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Abstract –  

Collisions between workers and operating 

vehicles are the leading source of fatal incidents in 

the construction industry. One of the most prevalent 

factors causing contact hazards is the decline in 

construction workers’ auditory situational 

awareness due to the hearing loss and the 

complicated nature of construction noises. Thus, a 

computational technique that can augment the 

audible sense of a worker can significantly improve 

safety performance. Since construction machines 

often generate distinct sound patterns while 

operating at the construction sites, audio signal 

processing could be an innovative solution to achieve 

the goal. Unfortunately, the current body of 

knowledge regarding automated surveillance in 

construction still lacks such advanced methods. This 

paper presents a newly developed auditory 

surveillance framework using convolutional neural 

networks (CNNs) that can detect collision hazards by 

processing acoustic signals in construction sites. The 

study specifically has two primary contributions: (1) 

a new labeled dataset of normal and abnormal sound 

events relating to collision hazards in the 

construction site, and (2) a novel audio-based 

machine learning model for automated detection of 

collision hazards. The model was trained with 

different network architectures, and its performance 

was evaluated using various measures, including 

accuracy, recall, precision, and combined F-measure. 

The research is expected to help increase the 

auditory situational awareness of construction 

workers and consequently enhance construction 

safety. 
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1 Introduction 

According to the Occupational Safety and Health 

Administration (OSHA), the annual fatality rate in the 

construction industry in the United States is relatively 

high compared to that in other industrial sectors [1]. 

Most of these fatalities occurred when workers being 

struck by a construction vehicle. This is because the 

nature of construction sites often includes potential 

hazards during the situation that construction workers 

and heavy mobile equipment are in proximity [2]. The 

critical factor leading to collision hazard was reported as 

the decline in auditory situational awareness of 

construction workers due to the hearing loss [3] and the 

complicated nature of construction noises [4]. Therefore, 

a novel audio-based technique that can augment the 

audible sense of a worker needs to be developed to 

improve safety performance. 

The use of advanced computational techniques in 

auditory signal processing for hazard detection is 

motivated by strong acoustic emissions coming from 

hazardous situations. Hence, it is possible to extract 

much useful information from sounds at job sites. For 

example, construction machines often produce unique 

sound patterns while performing certain activities [5], 

[6]. Moreover, the detection of acoustic events is further 

complicated by the heterogeneous sound types of 

construction equipment operations generated from 

diverse working environments [7], [8]. In this case, the 

detection tends to fall under the categorization of 

construction equipment-related activities. Therefore, 

abnormal acoustic events that can cause collision 

hazards are classified as mobile equipment, and normal 

acoustic events are identified as stationary equipment. 

This is especially the case when one of the most 

common causes of construction accidents was “struck 

by moving vehicles” [9]. Thus, such auditory 
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surveillance of potential accidents would significantly 

improve construction safety.  

However, sound sensing in the construction field for 

safety has received little attention from the academic 

community in the past decade. A majority number of 

related studies were only focused on tracking various 

activities of construction equipment to reduce operating 

costs and the identification of working and operation 

activities [5], [6], [10], [11]. To address these existing 

issues, we propose a novel audio-based machine 

learning model for automated detection of collision 

hazards at construction sites. The study specifically has 

two primary contributions: (1) a new labeled dataset of 

normal and abnormal sound events relating to collision 

hazards in the construction site, and (2) a CNN model 

for automated detection of collision hazards. 

The remainder of this paper is organized as follows: 

Section 2 surveys recent related work on the 

applications of auditor surveillance, and the use of CNN 

for the detection of abnormal events; Section 3 

describes the novel audio-based machine learning model 

for automated detection of collision hazards; Section 4 

describes the setup of an experiment in which we 

compare the performance of CNN across various 

datasets; Section 5 discusses the results of this 

experiment; and, finally, Section 6 summarizes the 

paper and proposes directions for future work. 

2 Related Work 

Auditory surveillance technologies in the 

construction industry help support the construction 

industry’s safety performance since lack of excellent 

visibility was the principle factor leading to fatalities [1]. 

