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Abstract – 

Bridge designs are typically governed by a 

voluminous set of requirements in various design 

standards and codes. The requirements are aimed at 

ensuring the structural safety against different 

environmental risks experienced by a bridge facility 

during its service life. The requirements provided in 

the bridge design standards are generally 

prescriptive in nature that do not explicitly specify 

the types of risks addressed in them. As a result, the 

understanding of the risks hidden in the requirement 

text is solely associated with the individual designer 

who often lacks adequate training in interpreting the 

risks addressed in prescriptive requirements. The 

conventional practice of manual identification of 

risks encoded in the prescriptive provisions requires 

much effort, domain knowledge and may include 

human errors as well. Little attention has been paid 

towards automated identification of risks encoded in 

the prescriptive requirements. The paper presents 

an ontology-based risk decoding model to decode the 

risks implied in the prescriptive requirements. The 

risks included the earthquake, flood, wind, fire, 

vessel collision, blast loading, temperature and 

overloading. An ontology for conceptualizing the 

domain knowledge of the eight risks was first 

developed. The ontology-based decoding model 

ranks the risks for a prescriptive requirement by 

measuring the semantic similarity between the 

requirement and the risk ontology. The model was 

tested on the AASTO bridge design specifications 

and evaluated in terms of Spearman, Kendall tau 

and Pearson rank correlation test. This study is 

expected to assist the designers in the improved 

understanding of risks encoded in prescriptive 

design standards. 
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1 Introduction 

Bridge designs are generally carried out in 

accordance with a set of requirements specified in the 

design codes and standards [1]. The primary goal 

behind these requirements is to ensure the structural 

stability and durability of the bridge against several 

environmental risks [2]. The major risks experienced by 

the bridges are flood, earthquake, wind, fire, etc. In 

order to execute a safe and reliable design, the precise 

understanding of the requirements is very crucial [1]. 

The requirements currently available in the bridges 

design codes are mostly described in a prescriptive 

manner where the main intention or the objective behind 

the requirement is not clearly stated [3]. Accordingly, 

there is a need for an automated framework which can 

decode the risks hidden in the text of prescriptive 

requirements. 

The accurate decoding of the risks in the prescriptive 

requirements is very important to produce a design that 

can enable the safety of the bridge against all hazards or 

risks [4]. The prescriptive requirements are typically 

produced by the code writers with years of experience 

in the industry and research.  In addition, a detailed 

study of the past failures along with the full-scale 

testing of the proposed models are also performed while 

designing the prescriptive requirements [5]. The code 

writers only present the final criteria for the safest 

designs without providing any information regarding the 

types of risks considered while developing that criteria. 

For instance, the prescriptive requirement “The 

maximum girder spacing shall not exceed 10½ ft.” may 

fulfill the design requirements against overloading, 

earthquake, and flood but may not fulfil the 

performance required against the fire risk. Another 

requirement “The spacing of intermediate bracing shall 

not exceed 20 ft.” may achieve the goals of flood, wind, 

and earthquake risks while the fire, temperature and 

overloading risks may not be mitigated by 

implementing this requirement. However, such 

information of the risks is not provided in the 
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requirement text. Since many prescriptive requirements 

have certain limitations in terms of risks, the 

implementation of the prescriptive requirements without 

understanding the risks addressed in them may result in 

the scenarios where a few risks may be go unchecked in 

the bridge design [6]. Young engineers in the industry 

mostly lack the experience and knowledge required for 

understanding the risks encoded in the prescriptive 

requirements. The blind implementation of the 

prescriptive requirements by young engineers without 

understanding the objectives and performance level 

implied in the requirement may result in an unsafe 

design. In addition, since the objectives covered in the 

prescriptive require are not known, it is difficult in 

international construction industry to establish an 

equivalence between two different criteria stated in 

codes of two different countries [7]. Therefore, a risk 

decoding model is required that can precisely decode 

the risks encoded in the prescriptive requirements. 

The current body of knowledge lacks methods to 

address the issue of risks hidden in the prescriptive 

requirements. To fill the gap, this study has attempted to 

develop an automated ontology-based risk decoding 

model using the linguistic methods such as vector space 

models and ontologies. A detailed ontology covering the 

domain knowledge of the eight risk categories was first 

developed. The risk categories included earthquake, 

flood, wind, fire, vessel collision, blast loading, 

temperature and overloading. Following this, the trained 

vector space model and ontology were employed to 

decode and rank the risks encoded in the prescriptive 

requirements according to the semantic similarity of the 

requirement text and the risk ontology.  

