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Abstract – 

Spotting indications of unsafe human behaviour, a 
leading cause of an accident, is critical in providing a 
safe workspace. Among factors affecting human 
behaviour, stress and overload are the most 
significant ones, where limited knowledge exists on 
their underlying causes. Tracing physiological signs 
caused by stress and overload might be a feasible 
approach in detecting a specific neurological status 
leading to unsafe human behaviours, such as 
disobeying safety rules, standards, and instructions. 
In this paper, we present a deep learning technique to 
recognize distinctive neurological status by assessing 
physiological signals such as temperature and heart 
rate. An open database of non-EEG physiological 
signals was used to train and test the model. The 
database includes electrodermal activity, 
temperature, acceleration, heart rate, and arterial 
oxygen level signals of 20 healthy subjects through 
relaxation, physical, emotional and cognitive 
activities. A robust automated pattern recognition 
method, using deep learning, was used to predict and 
identify stress and overload. The experimental results 
indicate that the model can detect neurological status 
with higher accuracy than the traditional 
classification-based methods. 
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1 Introduction 
Despite the ongoing safety studies and policy 

recommendations in construction, the extent of injuries is 
still significant. Based on the Canada Work Injury, 
Disease, and Fatality Statistics from Association of 
Workers’ Compensation Boards of Canada 
(AWCBC/ACATC 2018)[1], each year, around 200 
people die in construction sites. There are about 28000 
time-loss injuries in construction-related accidents. The 
number of Canada’s fatalities in 2018 shows that the 

construction industry has the highest number of fatalities 
among all sectors and accounts for almost 20 percent of 
the reported fatalities. So, improving safety and 
discovering the leading causes of accidents are still 
considered significant contributions to the construction 
industry. 

In Eskandar et al. 2019 [2], three major categories of 
social, physiological, and cognitive human factors that 
influence the safe behaviour in construction were studied 
to guide future research around improving safety in 
construction. From a physiological perspective, stress 
and overload presented to have a high-level association 
with unsafe behaviour among construction workers, 
which motivated many researchers to detect stress in the 
work setting. 

Stress can be described as the response of the body to 
the pressures on the human nervous system [3], which 
have been measured through subjective tests and 
questionnaires to collect individual responses [4], [5]  .
Moreover, stress can be measured through variations in 
human physiological features such as heartbeats, body 
temperature, and respiration [6]–[8]. With the advances 
in wearable biosensors and real-time data collection, 
many researchers focused on the physiological effects of 
stress on the human body to build a stress detection 
model. Several supervised learning algorithms were 
employed to detect stress and overload by detecting 
patterns of stored physiological signals during 
experiments.  

Below, we first look at the stress and overload of 
construction workers and relevant physiological 
information that could guide their identification. Then a 
deep supervised learning model is proposed to classify 
different stress-inducing neurological states by 
processing physiological signals. 

2 Stress and Overload 
Stress (including physical and psychological) is among 
the contributing factors that lead to unsafe behaviour [9], 
[10]. Examples of stress factors in construction setting 
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were presented as (1) physical stressors like noise, 
vibration, lighting, boredom, fatigue, cold or heat, and (2) 
social psychological stressors like fear, uncertainty, 
anxiety, mental overload, and time pressure [10]–[13]. 
Overload as an essential stressor that affects human 
behaviour was selected to focus on due to the nature of 
manual work in a construction environment that causes 
workers to exceed their capacity of handling the job.  
 
Tracking symptoms of stress and high mental overload 
with multiple physiological features give us insight into 
a human’s neurological state. Most physiological 
measurements come from a network of sensors in which 
become easier to collect in an unobtrusive real-time 
manner. Currently, the human body’s vital signs can 
simply be recorded through wearable biosensors and 
health gadgets (e.g., smartwatch, earbuds, headset). 
Many researchers used sensors to measure specific 
physiological conditions to study factors that affect 
individual neurological statuses such as stress [14], sleep 
deprivation [15], fatigue [16], and social aspects [17].  
 
Among different measuring methods that could reflect 
stress and mental overload, Electroencephalogram (EEG) 
sensors have been commonly applied in many studies 
[18]–[20]. EEG is a valuable source in identifying brain 
activities to measure electrical activities of the brain by 
electrodes positioned on the scalp, and they capture 
neurons in the brain by electric potentials. However, 
there are limitations in applications during physical 
activities as these signals are sensitive to face and body 
movements (e.g. eye blinks), which makes them 
impractical for application in construction safety [20]–
[22]. Considering the EEG limitations, viable biosensors 
that could detect and reflect the stress in construction 
were presented in [14] as; Photoplethysmography (PPG), 
Electrodermal Activity (EDA), and peripheral skin 
temperature (ST), that are sensitive to extrinsic and 
intrinsic artifacts which require extensive filtering. 
In addition to the feasibility of data collection in 
construction, data should reflect the sign of stress and 
overload. In an open-source database from a Birjandtalab 
et al. [23], that was conducted on subjects while 
confronted by stress and overload; seven different non-
EEG physiological signals were collected during the 
experiment. In the current study, the above-noted 
database (Non-EEG dataset) was used as a source of 
information to study and train a stress and overload 
detection model. This database provides us with useful 
insights over the physiological features of individuals 
while confronted with overload and stress. This paper is 
distinct from previous studies by focusing on the 
physiological impact of mental stress and protecting the 
model against biases other than the ultimate goal, such as; 
not including 3-axis acceleration, which leads the model 
to movement recognition. 

