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Abstract – Three-dimensional (3D) measurement 

that captures the state of construction sites is key to 

promoting ICT-supported construction processes. 

Structure-from-Motion (SfM) and Multi-View 

Stereo photogrammetry are the best solutions for 

small and mid-sized construction companies due to 

their high portability and low cost. However, 

efficient creation of high-quality 3D dense models 

using photogrammetry is difficult for site workers 

because the model quality relies heavily on manually 

selected camera poses. To address this issue, we 

propose a photogrammetry process that improves 

the quality and efficiency of 3D dense model 

reconstruction to measure construction sites. The 

proposed process begins with a small initial photo set. 

Then, a computer-supported best-view guidance 

system predicts the geometric quality of the dense 

model, estimates the best target positions for 

additional photographs using SfM results, and 

provides workers with that position information. 

The effectiveness and efficiency of the process and 

system were evaluated at a real-world construction 

site. The evaluation demonstrated that the process 

and system can prevent capturing unnecessary 

images, improve the efficiency of the on-site 

photographic work, and generate a dense model with 

quality assurance. We also found that a smartphone 

camera is the most suitable device for implementing 

the process. 
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1 Introduction 

In recent years, the "i-Construction" initiative [1], 

which is intended to improve productivity at 

construction sites by utilizing ICT, has been promoted 

at various places in Japan. However, to apply i-

Construction initiatives at small and mid-sized 

construction companies, both the initial and the 

operating costs of the supporting technologies must be 

low.  

Three-dimensional (3D) measurement technology is 

an essential part of the i-Construction initiative. 3D 

measurement technology is used to capture the current 

state of construction sites at various construction stages 

at high frequency. Currently, terrestrial laser scanners 

and 3D photogrammetry are used as measurement 

technologies. Terrestrial laser scanners permit 

millimeter-accuracy measurements [2]. However, the 

devices are expensive. In addition, typically, 

measurement processing is outsourced, which is also 

expensive. Thus, cost considerations hinder the 

introduction of laser scanners to small and mid-sized 

construction companies.  

3D photogrammetry [3], shown in Figure 1, is 

slightly inferior to laser scanners in terms of 

measurement accuracy. However, it can automatically 

reconstruct dense 3D models, such as 3D point clouds 

and textured meshes, from multiple overlapping photos. 

Photogrammetry can be implemented using UAV-based 

photography. Consequently, photogrammetry can be 

Structure-from-Motion

Camera poses

Tie 
points

Multi-View-StereoOverlapping photos

Short duration Long duration

Dense 3D model

Figure 1. Typical photogrammetry process  
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introduced into small and mid-sized construction 

companies more smoothly than terrestrial laser scanners. 

However, introducing photogrammetry and the 

routine use of high-quality 3D models to monitor 

construction site activity remains challenging. First, a 

site worker must take multiple photographs using a 

heavy, handheld single-lens reflex (SLR) camera. 

Second, the quality of the dense 3D model reconstructed 

from the photographs cannot be confirmed on-site 

because the conventional photogrammetry pipeline 

requires significant processing time. Moreover, for a 

given construction site, pre-estimating the camera pose, 

i.e., the optimal shooting position and orientation, 

required to capture photographs that can be used to 

reconstruct a high-quality, dense model is difficult.  

To address the various challenges, an innovative 

photogrammetry process and computer-supported best-

view guidance system that can streamline 3D modeling 

of construction sites is proposed in this paper. The 

proposed process and the system can be introduced into 

the everyday activities of small and mid-sized 

companies by integrating a smartphone, cloud service, 

and computer-assisted best-view guidance for optimal 

camera poses. The development of this technology 

involved both the construction industry and academia, 

and its effectiveness and efficiency were evaluated 

experimentally at a real-world construction site. 

2 Challenges and Approaches 

2.1 Conventional Photogrammetry Process 

As shown in Figure 1, the general photogrammetry 

pipeline to generate a dense 3D model from a set of 

photographs comprises two steps: Structure-from-

Motion (SfM) and Multi-view Stereo (MVS). SfM 

derives the camera poses and sparse corresponding 

points, i.e., the so-called “tie points,” on real-world 

objects, and MVS creates a dense 3D model, such as a 

3D point cloud or a textured-mesh model, by stereo 

matching overlapped photographs [3].  

SfM processing can be completed in a relatively 

short time. However, MVS must process all pairs of 

overlapped photos; therefore, it requires approximately 

10 to 50 times more processing time than SfM. For 

example, for 100 photos, SfM requires only 4 min, 

while MVS takes 120 min. This example clearly 

indicates that the MVS step consumes most of the 

processing time in the photogrammetric 3D model 

reconstruction process. 

As shown in Figure 2, if we attempt to utilize 

photogrammetry to capture daily progress at a 

construction sites, the following problems occur.  