2 Background 

2.1 Risks in bridge design codes 

The risks involved in the bridge design are 

controlled and mitigated by the implementation of 

requirements available in the design codes [1]. The 

bridge design codes generally include two types of 

requirements; (1) prescriptive requirements, and (2) 

performance-based requirements [8]. The prescriptive 

requirement only states the acceptable solution without 

indicating the performance level while the performance-

based requirements specifies the performance level 

required without providing any prescription or solution. 

The prescriptive requirements can further be classified 

into two categories. The first category is when the 

quantitative prescription is explicitly stated, for example, 

“The maximum girder spacing shall not exceed 10½ ft.”. 

The second type is when the relevant code or method is 

specified to be followed in design, for example, “The 

deck overhang shall be designed in accordance with 

Section 13 of the LRFD Specifications.” Since the goals 

or intention behind the recommendations in prescriptive 

requirements are not specified, the young designers 

often assume that the requirements cover all the risks. 

However, this is not the case for the prescriptive 

requirement since prescriptive requirements always 

have certain limitations as well [4]. The implementation 

of the requirement for a scenario for which is not 

designed often results in the failure in achieving the 

required performance. Therefore, the decoding of the 

risks is very important to ensure that the requirements 

are applied to the scenarios for which they are actually 

designed. 

2.2 Text processing using ontologies 

Ontologies are the knowledge representation 

methods widely used to present the domain knowledge 

shared among different systems [9]. Ontologies are 

employed to provide the background knowledge in a 

machine-readable format for the development of several 

automated systems for text classification, word sense 

disambiguation, etc. [10]. The representation of 

knowledge in the form of concepts in ontologies enables 

the reuse of the ontologies for other systems [11]. 

Concepts are the domain entities which are represented 

in a hierarchical form in ontologies. The relationships 

are used to define the type of connections between the 

different concepts and sub-concepts. Ontologies can 

also play a key role in text processing. For instance, the 

ontologies can be used to represent the features of a text 

document. The extracted features can then be used to 

classify or rank the labels using a machine learning 

algorithm [12]. In addition, ontologies can also be used 

to represent the domain knowledge of class labels. The 

developed ontologies of the labels can then be used to 

analyze the documents followed by the assigning of 

labels or ranks [13]. 

2.3 Related studies 

Several researchers have studied the limitations pf 

the prescriptive requirements, however, most studies 

have been focused on the addressing a few specific 

limitations such as design hinderance while many other 

limitations such as absence of risk information in 

prescriptive requirement have not received the equal 

attention. For instance, [14] studied the limitation of the 

prescriptive codes in addressing the fire risk. As a 

solution, the authors stressed upon the improvement of 

current prescriptive codes, ensuring their proper 

implementation along with the promoting the fire 

education. Another study by [15] highlights the 

limitations of the prescriptive codes in introducing 

innovative solutions to mitigate problems associated 

with the climate change. A five-step solution was 
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provided by the author to control the degradation of 

environment due to the use of specific materials 

prescribed in the prescriptive requirements. [16] also 

addressed the same limitation of hinderance in using 

alternative methods to improve the project performance 

in design-bid-build and design-build projects. The study 

carried out the textual analysis of the performance-

based requirements provided in the Swedish design-

build contracts. 

Prescriptive requirements in the transportation 

domain also presents the same limitation of disallowing 

the innovative solutions. Since manufacturers have to 

follow the prescriptive dimension and weight 

requirements, they cannot practice new solutions to 

reduce the road accidents. [17] suggested a 

performance-based system to address this limitation. 

The developed regulatory system requires the 

certification of vehicles as well as operators to meet the 

approval requirements. [18] highlighted the increase in 

accidents in Malaysia due to not allowing the new 

alternative methods in design to prevent the accidents. 

The author studied the limitations in the prescriptive 

codes of Malaysia and explored the potential 

opportunities of improvement by comparing it with the 

well-established performance-based specifications 

implemented in Australia. [19] also highlights the 

limitations of prescriptive requirements in dealing with 

the complex risks such as blast loading and fire.  

Many studies have investigated the limitation of 

prescriptive requirements in hindering the innovation. 

However, despite the significant importance, the 

limitation of prescriptive requirement in specifying the 

performance level or risk information have not been 

studied yet. The current study is aimed at developing an 

automated framework to decode the goals implied in the 

prescriptive requirements.  