However, there is still a lack of such research in the 

field. Most of the sound-based surveillance technologies 

were only focused on monitoring construction work 

activities and equipment operations. For instance, a 

hybrid system for recognizing multiple construction 

equipment activities was proposed [11], and a 

supervised machine learning-based sound identification 

algorithm was implemented to enhance construction site 

activity monitoring and performance evaluation [12]. A 

few studies attempted to develop new approaches for 

conducting an audio-based event detection system for 

safety, but some limitations still existed. Experimental 

trials were designed to deploy sensing technology to 

provide alerts to proximity detection when heavy 

construction equipment and workers are in close 

proximity [2]. Nonetheless, the devices were installed 

on construction equipment only, not equipped on 

construction workers. Another approach using a 

machine learning algorithm can categorize sound events 

and make construction workers aware of possible safety 

risks and hazards [7]. Still, the sound data relating to 

collision hazard was only collected from a particular 

worksite. Such an approach is restrained because the 

sounds emitted by the equipment from various 

construction sites may differ. To address the gap, there 

is a need to investigate the surveillance approach to 

detect collision hazards from the perspective of 

construction workers using the sound collected from 

multiple construction sites. 

Auditory surveillance has been extensively applied 

for the detection of abnormal events in various contexts 

and achieved promising results even in environments 

with complicated noises. For instance, some researchers 

developed a technique for detecting shouting events in a 

real-life railway environment [13]. Additionally, efforts 

have been made focusing on the detection of crimes in 

elevators [14], and the detection of human emotions 

based on verbal sounds during hazardous situations in 

public spaces [15], [16]. Other researchers also 

implemented signal processing for the surveillance of 

healthcare facilities, including a system for medical 

telesurvey [17], and a framework that detects older 

adults’ falls [18]. 

Previous machine learning approaches to recognize 

and classify the auditory events typically used 

conventional machine learning models such as Gaussian 

Mixture Models (GMM) [19], [20],  Hidden Markov 

Models (HMM) [12], [21], [22], and Support Vector 

Machine [11], [18], [23]. However, those techniques 

have been proved to underperform deep learning 

methods, such as Deep Neural Networks (DNN), in a 

variety of tasks for sound classification [24]-[26]. 

Recently, several studies have used a more complex 

architecture of DNN, such as Convolutional Neural 

Networks (CNN), for audio classification [27]–[30]. In 

sound processing, CNN can learn filters that are shifted 

in both time and frequency so that it can cover 

numerous input fields [29]. It was also found that the 

performance of CNN networks for signal classification 

is highly regulated by the optimum number of 

convolutional layers [28], [30]. CNN models can also be 

trained with a back-propagation mechanism that 

consists of two processes, including the pattern creation 

process and the testing process [31]. Motivated by these 

recent impressive performances in auditory surveillance, 

we applied CNN to the detection of hazard collisions in 

raw audio. 

3 Novel Audio-Based Machine Learning 

Model for Automated Detection of 

Collision Hazards  

Hereby, we present an innovative framework using 

supervised deep learning for sound detection associated 

with the recognition of mobile equipment. This 

framework is based on processing audio signals 
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generated at construction jobsites. The overall process, 

including three main steps, is illustrated in Figure 1. 

First, audio files are collected and labelled as abnormal 

and normal types. Then, acoustic features are extracted 

using the Fast Fourier Transform (FFT) function. Those 

features are the input of the CNN model, which is 

trained on the labelled data to detect acoustic events. 

 

Figure 1. Overall flowchart for automated detection of 

collision hazards 

3.1 Labelled Data 

Given the goal of creating an audio event detection 

of collision hazards, we need to define the set of events 

the system should recognize. Thus, the sound sources 

originated from construction equipment-related 

activities need to be classified as a set of classes. This 

set of classes will allow us to collect labelled data for 

training and evaluation. Since the occurrence of 

abnormal sounds is an essential indicator of dangerous 

situations requiring quick safety responses, collected 

sound events are labelled into normal and abnormal 

types. 

3.2 Feature Extraction 

This step aims to extract the acoustic features in both 

time and frequency domains from audio signals by 

using different extraction functions. In this work, the 

most commonly used Mel-Frequency Cepstral 

Coefficients (MFCCs) are extracted by the FFT. They 

are mainly used to depict the spectral envelope in a 

significant number of audio processing applications. 

