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Abstract –  

The use of robotic systems on construction sites 

can efficiently reduce construction time and increase 

safety by replacing construction workers in 

monotonous or dangerous operations. Robots for on-

site construction applications are challenging and 

difficult to implement because of the evolving and 

unstructured nature of construction sites, the 

inherent complexity of construction tasks, the 

uniqueness of products, and labor-intensive modeling 

and commanding, which require significant human 

effort and expertise. With the development of data-

driven techniques such as machine learning and 

computer vision, more advanced frameworks and 

algorithms can be developed to increase the level of 

adoption in the automation of construction robots. To 

better understand existing challenges and figure out 

the best strategies to implement high-level 

autonomous robotic systems for on-site construction, 

this study (1) summarizes technologies and 

algorithms used in construction robots and robotic 

applications in other industries, (2) discusses potential 

best usage and development of computer vision and 

machine learning techniques used in related areas to 

implement higher-level autonomous construction 

robotic systems, and (3) suggests a preliminary 

framework that integrates different technologies, 

such as vision-based data sensing to collect 

information, advanced algorithm to detect objects 

and reconstruct models of the built environment, and 

reinforcement learning to train robots to self-generate 

execution plans. This will allow construction robots to 

navigate and localize on construction sites, recognize 

and fetch materials, and assemble structures per a 

simulated plan. The proposed conceptual framework 

could help with the definition of future research areas 

utilizing complex robotic systems. 
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1 Introduction 

Construction robots refer to robotic systems designed 

for construction operations, which typically take place in 

dynamic environments [1, 2]. Construction automation 

and robotics have been generating much interest in the 

construction community for the last decades as a way to 

improve productivity and reduce injuries or fatalities [3, 

4]. Repetitive and labor-intense tasks, such as bricklaying, 

painting, loading, and bulldozing, are good candidates for 

automation, and the use of robots can assist in reducing 

labor force, and create safer work environments. 

However, compared to the robotic systems used in 

factories/manufacturing, construction robots have more 

complicated situations. They are exposed to dynamic and 

unconstructed environments, which means that 

predefined actions may not be suitable for all 

circumstances as construction sites and workspaces are 

always changing. Therefore, robots need to perceive the 

environment and understand how to react to the changes 

[5]. Besides, construction tasks comprise many variables, 

include different materials [6], and have different 

sequencing and requirements for assembling. This means 

that the control of construction robots requires a lot of 

manual effort to preprogram the motion and trajectory of 

the robotic system [7]. These challenges make it difficult 

to implement a high-level autonomous construction 

robotic system. Considering these challenges, to be able 

to have an autonomous robotic system to execute specific 

tasks, other technologies such as data sensing techniques 

and machine learning can be used to deliver 

unprecedented levels of data-driven support to substitute 

human efforts and instructions. 

This paper presents an objective review of the use of 

computer vision techniques (CV) and machine learning 

(ML) technologies that could be used to achieve a high 

level of autonomy in robotic construction systems. Based 

on that, suggestions on a possible framework to 

implement a high-level autonomous construction robotic 
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system are provided. The rest of this paper is organized 

as follows. Section 2 summarizes construction robotic 

applications, discusses challenges currently faced, and 

provides an overview of CV and ML techniques 

developed and used in relevant areas that could advance 

robotic systems applied to construction. Section 3 

proposes a possible framework in which CV and ML are 

used to create an integrated system to achieve 

autonomous localization, material recognition, and task 

execution planning. Section 4 summarizes the work 

presented and provides directions for future research. 

2 Application of Construction Robots 

In general, construction robots can be classified into 

four categories: (1) Off-site prefabrication systems, (2) 

On-site automated robotic systems, (3) Drones and 

autonomous vehicles (AV), and (4) Exoskeleton 

wearable devices. For each of these categories, there are 

several applications. Some examples are summarized in 

Table 1. 

Table 1. Example of construction robot applications 

Category Reference 

Off-site prefabrication  [8], [9], [10], [11], [12] 

On-site automated 

and robotic systems 
[13], [14], [15], [16], [17] 

Drones and AV [18], [19], [20], [21], [22] 

Exoskeletons [23], [24], [25] 

Considering the adoption of each category in the 

construction industry, off-site prefabrication can 

significantly help with the advancement of building 

materials, which follows the same logic and principles of 

the manufacturing industry. Several building 

components and structures have already been constructed 

successfully in this way. Drones and AV applications 

have already been used widely on construction sites to 

help with the monitoring process and materials delivery. 