3 Methodology 

The methodology adopted in this study comprised 

four major steps illustrated in Figure 1. Firstly, an 

ontology reflecting the essential semantic knowledge 

associated with the eight environmental risks was 

produced. Following this, a vector space model was 

trained using a domain specific corpus. The third step 

includes the computation of the semantic similarity 

scores between the requirement text and the risk 

categories. After ranking of risks according to the 

similarity scores, the model was evaluated using 

different rank correlation coefficients. 

Figure 1. Methodology of the ontology-based 

risk decoding model 

3.1 Step 1: Ontology development 

Before development of ontology, the major risks 

involved in the bridge designs were identified. Upon 

reading of the relevant published articles, following 

eight (08) major risks were identified: flood, wind, 

earthquake, fire, temperature, vessel collision, 

overloading, and blast loading. A detailed ontology to 

model all the domain specific knowledge of each of the 

eight risk categories was developed. The four steps 

involved in the ontology development are explained 

below. 

1. Identification of purpose: In the first step, the

reason behind the development of ontology was

explicitly defined. The ontology developed in this

study was aimed to decode the environmental risks

hidden in the prescriptive requirements.

2. Identification of concepts and sub-concepts: The

second step involved the identification of all

concepts and sub-concepts related to each of the

eight risk categories covered in this study. The

bridges design codes and published articles were

used to identify the concepts and sub-concepts. For

instance, ‘liquefaction” and ‘cyclic loading” is

related to earthquake, so these concepts were

present under the earthquake category in the risk

ontology.

3. Identification of relations: The third step is aimed

at defining the relationships between the concepts

and sub-concepts in the ontology.

4. Ontology modeling: Finally, the concepts and sub-

concepts were modeled in the protégé tool to

produce the final ontology.

Figure 2 illustrates a partial ontology of a risk 

category “flood’. The ontology of a risk category 

mainly shows the essential semantic knowledge 

associated with the risk category in a hierarchical form. 

As shown, all the sub-concepts below a particular sub-

concept provides additional information regarding the 

upper concept. The higher concepts are the abstract ones 

while the lower concepts in the ontology provides 

detailed knowledge of the upper concepts. Each of the 

eight risk categories has a different number of sub-

concepts below it in the ontology depending on the 

semantic knowledge required to present the risk 

category. 
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Figure 2. Partial ontology of risk category ‘flood’ 

3.2 Step 2: Vector space model development 

Several bridge design codes, standards and the 

published articles were collected to build a vector space 

model to learn the semantic meanings of the technical 

terms used in the design codes. The design codes of ten 

different state department of transportation (DOT) as 

well the U.S. DOT was employed to develop the corpus 

for the training of vector space model. The tables and 

equations were excluded from the corpus since they are 

not supported by the natural language processing (NLP) 

methods. The final corpus used in the training process 

comprised a total of approximately 1 million words. The 

domain-specific corpus was pre-processed by 

implementing the following NLP methods; (1) 

Lowercasing: The complete corpus was converted into a 

lowercase format to consider similar meaning words 

such as “Cracking” and “cracking” as one word. (2) 

Tokenization: The whole corpus was transformed into a 

sequence of tokens where a token could be a word, a 

number or a punctuation. (3) Lemmatization: 

Lemmatization was performed to convert different 

grammatical forms of a single word into the root form, 

for instance, “cracks”, “cracked”, and “cracking” was 

converted to the root word “crack”. 

After pre-processing of the corpus, the wor2vec 

algorithm was applied to build a vector space model. 

Both architectures of the word2vec including 

continuous bag-of-words (CBOW) and hierarchical 

skip-gram algorithm were applied [20]. Both algorithms 

have reported comparable performance in the literature 

[20]. The whole vocabulary in the corpus was presented 

on a high-dimensional vector space where each unique 

word holds a unique vector. The distance between the 

vectors on vector space indicates the semantic similarity 

between the corresponding words. The training of the 

vector space model includes the tuning of several 

parameters such as window size (number of co-

occurring words examined in analysing the semantic 

meaning of a word), vector dimensionality (dimensions 

of each word vector), frequency threshold (minimum 

frequency of a word  required to include the word in the 

training process). Different values of the vector 

dimensionality ranging from 300 to 1200 were tested in 

this study to determine the optimal value. The window 

size and frequency threshold considered in all the 

experiments were 10 and 1 respectively. 

