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Abstract – 

The automated generation of geometry-only 

digital twins of Overhead Line Equipment (OLE) 

system in existing railways from point clouds is an 

unsolved problem. Currently, this process is highly 

reliant upon manual inputs, needing 10 times more 

labour hours than scanning the physical asset. The 

resulting modelling cost counteracts the expected 

benefits of the digital twin. We tackle this challenge 

using a novel model-driven method that exploits the 

highly regulated and standardised nature of railways. 

It starts by restricting the search for OLE elements 

relative to point clusters of the railway masts. The 

resulting point clusters of the OLE elements are then 

converged with various parametric models of 

different catenary configurations to verify the 

presence of OLE elements and to find the best 

possible fit. The method outputs a geometry-only 

digital twin of the OLE system in Industry 

Foundation Classes (IFC) format. The method was 

tested on an 18 km railway point cloud and achieves 

overall detection rates of 93.2% F1 score for OLE 

cables and 98.1% F1 score for other OLE elements. 

The accuracy of the generated model is evaluated 

using distance-based metrics between the ground 

truth model and the automated model. The average 

modelling distance is 3.82 cm Root Mean Square 

Error (RMSE) for all 18 km data.  

Keywords – 

Overhead Line Equipment (OLE); Geometric Digital 

Twin (gDT); Point Cloud Data (PCD) 

1 Introduction 

Cost overruns are a worldwide phenomenon for 

railway projects, irrespective of the size and the contract 

value. The average cost overruns account for 29% 

projects’ engineer estimates for rail and road projects in 

Europe and the United Kingdom (UK) [1], [2]. For 

example, the London Docklands Light Rail project is 

currently overrunning by over £1 billion in costs and 

three years [3] in duration. These cost and time overruns 

are common partly due to the absence of Information 

and communications technology (ICT) sector-level data 

management for construction/upgrade and maintenance 

of railways. Specifically, the absence of any form of a 

digital representation of railways caused by the 

extensive time required for collecting and processing 

raw data into working models makes it challenging to 

upgrade railways.  

We argue that the need to create and maintain up-to-

date digital twins of railways is an opportunity that 

should not be missed. Digital twins are expected to 

bring significant benefits to time, cost and quality 

parameters of railway projects [4]. These benefits 

include an 80% reduction in time, 10% through clash 

detection and 40% elimination of unbudgeted change 

[5], [6]. Yet, the current cost of creating and 

maintaining the digital twins greatly counteracts the 

perceived benefits of the digital twin. The non-canonical 

shapes in railways require 95% of the total modelling 

hours for manual shape customisation and fitting 

processes [7]. The automation of the twinning process 

will reduce the modelling time and ultimately save costs. 

We presented a method for generating railway masts as 

a first step to tackling this challenge [8], which also 

presented a method for removing the majority of the 

vegetation and other noise data from the input Point 

Cloud Data (PCD). The current paper addresses the next 

step; a method to automatically generate Geometric 

Digital Twin (gDT)s of railway Overhead Line 

Equipment (OLE) systems from airborne LiDAR data. 

2 Overhead Line Equipment (OLE) 

We define the following components as OLE 

elements (Figure 1).  

• Connecting beam - Connects two masts of the same

pair together.

• Contact cable - Transmits power to the train by a

pantograph. They lie in the lowest height among all

overhead cables and shall not be placed less than

5.8 m from the ground [9]. The contact cable runs

in a zig-zag path above the track to avoid wearing a
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groove in the pantograph. The zigzag known as the 

‘stagger’ - is generally achieved using ‘pull-off’ 

arms attached to the support structures. 

• Auxiliary cable – Placed between the catenary and

contact cables, functions as a buffer and reduces the

fluctuation of the cables.

• Catenary cable - Supports the contact cable and

located immediately above auxiliary cables.

• Cantilever - Consists of horizontal and vertical

metal tubes, connects catenary cables to masts. It

supports the catenary projecting from a single mast

on one side of the track.