Through feature extraction, the components of the 

sound signals that are good for identifying the sound 

contents are recognized. In other words, the feature 

extraction process transforms the raw signals into 

feature vectors in which specific properties of audio 

signals are emphasized.  

To obtain MFCCs from a discrete audio signal, the 

audio signal undergoes a pre-emphasis process, where 

the extraction function FFT is employed to convert the 

signal to the frequency domain. Then, the spectrum of 

the frequency domain is fed into mel-filter banks. Each 

filter has a center frequency called the filter bank 

energies. This compression operation makes the 

acoustic features match more closely to what humans 

hear. In the following step, the Discrete Cosine 

Transform (DCT) is applied to filter bank energies. The 

output coefficients of DCT are called Mel Frequency 

Cepstral Coefficients (MFCCs). It is worth noting that 

only 13 MFCC coefficients are extracted in our work, as 

recommended in several studies in sound classification 

[32]–[34]. This is because the higher MFCC coefficients 

represent fast changes in the filter bank energies, and it 

turns out that these fast changes actually degrade sound 

classification performance. The MFCCs extracted from 

the sound signal are stored as an array of values. The 

vertical axis represents the number of MFCCs 

calculated in order and the horizontal axis represents the 

number of frames available. 

3.3 Convolutional Neural Network 

After the feature extraction is completed, the CNN 

model is developed for sound detection with the array of 

the MFCC values as the input. The deep CNN 

architecture proposed in this study is comprised of four 

convolutional layers, as depicted in Figure 2, followed 

by a max-pooling layer, a dropout layer, a flatten layer, 

and two fully connected layers to get the output. The 

activation function used for convolutional layers and 

dense layers is the Rectified Linear Unit, which is most 

commonly used in deep learning models. The function 

returns zero if it receives any negative input, but for any 

positive value, it returns the same amount back. The 

Softmax activation function is applied to the output 

layer. The output is a prediction of which class an audio 

belongs to. 
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Figure 2. Detailed architecture of the convolutional neural network 

The prediction is achieved through several steps in 

training the neural network. The first step is convolution, 

which is a process of taking a small matrix of numbers, 

called filter, then passing it over our input and transform 

it based on the values from the filter. Subsequent feature 

map values throughout convolution layers are calculated. 

The following steps are achieved through Max-pooling 

and Dropout layers. While the Max-pooling layer 

selects a maximum value from each region and put it in 

the corresponding place in the output, Dropout works by 

randomly setting the outgoing values to 0 at each update 

of the training phase to prevent overfitting. Then the 

shape of the data is changed from a two-dimensional 

matrix to a one-column vector, which is the correct 

format for dense layers to interpret in the last step. Each 

dense layer consists of neurons represented by nodes. 

Each node of the previous layer is connected to all 

nodes of the next layer. This connection is defined as a 

scalar value called weights. The model adjusts its 

weights by a training process called backpropagation. 

The backpropagation process can be separated into four 

distinct steps: the feedforward pass, the loss function, 

the backward pass, and the weight update. At first, the 

weights are randomized, and the feedforward pass is 

implemented. Then, the backpropagation is processed 

with a loss function. In this work, a loss function is 

represented as categorical cross-entropy, which is a 

great measure to distinguish two discrete probability 

distributions. To achieve the correct prediction, the 

amount of loss needs to be reduced. Therefore, the 

model finds out which weights most directly contributed 

to the network’s loss and adjusts the weights so that the 

loss decreases. Finally, all the weights are taken and 

updated. 

4 Experimental Setup 

4.1 Datasets 

Since the videos on YouTube, which is the most 

popular video sharing website, have become a treasure 

of data, the audio files of the dataset prepared for this 

research were extracted from this abundant source. To 

extract high-quality sounds from the videos, the authors 

avoid noisy backgrounds by using only videos that 

enable a broad view of recordings to ensure that no 

other irrelevant sound sources affect the sound quality. 

The audio files were then converted into wav format at 

44.1 kHz sampling rate, 16-bit depth, and mono channel. 