3 Non-EEG dataset 
A non-EEG physiological signal from [23] includes 

acceleration (Ax, Ay, Az), electrodermal activity (EDA), 
temperature, heart rate, and arterial oxygen level (SpO2) 
signals of 20 healthy subjects during relaxation, physical, 
emotional and cognitive activities. This dataset includes 
individual responses while facing different stress-
inducing activities. The experimental procedure includes: 
(1) Five minutes of relaxation, (2) Physical stress by 
walking on a treadmill at 1 mile/hr. For two minutes and 
jogging at 3 miles/hr for two minutes, (3) Relaxation, (4) 
Cognitive stress by counting backwards by sevens from 
4285, and then performing Stroop test while alerted by a 
buzzer, (5) Relaxation, (6) Emotional stress by watching 
clips from a horror movie, (7) Relaxation. 

Figure 4 displays a time-series for the Subject1 during 
the experiment collected by wrist-worn biosensors. The 
data file was in the WFDB (WaveForm DataBase) format, 
which can be read using its associated software package 
[24]. Records were labelled through “.atr” annotations 
file format (i.e. red stars on the ax signal), which indicate 
a change in the activity of a human subject (i.e., moving 
from one step to another in the experiment steps). 

The data files contain two records per person; one is 
recorded 3D acceleration, temperature, and 
electrodermal activity (EDA) with a frequency equal to 
eight (Figure 1). Another measurement technology 
recorded heart rate (HR) and arterial oxygen level (SpO2) 
with a frequency of one reading per second (Figure 2) 
[23].  

 
Figure 1. Acceleration (Ax, Ay, Ax), Temperature, 
and EDA recorded time-series for Subject1. 

873



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

 
Figure 2. SpO2 and Heart rate recorded time-series 
for Subject1 

3.1 Preprocessing 
3.1.1 Aligning 

Before analyzing and preprocessing the recorded data, 
we need to align data of different frequencies from 
different devices. There are two strategies for resampling 
and aligning: (1) Upsampling the lower frequency by 
repeating or interpolating data between reading samples, 
(2) Downsampling the higher frequency data by 
replacing extra readings with mean or median. The 
following graph (Figure 3) shows the difference between 
Downsampling (with median) and original reading for an 
accelerometer-x signal. Whether we need to maintain a 
precision of the higher frequency or not, we can align 
data of different frequencies. Downsampling signals 
might result in loss of data, and upsampling the lower 
frequency reading was chosen to align readings from two 
separate measuring devices (Figure 4). 

 
Figure 3. Accelerometer-x down sampled (with 
median) side-by-side to the original high-frequency 

3.1.2 Feature scaling 

As it is visible in Figure 4, recorded signals are from 
different range and amounts. So it is essential to scale all 
data and perform feature scaling before any processing. 
Mainly, in classification problems, the majority of 
algorithms perform based on the distances, scaling the 
features before processing is necessary. 

  
Figure 4. Aligned signals using the upsampling 
method (with interpolation) for SpO2 and Heart rate  

3.1.3 Feature selection 

In the preprocessing stage, it is essential to study 
correlations between different features. In Figure 5, the 
Pearson r correlations coefficient matrix has been shown 
to measure the degree of the relationship between linearly 
related variables to indicate whether two variables are 
strongly dependent or independent as a part of 
preprocessing. Based on the Pearson correlation 
coefficient and Cohen’s standard, there is a significant 
association between acceleration signals (Ax, Ay, and 
Az). However, temperature and electrodermal activities 
(EDA) are independent. 

 
Figure 5. Correlation matrix calculated using the 
Pearson method 
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Processing the correlation between features and 
eliminating those attributes that are unrelated enables a 
robust feature selection. Feature selection is a critical part 
of any machine learning pipeline, which leads to the 
accuracy in the models. Also, having perfectly correlated 
features increase a chance that the model performance 
obstructed by Multicollinearity (i.e. when one part can 
linearly be predicted from the others with a high degree 
of accuracy, in this case, Ay and Az are negatively 
correlated). High accuracy cannot be achieved without 
applying different methods of feature selection, such as 
Pearson or Spearman correlation matrix, Chi-squared, or 
Recursive feature elimination. Here, based on the 
Pearson correlation, features that are highly correlated 
decrease the performance of the model. 