Figure 1. OLE elements 

3 Research Background 

3.1 Contact, Auxiliary and Catenary Cables 

The process of converting PCD into gDTs of cables 

involves three steps: (1) Extraction of cable points, (2) 

Clustering single cable points, and (3) 3D cable fitting. 

Methods for cable extraction and clustering include: (1) 

Statistical analysis of PCDs based on height, density or 

number of pulses, etc. [10]–[14] (2) Hough transform 

and clustering based on two-dimensional (2D) image 

processing [11], [15], [16] (3) Supervised classification 

based on metrical and distribution features between 

points [13], [17]–[19]. Verification of detected cables is 

performed using a simplified model to fit into detected 

cables in the planar horizontal view [20] or by the usage 

of the Random Sample Consensus (RANSAC) 

algorithm combined with intensity values [21] or a 

polynomial function to fit the model [22]. We review 

each of these for cables in both railways and roads. 

3.1.1 Statistical Analysis of PCDs Based on Height, 

Density or Number of Pulses 

Jwa and Sohn [23] converted the cloud into voxels 

and detected cables using the linearity of the element. 

The method also used point density and segmentation 

analysis to differentiate roof edges, fences and other 

linear assets from cables and to group the points into 

catenary and contact cables. However, their method 

highly depended on the point density and the size of the 

voxel. The method did not work well when the cloud 

had data gaps, vegetation encroachment, and bundled 

cables. Cheng et al. [10] used a similar approach 

following KD trees and a polynomial function for 

clustering and 3D model fitting. The main limitation 

was they ignored the sagging posture of cables. Also, 

the method was influenced by frequent occlusions by 

trees or buildings, ambient conditions such as the 

temperature and the ageing of spans. The high detection 

and clustering accuracies were also attributed to the 

high point density of the data.  

Zhu and Hyyppa [11] used statistical analysis 

considering height, point density and histogram 

thresholds and image processing methods to extract 

cables considering geometric properties. However, the 

thresholds highly relied on the point density and their 

dataset had a clear cut-off edge between cables and trees. 

In the majority of cases, OLE cables are not located at a 

distance away from the surrounding trees and other 

pole-like objects. A similar approach was used in Guan 

et al [14] to differentiate road and off-road points and to 

extract power-transmission cables/power tower points 

from the latter, followed by the extraction of individual 

power-transmission cables via Hough transform and 

Euclidean distance clustering. Finally, a 3D object 

fitting was done using linear and hyperbolic cosine 

functions. However, the method was sensitive to the 

point density of their PCD and did not work well for a 

different point cloud. Following previous methods, 

Cserép et al. [13] used height analysis to filter ground 

points and then used intervals along a selected axis with 

a point counter assigned to each interval to remove 

outliers. Finally, the method extracted cable points 

using using a density analysis and 3D voxels. Yet, their 

method could not reconstruct those cables into 3D 

models as the density algorithms removed some cable 

points as well.  

3.1.2 Hough Transform, and Clustering Based on 2D 

Image Processing 

Liu et al. [15] used statistical analysis and an improved 

Hough transform [24], to segment and to detect cable 

points. However, the thresholds were sensitive to the 

point density of the PCD and further work is needed to 

map the detection results to original 3D data and fit the 

curves to cable points. The method used in Sohn, Jwa 

and Kim [16] segmented cable points using Markov 

Random Field (MRF) classifier, which classifies power 

cables from other linear assets. The locations of pylons 

were used to detect cable span, within which cables are 

modelled with catenary curve models in 3D using the 

piecewise model growing. Yet this method assumed that 

the cables were parallel. 