Exoskeletons pushed the limits of human-robot 

interaction (HRI). These systems can assist and protect 

workers performing heavy and dangerous tasks such as 

lifting heavy loads and are useful to reduce fatigue and 

facilitate the use of other tools and equipment in 

awkward positions [26]. 

However, applications for on-site construction robots 

have many limitations when compared to other 

categories. Current on-site construction robots mostly 

rely on preprogrammed processes to perform single 

repetitive tasks, such as bricklaying, steel-truss assembly, 

steel welding, façade installation, wall painting, concrete 

laying, etc., which do not involve multi-task or multi-

robot construction. Current on-site robotic systems assist 

the construction work but could not take the place of 

workers and need supervision or assistance from an 

operator. Having the possibility of on-site construction 

robots being able to adapt to construction environments 

and perform multiple tasks without humans’ hardcoding 

or programmed orders is not trivial, and further research 

is needed to create a high level autonomous on-site 

construction robot to unleash the great potential and 

opportunities of such systems. The focus of this paper is 

in that area. 

2.1 Data-driven techniques 

The advancement of data-driven techniques such as 

computer vision and machining learning has dramatically 

improved the efficiency and accuracy of robotic systems 

in multiple areas. Different applications in manufacturing, 

surgery, self-driving vehicles, structure inspection, and 

maintenance, have benefited from this and experienced 

improved productivity and accuracy.  

Considering how a construction robot should work on 

a construction site, previous researches focused on the 

following elements to fulfill the automation of 

construction robot: (1) localization of the robot, (2) 

materials (i.e., workpiece) recognition and selection, (3) 

optimized control and task execution, and (4) monitor 

and maintenance, the following subsections provide a 

review of the technologies that could be used in each step 

(Tables 2 and Table 3). 

2.2 Localization 

Construction sites are characterized by being 

unstructured and dynamic. This creates extraordinary 

challenges for robots to localize and navigate in such 

environments. On-site robots should be able to avoid 

obstacles to reach a specific location to execute a given 

task. That requires extra sensing strategies or modalities 

to help robots perform work adaptively. 

Table 2. CV techniques used in construction robots 

Step Computer Vision Techniques 

Localization GPS 
Camera 

markers 

SLAM 

(mapping and 

reconstruction) 

Material 

recognition 

Point clouds 

segmentation 

Stereo image 

(reconstruction) 
Edge detection 

Task plan 

execution 
 

VR models 

simulation 
VR, HRI 

Monitor 

control 
Point cloud SLAM VR 

An excellent way to make sure robots find the right 

position while guaranteeing accuracy is by using cameras 

and markers. For example, [5] showed that a robot could 

use a camera and fiducial markers to find the position to 

execute a construction activity. While that provided 

reliable position reference for the robot to navigate, it did 

not consider obstacles. Robots cannot react to the 
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dynamic changes of the construction site, and the 

position of the markers needs to be manually modified, 

which requires a lot of manual efforts. 

Table 3. ML techniques used in construction robots 

Step Machine Learning 

Localization 
Reinforcement learning for path planning and 

tracking (A*, LQR) 

Material 

recognition 

Deep learning or machine learning for Object 

Detection 

Task plan 

execution 

Reinforcement learning for simple task 

simulation such as bricklaying.  

Currently, the most effective way to solve this 

problem is by using Simultaneous Localization and 

Mapping (SLAM). For example, [27] used V-SLAM 

with RGBD camera on an autonomous Unmanned Aerial 

Vehicle (UAV) platform for asset tracking in an outdoor 

construction site. [28] proposed a mobile indoor robotic 

monitoring and data collection framework using RGB 

sensors and fiducial markers. [29] proposed an 

autonomous robot equipped with different sensors to 

collect data used to conduct an automatic assessment of 

the state of construction. Autonomous navigation was 

achieved using an Adaptive Monte Carlo Localization 

(AMCL) algorithm. SLAM provides mapping and 

localization in an unknown environment and gives 

feedback for robots to understand the environment as 

well as estimating their current pose. Other applications 

based on SLAM include research focused on the 

modeling and reconstruction of the built environment 

using point cloud segmentation. For example, [30] 

proposed an integrated system that automatically 

provides detailed as-is semantic 3D models of buildings 

through raw data of point clouds. This system can better 

deliver environment information into digital models, 

provide a more reliable platform for robotic execution 

planning and simulation. 

