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Abstract – 

      Automation of construction machinery has the 

potential to improve efficiency and safety during the 

construction process. However, most construction 

machinery is directly teleoperated limiting the control 

to a single paradigm. Moreover, the abundance of non-

linearities due to the design of pumps, valves and the 

interaction of different actuators complicates planning 

precise movements. Complicated motion planning 

optimization can be applied to program the movement 

in the desired manner which often requires a model 

representing the system dynamics. Whereas this 

approach is promising, modeling the system dynamics 

is a formidable task. In this work, we present a 

framework that uses a probabilistic approach to learn 

movements from expert demonstrations. In this way, 

efficient movements can be learned without explicitly 

estimating system dynamics. Here, efficiency is defined 

by the experiences of the human operator which makes 

the programming able to benefit from existing 

knowledge of operators. The performance of the 

proposed scheme is evaluated with a real demolition 

machine BROKK 170. 
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1 Introduction 

Currently, remote-controlled hydraulically driven 

construction machinery is of great importance and 

mainly used on construction sites. However, local 

accuracy is often limited in remote-controlled systems 

due to the interface (for example 2D camera feedback). 

Moreover, it is challenging for the operator to generate 

optimized motions with a remote controller since the 

operator can only see the appropriateness of the motion 

only when it is already executed. As a result, manual 

work is still mostly preferred on construction sites. 

Sequentially, automating construction machinery has 

already drawn much attentions over the last years [1–5]. 

The common goal in automating construction machinery 

is to generate accurate motions in an automated way 

under various conditions (outdoor conditions, dirty and 

dynamic environments) to fulfill given tasks. 

In particular, the automation of machinery can be 

regarded as controlling the end-effector in the desired 

manner. In automated machines, a precise movement is a 

key part, however, there are several difficulties in 

automating hydraulic construction machinery arising 

from the abundance of non-linearities due to the design 

of pumps, valves and fluid flow [6]. A common approach 

is the design of dynamics-based control, which typically 

uses a model for the system to be controlled to predict 

system states and develop a controller minimizing the 

discrepancy between the predicted and measured system 

states. Although this model-based control shows 

promising results in many researches [7, 8], modeling 

system dynamics can be often challenging due to its 

nonlinear characteristics. Moreover, force sensors 

required for force control are not standard components of 

construction machinery, since the system is designed to 

be directly controlled by human operators [9]. Hutter et 

al. [10] achieved joint torque control based on feedback 

from pressure sensors integrated into servo valve. 

However, it is common that pressure sensors are not 

installed in each valves but only in the main valve due to 

economic reasons [11].  

On the other hand, with the advent of research 

advances in robotics, robotic systems with a large 

number of degrees of freedom were developed [12, 13]. 

Subsequently, Programming by Demonstration (PbD) 

has drawn the attention of many researchers [14–15], 

since it allows to program a robot just by showing the 

desired manner of performing tasks. In contrast to 

traditional motion planning methodologies, this approach 

offers an intuitive and less time consuming alternative for 

non-experts to teach a robot skill [16-18]. Popular 

approaches for encoding the demonstrations in a way that 

can be used for motion planning include Dynamic 

Movement Primitives (DMPs) and Gaussian Mixture 

Regression (GMR). 

Our work concentrates on mitigating the 

aforementioned issues in automating construction 

machinery by utilizing the recent methodology from 

robotics. More precisely, we aim at replacing the time-

consuming model-based motion programming of 

hydraulic construction machinery by an automatic 

programming process: Programming by Demonstration. 

In this paper, we present a framework that learns a direct 
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joint motion mapping from expert demonstrations. This 

learned mapping so-called policy allows to reproduce 

joint space motions under different environmental 

conditions while non-linearities in the hydraulic system 

are handled by utilizing experiences of the human expert 

in operating the system.  

2 Previous work and challenges 

In our previous work [19], we presented a 

teleoperated demolition machine BROKK 170 that has 

been retrofitted with controllers, so that one can also 

program its motion with high-level commands. Although 

the experiments from our previous work showed the 

feasibility that proven construction machinery can be 

adapted and accept advances from robotic to extend its 

capability, we identified that a Cartesian controller solely 

based on encoders is not sufficient to enable accurate arm 

control. As depicted in Figure 1, the machine was not 

able to follow the given trajectory without any error. The 

main error source is the unstable system pressure. The 

hydraulic machine BROKK 170 used in our work 

consists of one main pump supplying volumetric flow for 

the whole system. This flow is used in each control 

valves to move actuators and returned into the tank. 

