, one-hot encoding cannot provide the 

similarity/distance between words. On the other hand, the 

skip-gram model is an unsupervised learning method for 

word embedding that uses vector space to capture and 

represent the semantic and syntactic relationships 

between words efficiently. Semantic refers to the word 

meanings and relations, and syntactic refers to the rules 

of a language and grammatical arrangement of words in 
sentences. For example, sentences like “window 

identifies crack” (“subject”+ “verb” + “adjective”) is a 

syntactically correct sentence, but it is not semantically 

correct. After the word embedding, all the input words 

are mapped into the N-dimensional vector space (word1 

= [v1, v2, v3, v4, …, vn]). Since the mapped words are 

using vector representation (e.g., word “crack” is 

represented as [-0.478, 0.917, 0.196, -0.443, -0.978, …, -

0.207]) with respect to the other words in the same 

context, the skip-gram model can perform analogical 

reasoning precisely. In other words, if two words are 

placed at similar locations in two different sentences, and 
the meaning of the terms are similar, then the distance 

between those two words is relatively small in the vector 

space if the same pattern is observed often by the skip-

gram model. For example, given the following two 

sentences from a report: (1) “We recommend repairs to 

be made to correct these deficiencies by February.” (2) 

“We recommend timely maintenance to repair the 

SWAMP condition observed our inspection.” In vector 

space, the distance between “repairs” and “maintenance” 

is relatively small. Figure 5 presents an example for a 

simplified 2D projection of the vector space showing the 
distance between “repairs” and “maintenance”. 

Previous studies indicate that the skip-gram model 

trained with general English text improves the 

information labeling model performance [13]. In this 

study, we trained a skip-gram model with the façade 
inspection reports and included the dependency 

information, which is represented by vectors generated 

from the skip-gram model, as part of the input for the bi-

LSTM model. 

Figure 5. An example of the tokens “repair” and 

“maintenance” in projected vector space. 

4.3 Identifying vocabularies with the boosted 

bi-LSTM-CRF model 

In this study, we built and trained a bi-LSTM-CRF 

model boosted with skip-gram model outputs. The input 

for the bi-LSTM-CRF model is the labeled sentences (i.e., 

the output of step 2 in Figure 3) and the dependency 

information (i.e., the output of step 3 in Figure 3). Figure 

6 provides an illustration of the boosted bi-LSTM-CRF 

model with a short sentence as an example. The model 

has an input layer, where the preprocessed sentence 
“Exterior wall has crack.” is converted into vector 

representation by word embedding as input into the bi-

LSTM layers. Then, the LSTM model learns from the 

input data in both forward and backward propagations to 

update the parameters. The output of bi-LSTM is then 

inputted to the CRF layer to refine the relational 

information between tags. The CRF layer works as a 

classifier to predict the label of each token and improves 

the performance of the model because it can learn the 

constraints of labels based on their positions. Constraints 

such as “inside labels (i.e., I) cannot exist without 

beginning labels (i.e., B)”, and “I of one label cannot 
appear after B of another label (e.g., ‘I-defect’ cannot 

appear after ‘B-component’)” are learned by this layer. 

After the CRF layer, the final output of this bi-LSTM-

CRF model is the labels for each token in the sentence. 
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Figure 6. Illustration of bi-LSTM-CRF models with 

an example sentence. 

4.4 Model development 

The sentences extracted from the reports were 

randomly separated into training (i.e., data that is used to 

build the models), validation (i.e., data that is used to 

prevent overfitting problem in the training process), and 

testing (i.e., data that is used to test the performance of 

the models) sets with 7:2:1 ratio. We trained two bi-

LSTM models with one of them included the dependency 

information provided by the skip-gram model and the 

other one using one-hot code input. We trained the 

models with the training set, and the validation set was 
used to fine-tune the models and avoid the overfitting 

problem. The testing set remains unseen by the model 

and is used for model performance evaluation. After we 

trained and optimized the models, the sentences in the 

testing set are labeled by the model. The output labels are 

compared with the labels provided by the IOB tagging 

mechanism. We calculated the F1 score, precision, and 

recall for model performance evaluation using Equations 

1-3, where TP represents true positive (i.e., the number

of tokens that were correctly labeled), FP represents false

positive (i.e., the number of tokens that were mislabeled),
and FN represents false negative (i.e., the number of

tokens that should be labeled but were missed). The

evaluation metrics can be calculated with the following

rules. Precision is the ratio of correctly labeled tokens to

all the tokens that are labeled in the testing set for each

label (Equation 1). The recall is the ratio of the correctly

labeled tokens to the total number of correct labels

expected to be labeled in the testing set for that label

(Equation 2). F1 score is the weighted average of

precision and recall (Equation 3). The performances of

both models are evaluated using stone/limestone façades.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation(2) 

𝐹1  𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙

Equation(3) 

5 Preliminary results and discussions 

This section provides the results of the labeling 

process using the developed boosted bi-LSTM-CRF 

model. The results are provided for reports analysis of 

stone/limestone façades.  

5.1 Preliminary results of vocabulary 

identification in stone/limestone façade 

inspection reports 

For stone/limestone façade buildings, 100 façade 

inspection reports were available, and 1771 sentences 

were extracted from the reports. The training, validation, 

and testing sets had 1272, 319, and 180 sentences, 
respectively. After preprocessing and IOB tagging, there 

were 3446 tokens labeled as façade components, 190 

tokens labeled as defect types, and 256 tokens as defect 

attributes in the training set. Table 1 shows the precision, 

recall, and F1 score for each label category identified by 

the developed approach. As shown in Table 1, the left 

columns with normal text show the model performance 

when the input data does not include dependency 

information. The right columns with bold text show the 

model performance when we include the dependency 

information as part of the input. The model performs well 
in the vocabulary labeling for façade components, defect 

types, and defect attributes given their consistently high 

scores in precision and recall. The labeling performance 

for both façade components and defect types has been 

improved approximately by 10% by including the 

dependency information, while the labeling performance 

for defect attributes did not change much by including the 

dependency information. Resulting vocabularies after the 

trained model is finalized for stone/limestone façade are 

discussed with respect to their categories.  