3.3 Step 3: Decoding of the risks hidden in 

prescriptive requirements 

The risk decoding approach adopted in this study is 

the similarity-based. The similarity scores indicating the 

semantic similarity between the requirement text and 

the risk ontology were first determined. Based on the 

similarity scores, the risks encoded in the requirement 

were ranked in the descending order of relevance. The 

details of the two steps are provided as follows.  

3.3.1 Measurement of the similarity scores 

The trained vector space model was employed to 

compute the similarity score of each term in the 

requirement and each concept in the ontology. Cosine 

similarity function was applied for the computation of 

similarity scores. Cosine similarity computes the angle 

between the two vectors where a smaller angle shows 

higher similarity between the corresponding words. The 

detailed risk ontology and the prescriptive requirement 

were provided as input to the risk decoding model 

where the semantic similarity between each word of the 

requirement and each concept of the ontology were 

computed using the trained vector space model. After 

similarities calculation, the similarity values of all terms 

in a requirement with a specific concept were then 

summed up to get the total similarity value for the 

requirement with that specific ontology concept. Since 

the current study is focused on the decoding of risks 

which are present at the level 1 of ontology, the 

similarity scores at the level 1 of ontology are 

determined by adding the similarity scores of all the 

concepts below that level 1 concept. Each level 1 

concept includes a different number of concepts below 

it in ontology, therefore, the total similarity values are 

normalized by the frequency or number of nodes below 

each level 1 node of ontology. The mean normalized 

method was applied to compute the total similarity score 

at the level 1 of ontology. Eq. 1 was used for the 

computation of mean normalized scores. A total of eight 

mean normalized scores were obtained where each 

value corresponds to the total semantic similarity score 

of the requirement with a specific level 1 concept. 

𝑚𝑒𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =  
∑ (∑ 𝑠𝑡𝑐

𝑇
𝑡=1 )𝑁

𝑛=1 𝑘

𝑁

(1) 

Where stc indicates the semantic similarity score of 

the term ‘t’ in the requirement and concept ‘c’ in the 

ontology, ‘T’ indicates the total number of terms in a 

specific requirement, ‘N’ indicates the total number of 

concepts below a level 1 concepts in ontology. 
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3.3.2 Ranking of the risks 

Once the total similarity scores of a requirement 

with the eight risk factors at level 1 of ontology are 

calculated, the risk factors are ranked in descending 

order of relevance. The risk category revealing the 

highest total mean normalized score was assigned the 

rank 1 while the remaining categories are ranked from 2 

to 8 according to the total similarity scores. 

3.4 Step 4: Model evaluation 

The risk decoding model was evaluated on a test 

dataset of 151 prescriptive requirements. The test 

dataset was manually labeled with the ranks of risks 

according to the content of the requirement. The 

performance of the model was evaluated using different 

rank correlation tests including Spearman, Kendall tau 

and Pearson rank correlation tests (as shown in Eq. 2-4). 

The rank correlation value shows the level of agreement 

between the actual ranks and the predicted ranks. A 

value of 1 indicates a complete agreement while a value 

of -1 indicates a complete disagreement between the 

two sets of ranks.  

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 𝑟𝑠 =  1 −  
6 ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛3 − 𝑛

(2) 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑡𝑎𝑢 = 𝑟𝑘 =
2

𝑛(𝑛 − 1)
(|𝐶| − |𝐷|) 

(3) 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 = 𝑟𝑝 =
𝑛 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2  √𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)2

(4) 

where ‘xi’ and ‘yi’ are the ranks of a risk category ‘i’ 

in group 1 and 2, ‘n’ indicates the number of predefined 

risk categories, ‘C’ is set of concordant pairs, and ‘D’ is 

set of discordant pairs. 

4 Results and Discussion 

This section presents the results of the experiments 

carried out to evaluate the performance of the risk 

decoding model. Two different architectures of the 

word2vec such as CBOW and skip gram algorithm were 

used to compute the semantic similarities of the 

requirement terms and the ontology concepts. For each 

algorithm, four vector space models were developed 

using a different value for vector dimensionality ranging 

from 300 to 1200. The window size and minimum 

threshold value of 15 and 1 respectively were same in 

all the experiments. 

Table 1 presents the results of the risk decoding 

model using the CBOW algorithm for the similarity 

computation. The results show that performance of the 

model was increased with the increment of vector 

dimensionality until 900. The performance was 

decreased as the value of vector dimensionality was 

further increased from 900 to 1200. The highest 

spearman, Kendall tau and Pearson correlation 

coefficient of 0.30, 0.23, and 0.29 was achieved with the 

vector dimensionality of 900 whereas the lowest 

spearman, Kendall tau and Pearson correlation 

coefficient of 0.24, 0.19, and 0.23 was achieved with the 

vector dimensionality of 300. 