Contact cable

Mast

Cantilever

Connecting 

beam

Catenary 

cable

Auxiliary cable
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3.1.3 Supervised Classification Based on Metrical 

and Distribution Features between Points 

Kim and Sohn [17] used Random Forests classifier 

as a supervised classification method to detect five key 

object classes which include cables, pylons, building, 

vegetation and low objects. They used 2D Hough 

Transform to 2D points of cables obtained by projecting 

3D points onto a horizontal plane. A similar approach 

has been used in Wang et al. [19] by filtering cables 

using the height relative to the other objects. Then, the 

multi-scale spherical neighbourhoods are used to 

capture the anisotropy and details of cable topology 

structure. Next, metrical and distribution features were 

used to enhance classification accuracy. Finally, using 

Support Vector Machine (SVM) they classified cable 

points. However, both methods were unable to perform 

well when cables become the only object of interest as 

all the feature-based classifiers were highly attributed to 

the five class objects they considered. Furthermore, 

these methods only classified but not reconstructed 3D 

models of any of the class objects.  

Following the same classification process, Guo et al. 

[18] used an improved RANSAC algorithm that

includes similarity detection. A powerline between a

span was segmented into neighbourhood cubes. Then

the points within the cubes were projected onto planes

to detect the similarities amongst the planes. At last,

they detected cables using the inliers selected by

RANSAC. However, the accuracy of the method was

sensitive to the sparseness of the data and did not work

well for a different point cloud. For instance, if there are

few or no points on the cables,  data are classified as

vegetation by default. Also, cables were split into

several pieces or categorised as false negatives when

parts of the cables are being obscured by vegetation or

when there were few points along a section of the line.

3.2 Cantilevers and Connecting beams 

There are only two methods exist that detect 

cantilevers from PCD in Pastucha [25] and Rodríguez et 

al. [26] and no methods exist that detect connecting 

beams. In Pastucha [25], the method used the pattern of 

the points; a cross above the track to indicate the 

presence of cantilevers using RANSAC algorithm. All 

model points are classified as the catenary system in the 

case of positive authentication. Yet, the high detection 

rates were attributed to the trajectory of the mobile 

scanner and the density of the PCD. Besides, all the 

geometrical distances and properties of the objects 

should be manually entered by the end-user. Rodríguez 

et al. [26] detected points of cantilevers using a range 

search algorithm to filter the highest set of points 

relative to the points on the catenary cable. However, 

they could not validate the method since the data set 

was too small, so it only contained one cantilever. 

3.3 Gaps in Knowledge 

Cable scene complexity including data gaps, 

vegetation encroachment [11], [18], and bundled cables 

affected the accuracy of the results of the existing OLE 

elements detection methods [10], [23], [26]. Majority of 

methods were sensitive to the size of the voxels used 

[23], the setting of thresholds, point density [10], [11], 

[14], [15], [18] and to ambient conditions such as the 

temperature and the ageing of spans [10]. A few studies 

disregarded the sagging of the cables [10], while some 

assumed cables as a set of small straight-line segments 

[13], [23] and that cables are always parallel [16]. These 

methods were unable to distinguish cables from other 

straight lines such as building roof edges, fences and 

tree stems [23]. Also, these methods did not perform 

well when reconstructing 3D models of OLE elements 

as the initial filtering removed some of the OLE 

elements points as well [13]. Finally, one of the 

methods used to detect cantilevers considered a very 

small dataset which only contains one cantilever and the 

method did not contain any validation process [26]. 

OLE elements are very thin, hence often represented 

with few or no points. The detection of OLE elements is 

a very hard problem also due to the presence of 

vegetation. These factors render the methods discussed 

for OLE elements detection ineffective. Also, the gDT 

generation for OLE systems in existing railways is 

almost missing in the literature.  

4 Proposed Solution 

4.1 Scope 

Our method focuses on typical double-track railways 

that represent 70% of the existing and under 

construction railways in the UK [27]. Railways are a 

linear asset type; therefore, their geometric relations 

remain roughly unchanged often over very long 

distances. Close inspection of railway PCD validates 

this effect, with repeating geometrical features such as; 

(1) the special relations between masts, cables and the

rails remain fairly unchanged along the railway [9], (2)

the connections between masts and the cables are placed

in regular intervals (roughly 50-70m intervals), (3) the

main axis of the masts (Z-axis) is roughly perpendicular

to the track direction (X-axis) (error tolerance is 11o [9])

and (4) masts are always positioned as pairs throughout

the rail track.