Vocabulary for façade component types: For façade 

component types, a total of 38 component types (e.g., 
cornice, storefront, column, mortar joint, coping stone, 

etc.)  were identified for stone/limestone façades as a 

result of this automated report analysis. All the identified 

façade component types were covered by our initial 

vocabulary, and no additional façade components were 

expected to be identified.  

Table 1. Precision, recall, and F-1 score for labeling 

(with/without dependency information).  

Label category Precision Recall F-1 score

Dependency 

information 

w/ w w/ w w/ w 

Façade component 0.78 0.88 0.85 0.91 0.82 0.90 

Defect type 0.62 0.76 0.59 0.74 0.61 0.75 

Defect attributes 0.91 0.91 0.74 0.77 0.82 0.83 

Bold w: model performance with word embedding information. w: with; w/: 

without.

Vocabulary for defect types: There were 12 defect 
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types identified by the automated report analysis of 
stone/limestone façade inspection reports. These include 

cracking, peeling, missing, hazardous condition, 

removed, spalling, corrosion, displacement, bulging, 

delamination, chipping, and hollow. Certain defects such 

as deformation, misalignment, and loose that are 

important to the safety condition assessment were not 

mentioned in the reports.  

Vocabulary for defect attributes: The defect 

attributes included in the inspection reports of stone 

limestone buildings are location (e.g., corner, roofline, 

floor line, joint, etc.), direction (e.g., horizontal, vertical, 
inward, etc.), material (e.g., paint, rust, etc.), section (i.e., 

east/west/north/south façade), area (e.g., square feet), and 

related deterioration (e.g., chalking, staining, 

discoloration, etc.). Among all the defect attributes, 

related deteriorations, and façade section information 

was not identified correctly by the approach.  

5.2 Mapping relationship between defect 

types and façade components for 

stone/limestone façades 

An important outcome of the trained models is the 

discovery of the unknown mapping relationships 

between façade components and defect types, which are 

required for a systematic component-based façade 

inspection guidance.  The mapping relationships 

identified for the stone limestone façades are provided in 

Figure 7. Numbers in each cell indicate the frequency of 
the “façade component-defect type” pairs that appeared 

in the façade inspection reports. The frequency of 

identified pairs is normalized over the defect types to 

show the most frequent defect types on each façade 

component. The density of color in each cell represents 

the normalized results. The underlying assumption here 

is that the vocabularies appeared in the same sentence is 

describing one defect observed on a façade component 

by the inspector. For stone/limestone façades, 38 

building elements and 12 defect types are identified from 

the façade inspection reports. When the figure is 

analyzed vertically, it is possible to identify the relations 
discovered between façade elements and a given defect 

type.  Crack is the defect type that relates to most of the 

façade elements to be inspected for stone/limestone 

façades and is related with 30 out of 38 façade elements. 

Hazardous condition (associated with 15 façade 

elements), spalling (associated with 14 façade elements), 

and peeling (associated with 10 façade elements), are 

defect types that rank high in mapping to façade 

components. Delamination and chipping, both associated 

with 6 façade elements, are defect types that rank low in 

mapping to façade components. Hollowness, which is 
only associated with coping, is the defect type that relates 

to the least number of façade components. 

When Figure 7 is analyzed horizontally, it is possible 

to observe what types of defects are applicable to a given 
façade component. Among all 38 façade elements, brick 

pieces (that require inspection for 11 different defect 

types), copings (that require inspection for 10 different 

defect types), parapets (that require inspection for 9 

different defect types), and lintels (that require inspection 

for 8 different defect types) are the façade components 

that have the highest number of defect types associated 

with them. On the other hand, glass panels, columns, 

window panels, ladders, entrance doors, and fascia are 

the façade elements that only have crack associated with 

them.  

Figure 7. Mapping of façade components and defect 

types for stone/limestone façades 

6 Conclusions 

In this study, the authors proposed an automated 

approach for analyzing façade inspection reports to 

extract vocabularies for critical façade inspection 

information (e.g., defect type, façade component types) 

and discover the undocumented but critical information 

on how defect types map to façade component types. This 

information is needed to streamline the façade inspection 

process by providing the flexibility for inspectors to 
organize their inspection findings per façade component 

type or per defect type.  A natural language processing 

approach, combined with an unsupervised skip-gram 

model, was developed and trained using NYC façade 

inspection reports. By comparing the labeling results, we 

proved that including the dependency information can 

improve the performance of bi-LSTM-CRF in 

information identification and labeling. NYC has the 

longest history of the façade inspection program and the 

largest number of buildings that need inspection 

regularly-hence it has been used as a test site. The 
analysis conducted in this study can shed light on other 

cities where an in-depth understanding of the façade 

inspection practice is needed. As an immediately 

following work, the authors will analyze the façade 

inspection reports of buildings with other façade types 
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(e.g., brick masonry, metal panel) and include a larger set 
of reports to improve the performance of the approach. 

The vocabularies developed and the mappings identified 

in this study can be helpful for future research that aims 

to provide a model-based comprehensive guide for the 

façade inspection practice.  
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