Based on this, reinforcement learning (RL) and 

optimal control could be used to provide a more robust 

trajectory planning result to deal with complex and 

dynamic problems. [31] utilized an A* algorithm to find 

an optimal sequence of biped robots’ feet and hand 

contacts to cross a complicated terrain. [32] presented a 

quadrotor controller using iterative linear-quadratic 

regulator (LQR) algorithm to pass a window with slung 

load without the need for manual manipulation of the 

system dynamics, heuristic simplifications, or manual 

trajectory generation. RL can easily apply the navigation 

and collision avoidance mechanisms by learning from 

scratch, via a continuous, self-supervised learning 

process with less human effort involved and provide 

much more reliable simulation for more complicated 

non-linear dynamic systems. RL allows for further 

advancement of the mobility functionalities of robots. 

2.3 Workpiece recognition and selection 

The robot needs to go to its workpiece instead of 

having the workpiece brought to it, which produces a 

reversed spatial conveyance between the robot and the 

product [33]. Construction materials (i.e., workpiece) 

tend to exhibit considerable geometric variation. Due to 

their substantial size and properties, materials are often 

susceptible to large deflections and geometric 

irregularities [34]. Thus, the methods used to sense and 

identify the material on specific parts of the structure 

would be crucial for the robot to navigate around the site 

and find the right place to start the construction work. 

Previous research has investigated the ability of 

construction robots to adapt to the actual pose and 

geometry of their workpiece to perform their work. The 

following subsections address some of the key elements 

required. 

2.3.1 Model registration techniques 

Some approaches in manufacturing register complete 

3D CAD models to determine the relative pose of the 

workpiece to be carried out [35]. However, such 

approaches are not expected to work well for 

construction tasks because the geometry of an individual 

workpiece can deviate substantially from its as-designed 

shape [36]. Previous studies utilized model registration 

techniques by matching the corresponding data and 

information of the workpiece with the registered models 

to figure out the relative pose between the as-designed 

object and the actual object. [7] proposed a framework to 

sense the data of complicated and irregular materials by 

producing a correlation score between the sensor data and 

the model to conduct dexterous tasks. These tasks require 

acquiring enormous and high-quality information from 

the environment, which requests an advanced integrated 

sensing system to describe the real world. Besides, the 

matching process also relies on human efforts or 

advanced algorithms to provide quick and reliable 

feedback. There is still great potential for the 

advancement of techniques and integrated frameworks to 

generate reliable feedback to on-site robotic systems. 

2.3.2 Vision-based techniques 

To get precise information and sensor data of the pose 

and the geometry of the workpiece, many studies used 

vision-based techniques such as fiducial markers to target 

desired objects for on-site construction robots. [37] 

proposed a framework using fiducial markers for robots 

to set specific waypoints to navigate around the building 

to gather information. However, the approach required 

the environment to be fitted with fiducial markers, which 

may not be ideal for real-world construction applications. 

Other computer vision techniques (e.g., stereo images, 

edge detection, and laser scanning) have been used to 

find the best algorithm and strategy to identify the 
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workpiece. Some examples are summarized next. 

1. Stereo images 

[38] showed the rudimentary ability of a robot to 

identify and pick up tiles using stereo cameras and a 

suction gripper in a robotic tile installation operation. 

Stereo images can help with the 3D reconstruction of 

specific objects; however, the efficiency and accuracy of 

the learning algorithm significantly limited the shape and 

categories of the materials. 