• The resolution of a 3D model reconstructed by SfM-

MVS depends on the resolution of the captured 

images. Therefore, high-resolution photographs tend 

to be taken by an SLR camera. However, SLR 

cameras tend to be large and heavy; carrying and 

using an SLR camera in complex situations at a 

construction site, e.g., scaffolding, can be 

problematic. In addition, with an SLR camera, 

uploading captured photos via a network is more 

complicated and less efficient than with a 

smartphone. Therefore, initially, all captured photos 

must be stored on the camera’s SD memory card. 

After taking the camera to an office, the 3D model is 

reconstructed using photogrammetry software. 

However, this process drops in efficiency because 

photogrammetry processing cannot be performed 

during shooting. 

• To reconstruct a high-quality, dense model using 

SfM-MVS, a site worker must carefully consider the 

importance of capturing overlapping photographs 

and develop a shooting plan in which the camera 

poses relative to the object are set appropriately. 

However, predicting which and how many photos 

should be taken to reconstruct high-quality models is 

difficult for the worker. Consequently, defects, such 

as holes or reduced accuracy in some parts, often 

appear in the model. To avoid such defects, shooting 

plans tend to involve a high overlap ratio. However, 

increasing the number of photographs also increases 

the MVS processing time.  

• To record construction sites using SfM-MVS, it is 

often necessary to take several hundred to several 

thousand photographs. With such a large number of 

photographs, MVS processing can take 

approximately half a day or even an entire day. 

Therefore, the quality of the dense model cannot be 

confirmed on-site immediately after the images are 

captured. If the model quality is unsatisfactory due 

Figure 2. Practical challenges encountered 

when attempting to apply a conventional 

photogrammetry process at a construction site  
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to an insufficient number of photographs or 

unphotographed areas of the site, reshooting will be 

required, which incurs considerable financial and 

time costs.  

2.2 Proposed Approaches  

To address the above problems, the following new 

photogrammetry process is introduced in this study. The 

processing pipeline for the proposed process is shown in 

Figure 3. The process proceeds as follows. 

 

(1) We introduce a smartphone with a high-resolution 

camera as the device used to capture on-site 

photographs. Smartphones are lightweight, which 

makes them suitable for handheld shooting at 

construction sites. In addition, by utilizing their 

internet communication function, images can be 

automatically uploaded to cloud storage (Google 

Drive) immediately after shooting.  

(2) The quality of the dense model that will be 

reconstructed from the uploaded images is quickly 

predicted from the SfM results and a computer-

supported best-view guidance system. The 

prediction is based on our developed quality 

prediction algorithm [4]. The best target positions 

for additional photo shoots that would improve the 

quality are estimated in a few minutes by the 

guidance system connected to the cloud. 

(3) The system automatically generates an instruction 

image in which the marker symbols of these target 

positions estimated in (2) are superimposed on the 

photo of the scene saved in the cloud. Furthermore, 

the instruction image is immediately transmitted to 

the worker's smartphone at the construction site 

using a messenger application (Google Hangouts 

[5]). Then, the worker takes several additional 

photos according to the target positions on the 

instruction image and uploads them to the cloud. 

(4) By repeating processes (2) and (3) as often as 

necessary, a small number of target positions for 

additional images are estimated only by SfM 

processing, and additional images are captured 

according to the target positions. Consequently, 

the quality of the obtained high-density model is 

improved successively without requiring multiple 

MVS processing. 

(5) After completing the shooting processes (2)–(4) 

supported by the best-view guidance system, the 

time-consuming MVS process is executed only 

once, and the final dense model is reconstructed. 

Thus, the MVS process can begin immediately 

after the required additional images are captured, 

which improves the overall efficiency of the model 

reconstruction process.  

3 Quality Prediction of Dense Model and 

Estimation of Additional Shooting 

Positions 

3.1 Approximated Triangular Mesh Model 

Generation 

Figure 4 shows the processing pipeline of the 

prediction of the dense model quality and estimation of 

the best target positions to capture additional images. 

The geometry of the dense model is first approximated 

by a triangular mesh model generated from the 

triangulation of tie points created by SfM. The 

approximation method simplifies a method proposed by 

Labatut et al. [6] to improve its computational 

efficiency. 

As shown in Figure 5, the triangular mesh 

generation begins with 3D Delaunay tetrahedralization 

of 3D tie point set 𝑃 and creates a set of tetrahedra 𝐻. 

Then, the intersection test is performed between every 

tetrahedron in 𝑃 and a set of rays  𝑉𝑖 = {𝒗𝑗
𝑖} (𝒗𝑗

𝑖 = 𝒑𝑖 −

𝒄𝑗)  beginning from the projection center of the j-th 

camera 𝒄𝑗 to the i-th visible tie point position 𝒑𝑖 (𝑖 ∈ 𝑃). 