4.2 Overview 

It is often the case that there are few to no points on 

the OLE elements in a railways PCD due to the small 
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size of the cables compared to the size of the asset. This 

is expected and likely to occur no matter what scanning 

technology is used. This creates obstacles that hinder 

the robustness of OLE elements reconstruction. We 

argue that the strengths of model-driven strategies 

(providing fast geometrical models without visual 

deformations [28]) are strong in the scenarios with very 

low point densities meaning the model-driven methods 

can create the gDTs of OLE elements despite poor 

densities and sparseness of the PCD. Hence, our method 

proposed a fitting of pre-defined parametric assemblies 

to the point segments obtained using previously sorted 

mast position coordinates [8]. This proposed method is 

a re-iterative method throughout the track; it exploits the 

railway geometric relations mentioned in section 4.1 

and railway topology as key factors. The workflow of 

the proposed method is illustrated in Figure 2.  

Figure 2. The workflow of the proposed method 

4.3 Extract Point Clusters of OLE Elements – 

Model A 

4.3.1 Point Clusters of Other OLE Elements – C 

Sections 

Initially, we extract point clusters of the OLE system 

includes two railway masts, the connecting beam and 

the cantilever. This unit is hereafter known as ‘C 

section’. We use a crop box filter to extract the point 

segment of the C section. The crop box filter 

automatically extracts all the data inside of a given box, 

by removing any points that lie outside the specified 

range along the specified field.  

In our proposed method we have set three fields, 

which refer to intervals along the X, Y and Z directions. 

The limits are defined relative to the mast coordinates 

so that the filter extracts any points according to the 

given direction and the limits. Specifically, the X range 

is experimentally set to 1.0 m in the direction along the 

track length. This range has been set relative to the X 

coordinates of masts to include the width of the mast 

allowing 0.7 m of a buffer window. The Y range is the 

distance between two masts of the same pair, calculated 

using Y coordinates of the two masts and the 

experimentally set buffer window of 0.6 m, in the 

direction along the track width. The Z range is 

experimentally set to 9.5 m (height of the mast) in the 

direction along the mast. We have experimentally 

eliminated 0.23 m from the ground plane to remove 

ground points as it would suffice to extract the C section 

without shortening the mast. In this paper, we haven’t 

illustrated the graphs representing calculations for these 

parameters due to limited space. This finally gives 

resulting point segments of C sections along the track. 

4.3.2 Point Clusters of Cables 

We use an improved RANSAC algorithm to extract 

point clusters of cables. The method starts by 

determining Bounding Boxes (BB) using mast position 

coordinates along the track to crop the input PCD such 

that the resulting pieces are relatively straight enough 

for any further processing. The general RANSAC could 

not detect cables as lines due to few or no points on the 

cables.  

Hence, we initially up-sampled the points on cables 

to improve line detection. The up-sampling was done 

along the track direction (Figure 3) with defined 

intervals along either side of the actual points. The track 

direction is not constant along a particular direction due 

to the varying horizontal and vertical elevations along 

the track. To determine the track direction prior to up-

sampling, we calculate the range between minimum and 

maximum of X and Y values of each BB and sort the 

general track direction along the X-axis if the X range > 

Y range and vice versa (Figure 4).  

Figure 3. Upsampling along the track direction 

Next, we use two pre-processing steps prior to the 

RANSAC algorithm to improve line detection and to 

reduce the computational cost. 