2. Edge detection 

[39] and [40] used edge detection to identify simple 

shape wires; however, their applications might not work 

well for a wide range of object geometries. The edge 

detection approach and algorithm are widely developed 

and greatly used in related areas, such as self-driving 

vehicles using supervised learning, or a weakly 

supervised learning framework. For example, [41] 

proposed a segmentation-detection collaborative 

network (SDCN) for more precise object detection under 

weak supervision with less dataset required. With these 

advancements in object detection techniques, on-site 

construction robotic system could be further developed 

to recognize more complicated and specific materials. 

3. Laser scanning 

Another method to get the geometry and pose of the 

objects is using laser scanning techniques to get the 

point-cloud data of the object and then clarify the object 

into different classes. [42] demonstrated that a robotic 

excavator could use laser rangefinders to adapt its plan to 

the topology of nearby soil and the pose of a nearby truck 

for a digging and dumping operation. Similarly, [43] 

showed that a robot could construct a dry block wall in 

an adaptive manner by sensing the wall’s top course with 

a 2D laser rangefinder and modifying the installation 

poses of subsequent blocks accordingly. However, point 

clouds are massive and do not have specific 

classifications. 

2.4 Task execution and planning 

Once the materials are prepared, the next stage is to 

generate the execution plan. Instead of manually 

hardcoding the plan and trajectory to execute specific 

tasks, machine learning techniques can be used to train 

the robot so that the best trajectories and motions can be 

autonomously generated. Among multiple varieties of 

machine learning technologies, RL is the most relevant 

techniques to the robotic motion and control. RL is a 

subfield of machine learning where an agent learns by 

interacting with its environment, observing the results of 

these interactions, and receiving a reward accordingly 

[44]. RL enables a robot to autonomously discover an 

optimal behavior through trial-and-error interactions 

with its environment. 

2.4.1 RL applications 

Many studies have contributed to the applications of 

RL in robotics, included locomotion [45], manipulation 

[46], and autonomous vehicle control [47]. However, 

there are very few reinforcement learning-based 

applications for construction robots. Most of them are in 

the areas of simple tasks such as grasping objects, in-

hand object manipulation, door opening, and simple 

structures construction. For example, [48] described an 

iterative decentralized planning and learning method, to 

generate construction and motion strategies to build 

different types of three-dimensional structures using 

multiple quadrotors. [49] presented a framework using an 

actor-critic algorithm consisting of small autonomous 

mobile robots and block sources, which allows robots to 

gather blocks from the sources to build a user-specified 

structure. 

2.4.2 From Single-Agent to Multi-Agent 

In early 2016, [50] proposed a novel multi-agent 

framework along with deep reinforcement learning to 

learn a single-agent policy. 

For large-scale control systems and communication 

networks, multi-agent reinforcement learning allows 

collaboration among different agents. The system’s 

behavior is influenced by the whole team of 

simultaneously and independently acting agents in a 

common environment. For example, [51, 52] 

investigated a network which optimally divides the tasks 

for indoor building environment navigation among a 

group of robots to determine optimal routes to visit 

multiple locations. This is crucial for large-scale work, 

especially construction activities, which allows multiple 

robots to work simultaneously and can either give 

feedback to other agents or speed up construction work. 

3 Discussion and proposed system 

Construction robots have the potential to conduct 

specific construction tasks autonomously. A possible 

direction for the evolution of on-site robots is to train 

them to construct like human beings without humans’ 

hardcoding or preprogrammed orders. This means that 

after getting the models and instructions from the 

engineers and designers, robotic systems can 

automatically make their own decisions and select 

different materials among various parts of the structure to 

accomplish complicated tasks. With that in mind, we 

proposed a high-level (conceptual) on-site autonomous 

construction robotic framework that combines CV and 

ML techniques (Figure 1). 
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3.1 Localization 

We propose to fulfill the autonomous localization 

function by using SLAM algorithms, such as V-SLAM 

(RGB-sensor, Inertial Measurement Unit), and Laser-

SLAM (Kinect) and point cloud segmentation to map and 

reconstruct the dynamic environment into virtual models. 

This allows to set up the position of execution by using 

augmented markers or manual selection. 

For path planning in real-world on-site construction, 

robots should be able to work on large construction sites 

to fulfill different functionalities such as climbing, 

getting across holes, and balancing on uneven surfaces. 