An extensive set of acoustic signals in the construction 

site were finalized, as shown in Table 1. This dataset 

consists of two classes: the abnormal class includes 

sound excerpts from nine mobile equipment, and the 

normal class includes sound excerpts from seven 

stationary equipment. The original audio files extracted 

from YouTube videos were segmented into smaller 

frames with an equal length of 3 seconds and 2/3 

overlapping. The total duration in seconds of audio files 

in each subset of the abnormal class, the normal class is 

summarized in Table 1. At this stage, the total number 

of the whole dataset is 3,629 audio files. 

Table 1. Number of original examples in each subset of 

data  

Abnormal class Normal class 

Type Total 

duration (s) 

Type Total 

duration (s) 
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Bulldozer 387 Concrete 

pumper 

180 

Grader 1185 Pile driver 174 

Front end 

loader 

558 Pneumatic 

breaker 

312 

Forklift 123 Steel 

welding 

1533 

Compactor 

roller 

855 Hammer 291 

Scraper 2712 Saw 807 

Water truck 147   

Crane 642   

 

The audio files were artificially mixed with 

background audio from two backgrounds, the wind 

noise, and the street noise. The mixture has the purpose 

of evaluating the CNN model performance to see if the 

model is more difficult to detect in one environment 

than the other. A noisy training dataset was created to 

enable the model the ability to detect acoustic events 

among noisy background. Specifically, the audio files 

were mi ed at different “signal-to-noise” ratios     s  

(-15dB, -5dB, 5dB, 15dB). As a result, two different 

datasets with wind-noise background and street-noise 

background were created. Each dataset has a total 

number of 14,516 samples. 

4.2 Model Training 

The authors trained the CNN model on each dataset. 

64% of the samples in each dataset were used for 

training, and the remaining 16% and 20% of the 

samples were used for validation and testing, 

respectively. With each dataset, the training procedure 

was stopped after 15 epochs when the good 

performance was achieved on the validation set. Various 

measures, specifically accuracy, recall, precision, and 

F1-score, are used to evaluate the sound detection 

performance. Accuracy is the number of correct 

predictions divided by the total number of predictions. 

While precision quantifies the number of positive class 

predictions that actually belong to the positive class, 

recall quantifies the number of positive class predictions 

made out of all positive examples in the dataset. F1-

score is the weighted average of Precision and Recall. 

Therefore, this score takes both false positives and false 

negatives into account. 

5 Results 

The system correctly classified almost all audio files. 

The performance of the proposed CNN model on the 

two datasets is shown in Table 2. We found that the 

CNN model performed good predictions on both 

datasets, with “wind” and “street” backgrounds. Besides, 

the results show that the ability of the model to detect 

collision hazards is affected by different acoustic 

environments. As can be seen that the accuracy of the 

model slightly varies across the different acoustic 

scenarios, with 98.  % and 97. 9% in the “wind” and 

“street” scenarios, respectively. This concludes that the 

model detects the abnormal sounds relating to collision 

hazards better in the wind-noisy background with no 

missed “abnormal” detection  the precision of “normal” 

detection = 1.00).  

Table 2. Measures for the performance of the proposed 

CNN model on each dataset  

Dataset Wind background Street background 

Class 
Ab-

normal 

Norm

al 

Ab-

normal 
Normal 

Precision 0.98 1.00 0.97 0.99 

Recall 1.00 0.96 1.00 0.93 

F1-score 0.99 0.98 0.98 0.96 

Accuracy 98.52% 97.49% 

6 Conclusion and Future Work 

In this paper, the authors applied a machine learning 

technique for automated detection of collision hazards. 

The presented framework was tested using multiple 

audio files collected from YouTube videos, and the 

results are profound. As the first stage of this research 

project, we found that the proposed CNN model trained 

on two datasets accurately recognizes sound patterns of 

sounds from mobile equipment. 

The limitation of this research is that the model was 

not developed to work on more sorts of background 

noises provided that a construction site is considered as 

noisy workplace. Besides, the system could not capture 

the localization of mobile equipment provided that a 

mobile vehicle moving toward a worker is a risk and a 

mobile vehicle moving away the worker is considered 

as safety. As the plan for future research, the authors 

intend to develop a model that can operate across 

different noise backgrounds, such as rain and ocean 

wave sounds or the noise from people talking, and 

consider the factor of localizing the sound source. This 

work is a great start to build more realistic models that 

can work on detecting collision hazards under the 

complicated nature of construction noises. 
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