START
Mast position coordinates + Narrowed 

railway  PCD

Step 1: Extract point clusters of C sections of OLE 

elements (Masts, Connecting beam and Cantilever)

Step 2: Extract point clusters of cables

Step 3: Generate dynamic IFC models of OLE elements

Input/Output
Model A – Point clusters of OLE elements 

Model B – IFC OLE elements

Step 4: Convergence of Model A and Model B;

i. Sort the correct version (left or right) of the model B

ii. Align the sorted Model B in the correct position

iii. Get the transformation matrices

Input/Output Model B + transformation matrices

Step 5: Use transformation matrices to move Model B 

to the correct position + Merge all elements into one .ifc 

file

END IFC model of the OLE system elements

Red – Actual points

Blue - Up sampled points along 

the track direction

Catenary/Contact cable
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Figure 4. Determining general track direction 

Firstly, we remove the ground plane to eliminate all 

ground points. This ensures all points on the ground are 

removed prior to further calculations. This significantly 

reduces the points for faster computational performance 

and reduces the number of false positives that would be 

caused by the lines on the ground. Secondly, we get the 

XY projection of the cloud. This allows projecting the 

catenary shapes of the catenary and auxiliary cables into 

straight lines so that RANSAC can detect those cables 

despite its curved shape. We then detect cables as lines 

using RANSAC and classify cables based on the heights 

of the lines relative to the track structure. The detected 

cables along with the previously extracted C sections 

are hereafter known as ‘Model A’. 

Figure 5. Point clusters of OLE elements – Model A 

4.4 Generate Dynamic IFC Models of the OLE 

System 

We design a parametric OLE system model; 

hereafter known as ‘Model B’ using standard railway 

electrification guidelines [9] to represent the geometry 

of the real OLE elements. This model preserves 

geometrical properties of the elements, such as angles 

between the different elements, relative distances 

compared to each element of the system. The model 

developed during this research is much simpler 

compared to the real OLE system as the model is 

limited only for the elements defined at the beginning of 

this paper. This limited number of elements simplifies 

the task of adjusting the model while the resulting 

model is still suitable to reconstruct the geometric shape 

of the OLE system.   

The orientation of Model B constantly changes from 

left to right along the track due to the stagger occur in 

the OLE system. However, this alignment might change 

if the track is not perfectly straight so that we cannot 

assume the orientation of the model. Hence, we have 

created 10 variations of Model B, compatible with the 

left and right versions of the 5 types of the OLE 

configurations exist in UK railways [9]. Figure 6 

illustrates only one of those configurations due to the 

limited space. Note that on the actual model, two of 

these configurations (from the same type) are connected 

with cables. 

Figure 6. The left-to-right orientation of one of the OLE 

configurations 

We define each of the OLE elements using extruded 

area solid definition in IFC format. We use the standard 

cross-sectional dimensions given on Network Rail 

standards [9] to define the 2D area profile for each 

element. The extruded area solid defined the extrusion 

of a 2D area; here defined as the section profile, by two 

attributes. One is the extruded direction, defining the 

direction in which the profile is to be swept. The other 

attribute is the distance over which the profile is to be 

swept. For each OLE element, we define these distances 

using either standard height (for masts) or length (for 

Direction of the track     X

Y

X
Direction 

of the 

track

Y

1st pair of masts 2nd pair of masts

1st pair of masts

2nd pair of masts

X range > Y range

Y range > X range

Yellow – C sections

Red – Cables

Model BMast 1

Mast 2

Connecting beam

Cantilever Beam 

AM2

Cantilever Beam 

AM1

Cantilever Beam 

UR
Cantilever Beam 
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Cantilever Beam 

YM2

Mast 1 

coordinates

X1,Y1,Z1

Mast 2 

coordinates

X2,Y2,Z2
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every other OLE element). The extruded direction and 

relative angles are derived considering the position and 

the orientation of each element relative to mast positions. 

4.5 Convergence of Model A and Model B 

Iterative closest point (ICP) algorithm aims to find the 

transformation between a point cloud and its reference 

cloud, by minimizing the square errors between the 

corresponding entities. We use this algorithm to 

converge Model B to Model A. Initially, we set Model 

A as the reference cloud; is kept fixed while the left and 

right orientations of Model B are source clouds. We first 

convert Model B into .pcd files and then these source 

clouds are transformed to find the best match with the 

reference – Model A. The ICP iteratively revises the 

transformation of Model B to minimize the distance to 

the Model A, such as the sum of squared differences 

between the coordinates of the matched pairs. Hence, by 

using ICP we first sort the correct orientation (left or 

right) of OLE configuration as the correct orientation 

ideally has the minimum sum of squared differences 

between the coordinates of the target and reference 

clouds. Once we sorted the correct orientation, our 

method then converges the sorted model on to the 

correct position and finally gives transformation matrix 

which provides the corresponding translation vector and 

rotation matrix of the Model B (model) relative to 

Model A (point cluster). Finally, we moved .ifc format 

of the Model B to the correct position using the 

resulting transformation matrices of the previous step 

and finally merged all units (including two C sections 

and cables) into one file to get the final IFC model of 

the OLE elements. 