Figure 4. Prediction of the dense model quality 

and estimation of the best target position for 

additional shootings 

Figure 3. Processing pipeline of the proposed 

photogrammetry process  
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If a tetrahedron intersects with a ray, it is deleted, and 

the remaining set of tetrahedra is defined as 𝐻′. Finally, 

we obtain the approximated triangular mesh model 𝑀 

by taking the surface boundary meshes of 𝐻′ . The 

algorithm is described in detail in   a previous study [4]. 

Figure 6(a) shows an example of the tie point set 𝑃 

and camera poses generated from 33 original photos of 

a bridge pier, and Figure 6(b) shows the corresponding 

approximated triangular mesh model.  

3.2 Quality Predictor Estimation 

Next, the quality predictors 𝐹𝑋(𝑖) for a dense model 

are evaluated at a sparse point 𝑖 (∈ 𝑃′, 𝑃′: sparce point 

set )  that constitutes the vertex of the approximated 

triangular mesh model 𝑀  based on the tie point set 𝑃 

and the camera pose set 𝐸 = {𝒆𝑗 = (𝒄𝑗, 𝜽𝑗)} , 

where  𝜽𝑗(∈ 𝑅3)  is a vector of three Euler angles 

representing the projection orientation of the j-th camera. 

The predictor 𝐹𝑋(𝑖) quantifies how accurately the final 

dense model can be reconstructed around the sparce 

point 𝑖(∈ 𝑃′). The basic idea of the quality predictor 

was initially proposed by Mauro et al. [7]. Note that we 

designed different types of predictors based on that 

study [7]. 

In the proposed method, the following four quality 

predictors are evaluated at each sparce point 𝑖(∈  𝑃′).  

• Reliability (𝐹𝑟(𝑖)). The local geometric quality of 

the reconstructed dense model around a sparce 

point 𝑖 decreases as the n umber of visible cameras 

|𝑉𝑖|  supporting a point 𝑖  decreases. Therefore, the 

Reliability predictor of the point 𝑖  is defined as 

follows:  

𝐹𝑟(𝑖) = |𝑉𝑖| (1) 

• Area (𝐹𝑎(𝑖)) . As the area of a triangle on 𝑀 

enlarges, the reconstruction error of the dense model 

tends to be large. Therefore, the average area of the 

triangles on 𝑀adjacent to a point 𝑖  is evaluated as 

the Area predictor defined by as follows: 

𝐹𝑎(𝑖) =
1

|𝑇𝑖|
Σ

𝑡𝑗
𝑖∈𝑇𝑖 𝑎𝑟𝑒𝑎(𝑡𝑗

𝑖) (2) 

where 𝑇𝑖 denotes a set of triangles adjacent to 𝑖.  
• Edge length (𝐹𝑒(𝑖)). When the object surface to be 

measured is poorly textured, the edge length of a 

triangle on 𝑀 tends to be long and the point clouds 

generated by SfM become sparce. Thus, the average 

edge length adjacent to a point 𝑖 is evaluated as the 

Edge length predictor expressed as follows:  

𝐹𝑒(𝑖) =
1

|𝐷𝑖|
Σ𝑗∈𝐷𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑒𝑗

𝑖) (3) 

where 𝐷𝑖  denotes a set of edges connected to 𝑖.  
• Baseline and height ratio (𝐹𝑏ℎ(𝑖)). Based on the 

principle of stereovision, higher-quality 

reconstruction by MVS is obtained from a correct 

ratio between the baseline length and height. The 

baseline length is the distance between two camera 

positions 𝒄𝑗  and  𝒄𝑘 , and the baseline height is the 

distance between the space point position 𝒑𝑖 and the 

midpoint of the baseline 𝒄′𝑗𝑘 . It is well known in 

photogrammetry that the quality of the dense model 

is related to this ratio [8]. Therefore, the ratio is 

evaluated as the Baseline and height ratio predictor 

as follows:  

𝐹𝑏ℎ(𝑖) =
1

|𝐽𝑖|
Σ(𝑗,𝑘)∈𝐽𝑖

(
‖𝒄𝑗 − 𝒄𝑘‖

‖𝒑𝑖 − 𝒄′𝑗𝑘‖
) (4) 

where 𝐽𝑖  denotes a set of all possible camera pairs 

visible from a sparce point 𝑖.  

The detailed calculation of the indicators is explained in 

a previous study [4]. 