During this circulation, flow losses are raised by partially 

closed or opened valves, bent pipes, expansions or 

contractions. A generic joint position level controller 

such as an Inverse Kinematics (IK) solver rapidly reaches 

its limits, since it typically takes the desired (x, y, z) 

values as input and outputs the corresponding joint 

configuration without considering the non-linearities in a 

hydraulic system. 

We aim at overcoming the aforementioned issue by 

demonstrating basic movements to the machine. Using 

prior experience and trainings, expert human operators 

can create more controlled motion with the hydraulic 

system than IK-based motion controller. By capturing the 

operator’s behavior to overcome the non-linearities of the 

system, we aim at improving the accuracy in planning of 

the motion. 

Figure 1. Tracking result using an IK solver based 

framework 

3 Manipulator Control 

The manipulator control can be formulated as finding 

proper joint space configurations 𝒒 ∈ ℝ𝑁  given an

operational space description 𝒙 ∈ ℝ𝑀 ,where N  is the

number of degree-of-freedoms (DoF) of the machine and 

M is the operation dimension. As depicted in Figure 2, 

the operational space 𝒙 and joint configuration 𝒒 of the 

demolition machine can be described as:  

𝒙 =  [𝑥 𝑦 𝑧 𝜃]𝑇  ∈ ℝ4 (1) 

𝒒 =  [𝑞1 𝑞2 𝑞3 𝑞4 𝑞5]𝑇 ∈ ℝ5 (2) 

The mapping problem can be formulated as: 

�̇� = 𝑱(𝒒)�̇� (3) 

where 𝑱 ∈ ℝ𝑀 × 𝑁is the Jacobian matrix. To obtain the �̇�
out of the relation in (10), we use the closed loop inverse 

kinematic (CLIK) approach introduced in [20]. However, 

as described in the previous section 2, this analytical 

method does not consider non-linearities in a hydraulic 

system causing a discrepancy between the estimated and 

real motion. To address this problem, we employ a 

probabilistic approach based on Gaussian Process 

Regression (GPR) first to learn policies from expert 

demonstrations and program the manipulator by 

reproducing the learned policies under different 

environmental conditions.   

3.1 Closed-loop inverse kinematic controller 

For manipulators with N > M, the inverted Jacobian 

matrix can be obtained as follow: 

𝑱+ = 𝑱𝑇(𝑱𝑱𝑇)−1 (4) 

The pseudo-inverse has the property to provide the best 

possible solution according to the equation 𝑱�̇� = �̇� . If �̇� 

is not in the range of 𝑱 , an exact value of �̇�  is not 

available. However, the provided �̇� still minimizes the 

magnitude difference of 𝑱�̇� = �̇�  [21]. By using this 

property and closed-loop behavior in CLIK, the 

convergence to the desired �̇�  can be ensured. The 

equation from (3) can be formulated as follows: 

�̇� = 𝑱+(�̇� + 𝑲𝒆) (5) 

where 𝑲 ∈  ℝ𝑀×𝑀 is a positive definite gain matrix and

𝒆 ∈ ℝ𝑀×1 is the remained difference between the desired

and actual motion. The CLIK controller is further 

extended with damped-least squares for achieving 

robustness in the vicinity of singularities [21] and with 

weighted least norms for joint limits [22].  
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Figure 2. Joint geometric representation of the 5 degree 

of freedom BROKK 170. The joint space coordinates are 

noted in blue, whereas the operational space coordinates 

are in black. The joint positions are noted in red. 

3.2 Gaussian Process Models 

GPR is a non-parametric method for regression that 

models a joint distribution of the observed data without 

directly modeling a regression function[23]. By 

assuming the existence of 𝑚  demonstration, each 

demonstration can be described as 𝐷 = {𝜉𝑖 , 𝑦𝑖}𝑖=1
𝑛 . Here,

𝜉  denotes the environmental information, such as the 

temporal value, 𝑦 refers to the observations such as the 

trajectories in the joint space that 𝜉 should be mapped to 

and 𝑛 denotes the length of the demonstration. 