 In the current research, in addition to the highly 
correlated features, it is required to remove three signals 
of accelerators. Acceleration in different directions is 
beneficial for activity and movement detection, not the 
stress and mental overload, which is the focus of this 
study. Especially in a construction setting due to the 
physically demanding nature of work, eliminating data 
regarding movement and activities protects the model to 
biases, and it focuses on the ultimate goal of stress and 
mental overload detection. 

Since the recorded signals are continuous reading 
over time, slices of data during a window of time were 
selected as a separate entry to the model. The optimal 
window size was detected by calculating the accuracy of 
the model for different window sizes. Moreover, in 
classification models, it is essential to have balanced 
classes for training a model. So, a similar number of 
windows representing each class were selected as the 
input to the model. 

 

3.1.4 Feature extraction 

After the feature selection stage, a feature extraction 
tool is needed to provide the training stage with more 
information regarding data distribution. For this matter, a 
convolutional neural network (CNN) layer was added at 
the beginning of the model pipeline.  

4 Model 
For time-series pattern recognition and classifying 

different neurological statuses (i.e., relaxation, physical, 
emotional and cognitive stress), long short-term memory 
(LSTM) algorithm was selected for training purposes. 
Long short-term memory (LSTM) is a form of recurrent 
neural network (RNN) in the field of deep learning. 
LSTM has feedback connections in addition to the 
standard feedforward processing. These features enable 
LSTM to process entire sequences of data and make it 
accessible in time series data. At the beginning of the 
model pipeline, convolutional neural network CNN 

extracts features from signals, and it prepares input for 
the pattern recognition stage, which was conducted 
through sequential LSTM layers. Three different LSTM 
layers were added to the model to give more depth into 
the calculation, which provides a model with a better 
chance of prediction.  Then, two fully connected layers at 
the final stage of training prepared the processed data for 
classification. Different classifiers can be applied to the 
final stage, namely: Bayes classifier, Hidden Markov 
Models, Random Forest Classifier, and Ensemble 
algorithm classifier (meta-algorithms that combine 
several methods into one model to decrease bias and 
variance and improve predictions).  Adam classifier was 
chosen for the proposed model as the best fit. 

There are multiple hyperparameters (e.g., number of 
units in each layer, number of dense layers, type of 
classifier, and number of epochs) in the proposed model, 
which requires a hyperparameter tuning for selecting the 
best match for the model. By defining a search area and 
training a model for several combinations, the best 
combination was chosen for training a model. For 
instance, by applying different window sizes, a window 
of 20 continuous reading of the signal was selected as an 
optimum number for the proposed model.  

For training and testing processes, twenty percent of 
data were kept unseen for testing and from remaining 
samples, twenty percent was allocated to the cross-
validation for backward propagation.  

Figure 6 depicts the categorical accuracy and 
validation loss during the training session.  

 

 
 

 
Figure 6. Training and validation accuracy and loss  
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Figure 7 presents the proposed model classification 
results that achieved an overall 85 percent accuracy for 
the test data set. Based on the f1-score (i.e. is a balanced 
amount of precision and recall) in the following report, 
we can conclude that the trained model is robust toward 
detecting physical stress and has more limitations in 
cognitive stress detection.  

 
Figure 7. Model classification report 

In Figure 8, the confusion matrix for four different 
classes represents the actual classes in vertical and 
predicted classes in a horizontal direction.  

 
Figure 8. Confusion matrix 

5 Results discussion and conclusions 
In this research, efforts were taken to detect stress and 

mental overload, not only by employing deep learning 
techniques but by knowing the inputs of the model and 
removing preconceptions of the experimental study. The 
presented trained model in this study achieved 85 percent 
accuracy over unseen samples, which is a distinct 
improvement compared to using traditional methods of 
manual feature extraction (e.g., calculating the median, 
range, and standard deviation over the time series), 
combined with classifier algorithms. 

Based on the confusion matrix, the trained model has 
difficulty recalling the Relax state, which needs more 
improvement in the data-gathering stage for future 
studies. Inputs to the proposed model were heart rates, 

temperatures, electrodermal activities, and arterial 
oxygen levels of subjects during an experiment, in which 
Ax, Ay, and Az accelerations were removed to enable the 
model to detect mental overload and stress instead of 
activities and movement detection. In addition to the 
importance of input to the model, the level of personal 
capacity while confronted with stressors has to be 
considered as individuals have different capacities under 
pressure.  

Furthermore, for detecting stress and overload, 
multiple sub-classes should be considered to represent 
different levels of neurological status. For this matter, the 
severity of the neurological state uncovers, and only the 
higher level of stress in each category is considered 
hazardous. 
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