Table 1. Performance of the ontology-based risk 

decoding model using CBOW algorithm for similarity 

computation 

Vector 

dimensionality 

Spearman Kendall 

tau 

Pearson 

300 0.24 0.19 0.23 

600 0.29 0.22 0.28 

900 030 0.23 0.29 

1200 0.26 0.20 0.25 

Table 2 presents the results of the risk decoding 

model using the skip gram algorithm for the similarity 

computation. The same trend as previously seen with 

the CBOW was observed with the skip gram as well. 

However, unlike CBOW, the performance of the skip 

gram model did not change significantly while varying 

the value of vector dimensionality. A minor increment 

has been observed till vector dimensionality of 900, 

however, a decrease in performance was observed for 

higher values. The skip gram also revealed the highest 

Spearman, Kendall tau, and Pearson correlation 

coefficient of 0.64, 0.51, and 0.63 respectively at the 

vector dimensionality of 900. Among the two word2vec 

algorithms, the performance exhibited by the skip gram 

was almost twice better than that achieved by the 

CBOW algorithm. 

Table 2. Performance of the ontology-based risk 

decoding model using skip gram algorithm for 

similarity computation 

Vector 

dimensionality 

Spearman Kendall 

tau 

Pearson 

300 0.63 0.51 0.62 

600 0.62 0.50 0.61 

900 0.64 0.51 0.63 

1200 0.63 0.51 0.62 

4.1 Model performance for different risk 

categories 

The performance of the model in terms of each risk 

category was further investigated using the best model 

of skip gram for similarity computation. Figure 3 shows 

the mean deviation of the predicted ranks from the 

actual ranks. As shown, the risk categories such as 

‘temperature’ and ‘fire’ performed the best among the 

eight categories. For temperature, the mean deviation of 

0.23 shows that the model predicts the correct rank for 
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temperature category most of the times. No risk 

category exhibited a mean rank deviation of above 2 

which proves the adequacy of the model.  

Figure 3. mean deviation of the predicted ranks 

from actual ranks 

5 Conclusion 

Bridge design are performed according to the 

requirements presented in the design codes and 

standards. However, the requirements are mostly 

prescriptive in nature where the main objectives or risks 

addressed in the requirements are not clearly specified. 

As a result, the designers often face challenges in 

estimating the limitations and performance level implied 

in the prescriptive requirements. The study has 

produced an automated framework using the vector 

space models and ontologies which can decode the risks 

encoded in the prescriptive requirements.  

An ontology covering the domain specific 

knowledge associated with the eight risk categories was 

first developed. In addition, a vector space model was 

trained on a corpus of approximately 1 million words 

using the CBOW as well as skip gram algorithm. The 

model was validated on the unseen prescriptive 

requirements extracted from the AASHTO bridge 

design specifications. The experiments revealed that the 

skip gram algorithm performed better than the CBOW 

algorithm. The performance exhibited by the skip gram 

algorithm was double than the performance achieved by 

the CBOW algorithm. Moreover, the performance was 

found to be increasing with the increment in the size of 

word vector dimensions till 900, however, the 

performance was decreased for higher vector 

dimensionality values. The overall highest Spearman, 

Kendall tau, and Pearson correlation coefficient of 0.64, 

0.51, and 0.63 respectively was reached by the skip 

gram model for the similarity computation at the vector 

dimensionality of 900. Comparing the risk categories, 

the ‘temperature’ category performed the best where the 

model predicted the correct rank in most cases. The 

model showed the mean rank deviation of 0.23 for the 

temperature category while the highest mean rank 

deviation of 1.84 was exhibited by the ‘vessel collision’ 

category.  

The study has certain limitations in terms of 

performance. The current model uses the simple mean 

method to compute the total semantic similarity. In 

future, the authors will investigate different averaging 

methods such as weighted average and Bayesian 

average for the computation of the total similarity scores 

to examine the improvement in performance. A 

threshold analysis by setting of a threshold value to 

exclude the similarity scores of the irrelevant concepts 

may also improve the performance of the model. In 

addition, the authors will develop a larger dataset for the 

training of vector space model to examine if the 

performance can be improved by using a large dataset. 
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