In GPR, the distribution of observations can be 

modeled as follows:  

[
𝑦
𝑦∗] ~ 𝒩 (0, [

𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])
(6) 

where 𝐾 is the kernel matrix defined as follows: 

𝐾(𝑋, 𝑋)  ∈  ℝ𝑀×𝑀, 𝐾𝑖 ,𝑗 = 𝑘(𝜉𝑖 , 𝜉𝑗)

𝐾(𝑋∗, 𝑋)  ∈  ℝ1×𝑀,  𝐾1,𝑗 = 𝑘(𝜉∗, 𝜉𝑗)

𝐾(𝑋, 𝑋∗)  ∈  ℝ𝑀×1, 𝐾𝑖 ,1 = 𝑘(𝜉𝑖 , 𝜉∗)
𝐾(𝑋∗, 𝑋∗)  ∈  ℝ,        𝐾 = 𝑘(𝜉∗, 𝜉∗)         (7) 

A key parameter in GPR is the kernel function denoted 

as 𝑘(∙,∙) in (2). It encodes the structure of functions in the 

space of distributions. In this work, the squared 

exponential kernel function is employed: 

 𝑘(𝑥1, 𝑥2) =  𝜎𝑓
2 𝑒𝑥𝑝 (−

1

2𝑙2
(𝑥1 − 𝑥2)𝑇(𝑥1 − 𝑥2))     (8)

The goal of GPR is to predict the joint motion 𝑦∗

conditioned on the new environmental information 𝝃∗

and the observed information from the demonstrations. It 

is assumed that noises 𝜎𝑛 from process and measurement 

are identically distributed within demonstrations. In this 

case, the joint distribution of  𝑦∗ can be described as:

𝑦∗|𝑦, 𝐷 ∼ 𝒩 (µ∗, 𝛴∗) (9) 

where 

  µ∗ =  𝐾(𝑋∗, 𝑋)(𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 )−1y (10) 

 𝛴∗ =  𝐾(𝑋∗, 𝑋∗) + 𝜎𝑛
2𝐼

−𝐾(𝑋∗, 𝑋)(𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼)−1𝐾(𝑋, 𝑋∗)

(11) 

The performance of GPR depends on so-called hyper 

parameters [ 𝜎𝑛, 𝜎𝑛, 𝑙 ] which can be defined by 

maximizing the marginal log likelihood [23]. We use 

GPflow to model GPR and also to estimate the 

parameters [24]. 

Using these equations, the proposed controller 

generates joint trajectories based on expert human 

demonstrations which indicate the operator maneuvers 

we would like to apply to the manipulator.  

3.3 Programming by Demonstration 

Framework 

During demonstrations of different lengths, the 

sensor information is collected and stored as training 

input-output pairs. The mapping from the input to the 

output is called a policy and is modeled from equations 

(6) - (11), so that the model can predict a new output

based under different input conditions based on the

learned policy.  In our work, multiple demonstrations of

different lengths are used to model the policy.

Accordingly, the time alignments of the demonstrated

trajectories are normalized using Dynamic Time

Warping (DTW) method [25].

Suppose we have 𝑚  demonstrations with BROKK 

170, then the demonstrations are normalized to the length 

𝑇. The data set 𝐷 for the  GP will be of length 𝑛 =  𝑚𝑇. 

Thus, the data set can be formulated as 𝐷 =
{𝜉𝒊, 𝑦𝑖   } | 𝑖 = 0, … , 𝑚𝑇.

In our training phase, policies are created with respect 

to the initial joint states 𝑞 and the temporal value. In our 

experiments, we use simple timestamp 𝑡 as the temporal 

value. More precisely, joint angle values are collected 

and stored during an expert demonstration, where the 

expert controls each joint to move the end-effector tip 

straight forward. Policies are created with respect to these 

collected values so that new trajectories in the joint space 

can be generated for the new initial joint angle values and 

the timestamps. 

In the reproduction phase, a new initial starting point 

is defined with joint angle values. Together with the 

timestamps, the initial joint angle values are used as input 

for the trained Gaussian process models.  

In the evaluation phase, the predicted trajectories are 

directly tracked with a fixed maximum joint speed. The 
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resulting end-effector trajectory is obtained by 

computing the forward kinematics relationship and 

compared with the end-effector trajectory generated by 

the CLIK solver. 

4 Experiment 

We demonstrate our framework on a hydraulic 

demolition machine BROKK 170. Originally, the 

BROKK 170 demolition machine is designed to be 

controlled with a remote controller in a strict master-

slave relationship limiting the control to a single 

paradigm. To control the machine with computation 

algorithms and integrate computational capabilities in the 

machine control, we follow the approach introduced in 

[19].  