The controllers for that involve complex analytical 

manipulation of the dynamics, which requires lots of 

extra effort to program. Reinforcement algorithms seem 

to be a good fit for more complex robotic applications 

that allow real-time environment feedback with less error 

while providing robust control for localization. 

3.2 Workpiece recognition and selection 

The proposed framework uses a combination of 

model registration techniques and sensing techniques to 

find the right materials to use and the installation position 

of the workpiece. BIM and CAD models are used by 

previous research to conduct the matching between a pre-

designed plan to the material in use. With relation to the 

virtual models created in the localization subsection, the 

reconstructed VR models of the environment can also 

help with the matching of the real-world materials with 

desired models and provide feedback on the construction 

process. In general, the next step to recognize and select 

materials is set up manually with much effort of 

commanding. In the conceptual framework, with a 

predefined dataset of materials to use in the designed 

structure (i.e., stereo images, edge detection, laser 

scanning), the robots could automatically recognize the 

materials required through deep neural networks. Even 

though they are in different shapes or different locations, 

the robots could tell them apart in different classes. The 

matching process can provide state and action feedback 

for robots to generate the execution plan in order to get 

the required materials when constructing a complicated 

structure composed of different materials.

 

Figure 1. Conceptual on-site autonomous construction robotic system

3.3 Task execution and planning 

For the autonomous execution and planning of tasks, 

there is no doubt that a combination of robotics and 

reinforcement learning will be very relevant. Some 

simple tasks (e.g., laying bricks, tying rebar, installing 

doors), could be done by current computation capacity 

and frameworks developed. With the information of the 

environment extracted from the previous step of mapping 

and information of material, we can describe the state of 

the robot and task. Then algorithms can be developed 

with a predefined reward policy to tell the robot what the 
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demanded motion or execution is. Commonly used is the 

deep neural network-reinforcement learning framework 

or inversed reinforcement learning, which can teach the 

robot to search for the right policy when the environment 

and state evolve. This can greatly decrease the human 

interaction with the robot(s) during construction. Besides, 

the proposed framework allows for the advancement of 

multiple robots to do the construction at the same time on 

the same tasks with future development. 

4 Conclusions and outlook 

Robotic systems have the potential to provide 

numerous advantages to the construction industry. This 

paper summarizes and discusses some of the techniques 

and algorithms that could be used to develop autonomous 

on-site construction robots further. Based on that, we 

propose a generic conceptual framework that can fulfill 

the whole construction process with minimal human 

interaction. We suggest using computer vision 

techniques and point clouds with an advanced algorithm 

to detect, identify, and reconstruct components in the 

construction environment. The framework aims to train 

the robot to understand the environment and identify the 

task and allocated materials in construction sites. Besides, 

the framework involves virtual reality models to extract 

and deliver information to robots for simulation and 

training, which not only guarantees the best solution for 

construction tasks but also allows the monitoring and 

controlling process to ensure that the motion and 

execution of the robots are executed as planned. At the 

same time, we propose reinforcement learning to train 

robots to learn like humans so that they can learn from 

previous errors and the results from previous iterations 

conducted during the simulation. 

However, there are still some big challenges in the 

implementation of the proposed framework. First, the 

complexity of the construction site could produce noise 

to the robotic system, which will greatly influence the 

efficiency and accuracy. Second, the calculation capacity 

of the algorithm is not advanced enough to finish a 

complicated task. Techniques and algorithms are still in 

development and require extra effort to test and improve. 

Third, the implementation from the virtual world to the 

real environment could result in unexpected differences. 

To solve this problem, more advanced sensing techniques 

and more accurate models need to be generated in order 

to make sure the accuracy of the simulation process. 

Future work includes testing the efficiency of the 

proposed framework using a robotic arm to build-up 

specific applications with computer vision techniques 

and reinforcement learning algorithms. We will develop 

and test schemes on mapping and reconstruction of real-

world construction environments into virtual models. 

Tests will be conducted on construction materials from 

simple shape to irregular shape, as well as from single 

category to multi-categories. Based on this, we will train 

the robot to generate its own execution plan, from a single 

task to complex works that involve multiple tasks. To 

account for scalability, a multi-agent-based framework 

that allows several robots to collaborate will be 

considered. 
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