Figure 7. The convergence of Model A and Model B 

5 Experiments 

5.1 Ground Truth Data and Results 

We used the rail track located in-between 's-

Hertogenbosch and Nijmegen in the Netherlands and 

specifically a piece of the railroad track that is 

approximately 18 km long, to test our proposed method. 

The size of this file was over 100 GB hence too large to 

process with the machines available in terms of 

processor and memory capacity. We address this 

challenge by splitting the data file into three sub PCDs 

as D1, D2 and D3 each length around 6 km. We also 

manually generated two sets of Ground Truth (GT) 

datasets consist of three sub-datasets each per one 

railway PCD;  

GT A: This set is created by manually extracting 

point clusters of C sections and cables along the rail 

track. They are used to compare against the 

automatically detected point clusters of OLE elements. 

GT B: The set is created by manually creating the 

OLE systems models. They are used to compare against 

automatically generated gDTs of OLE elements. 

We implemented the solution with the Point Cloud 

Library (PCL) version 1.8.0 using C++ on Visual Studio 

2017, in a laptop (Intel Core i7-8550U 1.8GHz CPU, 16 

GB RAM, Samsung 256GB SSD). 

Table 1 illustrates the results of the point cluster 

extraction and Figure 8 demonstrates the results of the 

automated gDTs compared to GT B. The detection of 

OLE elements needed an average of 35 seconds per km. 

Generation of dynamic IFC models and conversions 

took 16 seconds per km, while the convergence required 

51 seconds per km. Finally, the transformation only 

took 0.2 seconds per km. Hence, the processing time of 

the proposed method was on average 103 seconds/km. 

6 Evaluation 

6.1 Evaluation of point cluster extraction 

We used performance metrics; precision (Pr) and 

recall (R) and F1 score (F1) as; True Positive (TP) - 

OLE elements were correctly detected as OLE elements, 

False negatives (FN) - OLE elements were not detected 

as OLE elements and False Positives (FP) - other 

objects were detected as OLE elements, to measure the 

performance step 1 and 2. The average detection 

accuracy for C sections was 98.1% F1 score and for 

cables 93.2% F1 score (Table 1). 

6.2 Evaluation of the OLE system gDTs 

We used cloud-to-cloud (C2C) distance evaluation to 

detect changes between GT B and the automated ones. 

Initially we converted the GT B and the automated 

gDTs into .pcd files. Then we computed the Root Mean 

Square Error (RMSE) between each unit of automated 

gDT of OLE elements (consists of two C sections and 

cables) and corresponding GT B model (Figure 8). The 

average model distance between the two for all 18 km 

was 3.82 cm RMSE. 

Before convergence 

Purple – Model A

Yellow – Model B

After convergence 

Purple – Model A

Yellow – Model B
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7  Conclusions 

This paper presents a novel automated model-driven 

method that exploits the highly regulated and 

standardised nature of railways to generate gDTs of 

OLE elements for existing railways from PCD. 

Compared to existing methods, the proposed method is 

more consistent, less liable to human errors. The method 

was tested on an 18 km railway point cloud and 

achieves overall detection rates of 98.1% (F1 score) and 

93.2% (F1 score) for point cluster detection of C 

sections and cables respectively. The accuracy of the 

automated gDTs of OLE elements was evaluated by 

minimising the mean Euclidean distance between the 

ground truth model and the automated one. The average 

RMSE of the model for all 18 km equals to 3.82 cm.  
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