Our host PC interacts with the main control unit 

(MCU) of the machine through a bus controller 

MCP2515 and an embedded controller Mega2560. The 

communication takes place via the Controller Area 

Network (CAN) bus system. The bus protocol containing 

information about bus messages is obtained from the 

manufacturer. The script is developed in C++ on the host 

PC and then compiled and deployed to the embedded 

controller via Arduino IDE.  

In this work, the kinematics of the machine and the 

shape of each axes are assumed to be known, so that the 

joint angles are enough to describe the full configuration 

of the machine, in particular the end-effector pose. Like 

most other construction machines, BROKK 170 used in 

this work is not equipped with any sensors. We use wire-

type encoders (BCG05, SICK) to measure the joint angle 

values 𝑞2, 𝑞3, 𝑞4, 𝑞5 and a rotary encoder (A3M60, SICK)

to measure 𝑞1 . The joint angle values are separately

measured and sent to the host PC via Wi-Fi-Modules 

ESP8266 at a rate of 20 Hz. UDP packets are used for 

data exchange between the Arduino IDE and the 

proposed controller developed in Python. 

The experiment consists on moving the manipulator 

straight forward from the initial point which requires 

structured joints movement. Moreover, the non-

linearities of the hydraulic system complicate the task, so 

that trajectories generated by a conventional IK solver 

result in poor quality, as depicted in Figure 4. Throughout 

the experiments, the base 𝑞1 is not used, since the

trajectories for the given task lie within the 𝑥𝑧-plane. The 

second axis 𝑞2  is also not utilized in our experiment,

since it cannot be simultaneously moved with other axes 

in the current setup. 

Figure 3. The task considered in this work: By moving 

the joints q3, q4 and q5 with joysticks the operator tries 
to end-effector tip straight forward. 

For the given task, the environment conditions are the 

initial joint positions and the timestamp, 𝝃 = 
{(𝑞3_𝑜, 𝑞4_𝑜, 𝑞5_𝑜, 𝑡𝑖)|𝑖 = 0, … , 𝑇}. The joint trajectories

are used as observations, 𝑦 = {(𝑞3_𝑖, 𝑞4_𝑖 , 𝑞5_𝑖)|𝑖 = 
0, … , 𝑇} . Three demonstrations are performed under 

various initial positions, as shown in Figure 4. Since the 

execution time for demonstrations slightly differs The 

demonstrations are of different lengths. We order these 

demonstrations according to their length:  

𝐷𝑚−1 < 𝐷𝑚 < 𝐷𝑚+1  (7) 

Using the median length sequence �̅� = 𝐷⌈2⌉  as a

reference demonstration, the rest of the demonstrations 

are aligned in the time domain using DTW. The result of 

the DTW is illustrated in Figure 5. The thick trajectories 

represent the reference trajectories estimated as described 

above. It can be clearly seen that the temporal variations 

in the demonstrations are synchronized after the DTW 

process. 

We perform trajectory planning with a new initial 

joint values [𝑞3_𝑜, 𝑞4_𝑜, 𝑞5_𝑜] =  [−0.547, 1.107, 1.016].
The reproduction of the expert’s demonstrations with 

respect to the new condition is visualized in Figure 6. It 

is worth noting that the step size for each joint trajectory 

is empirically estimated. The resulting end-effector 

trajectory is visualized in Figure 5. Since the effect from 

the non-linearities in the hydraulic system increases with 

the joint angle speed, we evaluate the developed system 

with two different joint angle speed: �̇�𝑚𝑎𝑥 = 0.11 𝑟𝑎𝑑/𝑠
and �̇�𝑚𝑎𝑥 = 0.07 𝑟𝑎𝑑/𝑠.
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Figure 4. Three demonstrations for the given task in 3D 

Cartesian space (a). During the demonstrations different 

initial joints angles are considered. The resulting end-

effector tip positions are visualized with ‘x’ signs. The 

demonstrations are reproduced for the new initial joints 

angles (blue ‘+’ signs). The corresponding end-effector 

tip trajectories are visualized in (b) and (c) by computing 

the forward kinematic relationship (blue). The red 

trajectories are generated using the CLIK solver. 

Figure 5. Results of collected trajectories in the joint 

space before (left) and after (right) the DTW process. The 

thick lines in the right plots represent the reference 

trajectories.   

To quantify the correctness, first, the end-effector 

position is computed using the forward kinematic 

solution with the reproduced joint trajectories. Then, the 

desired end-effector trajectory (i.e. from the given initial 

position straight forward) is uniformly resampled with 

the total number of data points on the computed end-

effector trajectory. Finally, the RMS error between the 

computed and planned end-effector trajectories in the 

operational space is computed. 

Figure 6. The black trajectories show the collected values 

from the demonstrations. The blue trajectories show the 

reproduction attempt by considering the new condition 

[𝑞3_𝑜, 𝑞4_𝑜, 𝑞5_𝑜] =  [−0.547, 1.107, 1.016]. It can be 

clearly seen that the joint 5 𝑞5 is mainly used in the 

demonstration and this policy is preserved in the 

reproduced trajectories.  

The same task is executed using the CLIK solver and 

the results are compared with the tracking results from 

the developed GPR based system. For the given task, the 

RMS errors of the CLIK solver are 0.027 m at the 

maximum joint angle speed of 0.07 rad/s and 0.039 m at 
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the maximum speed of 0.11 rad/s, respectively. Whereas 

the reproduced trajectories result in 0.016 m and 0.025 m, 

respectively.  

Table 1. RMS error comparison in tracking task 

Max. Speed RMSE 

CLIK 0.07 rad/s 0.027 m 

GPR 0.07 rad/s 0.016 m 

        CLIK      0.11 rad/s 0.039 m 

GPR 0.11 rad/s 0.025 m 

The end-effector tip trajectories generated by both the 

CLIK solver and the proposed system are visualized in 

Figure 7. We see that the trajectory from the CLIK solver 

deviates from the desired trajectory, whereas the 

deviation is smaller by the trajectory that is generated 

from expert demonstrations.  

Figure 7. Results with both the reproduction from expert 

demonstration (blue) and from the CLIK solver (red). 

The desired trajectory is visualized with dashed line. 

5 Discussion 

In the experiments, the dimension of environmental 

conditions was set to four. Because of the low 

dimensionality, the policy of controlling a nonlinear 

hydraulic system could be modeled and reused to 

generate an appropriate end-effector trajectory using a 

relatively small number of expert demonstrations.  

The proposed approach presents advantages by 

directly providing reference trajectories in the joint space. 

Compared to the inverse kinematic approach which 

typically generates joint motion without considering the 

non-linearities in a hydraulic system. As a result, the 

discrepancy in Figure 7 occurred which is increased 

according to the increased joint angle speed. During the 

demonstrations the expert corrects the joint motions 

according to the effect generated by the non-linearities in 

the hydraulic system. More precisely, the expert takes 

into account that he cannot perfectly move multiple axes 

at the same time and adapt the axes motion according to 

the resulting non-linear motion. By reproducing 

trajectories in the joint space considering this policy we 

slightly improve the tracking result. The captured policy 

that the joint 5 𝑞5 should be mainly utilized for the given

task is valid for the faster joint angle speed, thus 

improving the tracking result as shown in Table 1.   

However, as the GPR models the joint distribution of 

the observed data, the learned policy is only valid in the 

range of given demonstrations. Although the expert can 

demonstrate to cover the great area of workspace to 

reduce the uncertainty in the prediction caused by 

unforeseen environmental conditions. An efficient 

approach which can apply the existing demonstrations 

for the unforeseen conditions should be studied.  

6 Conclusion 

This study presented a framework for generating 

trajectories based on expert demonstrations. This work 

showed an alternative to programming a teleoperated 

construction machinery without a dynamical model. The 

experiment showed the preliminary performance of the 

proposed scheme. The expert demonstrations were 

normalized in the time domain using DTW and the 

mapping between the environmental conditions and the 

joint trajectories was modeled using GPR. By learning 

the mapping between the exact joint trajectories and the 

initial joint positions, the policy from a human expert 

could be learned so that a specific joint can be mainly 

utilized to perform the given task. The proposed scheme 

was implemented in a teleoperated deconstruction 

machinery, and the performance of the developed system 

was tested through preliminary experiments showing 

improved results compared to the inverse kinematic 

approach. Experimental results indicate the feasibility of 

construction machinery automation using generalizing 

the human demonstrations. 

Future work will consider the use of Reinforcement 

Learning to equip the machine with self-improvement 

abilities. As shown in Figure 4, it was even for an 

experienced operator a challenging task to move the tip 

of the end-effector straight forward, since the operator 

can only see the appropriateness of its joystick 

manipulation after the machine has moved. We also aim 

at extending our framework to dynamic environmental 

conditions, since in this work only static conditions such 

as the initial joint angle values are considered. 
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