To consolidate the four quality predictors into a 

single indicator representing the degradation of the 

dense model, first, we converted each of the predictors 

given by Equations (1–4) to a normalized energy ∈
[0,1] using the logistic function 𝐿( ) proposed by Mauro 

et al. [7] and quadratic function 𝐾( ) as follows:  

𝐸𝑋(𝑖) = {

𝐿(𝐹𝑋(𝑖) − 𝜇𝑋, 𝜎𝑋), 𝑋 ∈ {𝑎, 𝑒};

1 − 𝐿(𝐹𝑋(𝑖) − 𝜇𝑋, 𝜎𝑋), 𝑋 ∈ {𝑟};

1 − 𝐾(𝐹𝑋(𝑖), 𝜎𝑋), 𝑋 ∈ {𝑏ℎ},

 (5) 

where 𝜇𝑋 denotes the average of 𝐹𝑋, 𝜎𝑋 is the standard 

deviation of 𝐹𝑋, 𝐿(𝑥 − 𝜇, 𝜎) = 1/ (1 + exp (−
2(𝑥−𝜇)

𝜎
)), 

and 𝐾(𝑥, 𝜎) = 1/(1 + (𝑥 − 0.5/𝜎)2). In Equation (5), 

higher energy means that the geometry of the final 
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dense model is more degraded. 

Finally, the four energy values 𝐸𝑋(𝑖) are aggregated 

by taking an average to denote a geometry degradation 

indicator at a sparse point 𝑖 as 𝐸𝐺𝐷𝐼(𝑖) as follows.  

𝐸𝐺𝐷𝐼(𝑖) = (𝐸𝑟(𝑖) + 𝐸𝑎(𝑖) + 𝐸𝑒(𝑖) + 𝐸𝑏ℎ(𝑖))/4 (6) 

A region with high indicator value 𝐸𝐺𝐷𝐼(𝑖)  on the 

approximated triangular mesh model 𝑀′ indicates that 

the local region around the sparse point 𝑖 on the dense 

model has a more significant possibility of degrading 

the geometry. It also implies that valid photos are 

lacking in the region with a high indicator value and that 

additional image s should be preferentially captured to 

improve the dense model quality of the region around 

the point 𝑖.  
Figure 7(a) shows the distributions of the indicator 

values 𝐸𝐺𝐷𝐼(𝑖) on the approximated mesh model 𝑀  of 

the pier shown in Figure 6. The predicted quality of the 

upper part of the pier is low (red), which suggests that 

the number of images captured capturing in this area 

was insufficient. Figure 7(b) shows a dense model 

generated by MVS from the original 33 photos. In 

Figure 7(a), the upper parts of the pier shape with high 

indicator values were not fully reconstructed in the 

dense model. Thus, it is evident that the quality 

prediction based on the geometry degradation indicator 

𝐸𝐺𝐷𝐼(𝑖) is functioning. 

3.3 Estimation of Additional Shooting 

Positions 

Low-quality areas on a dense model should be 

improved by capturing additional images as efficiently 

as possible. To this end, it is preferable to identify target 

positions of as many low-quality areas as possible for an 

additional photo shoot. Therefore, based on the 

geometry degradation indicator, the target points for the 

additional photo shoots are selected by an optimization. 

First, for every sparce point 𝑖(∈ 𝑃′)  on the 

approximated model 𝑀 , the geometry degradation 

indicator 𝐸𝐺𝐷𝐼(𝑖) value is added as an attribute value 𝑤𝑖 . 
Then, the degree of degradation in the peripheral region 

of 𝑖  is estimated both from a target point 𝑗(∈ 𝑃′)  and 

from the indicator values of the sparce points 𝑖′ included 

in the region near the target point 𝑗. A photo shoot to 

capture additional images should be oriented to cover 

the areas with the most considerable geometry 

degradation. Finally, 𝑠target points for additional photo 

shoots are derived from the sparce point set 𝑃′ using the 

combinatorial optimization and a greedy algorithm. 

Details of the optimization process are presented in a 

previous study [4]. 

Figure 8(a) shows the three low-quality areas and 

the target points for additional image capture. The areas 

were derived from the distribution of the geometry 

degradation indicators in Figure 7(a) with 𝑠 = 3. The 

indicator values in the areas around the target points are 

higher than in other areas, and the target points can be 

placed at the low-quality areas appropriately.  

Figure 8(b) shows a dense model reconstructed by 

MVS from 36 images, including the three additional 

photos corresponding to the three target points. 

Compared to the model generated from the 33 initial 

images in Figure 7(b), the quality of the reconstructed 

area at the top of the pier increased significantly despite 

adding only three images. Therefore, the effectiveness 

of the target point selection algorithm can be confirmed.  

4 Case Study 

4.1 Evaluation of Reconstruction Qualities  

A case study was conducted at a seawall 

construction site shown in Figure 9 (51 m × 2.4 m) on 
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Figure 7. Correlation between the distribution 

of the geometry degradation indicators and the 

dense model by MVS for original photos 

Figure 8. Three target points for additional 

image capture and the improved dense model 

obtained used MVS after additional images 

have been captured  
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the Toyoura coast in Tomamae-Cho, Hokkaido. The 

proposed photogrammetry process was performed. The 

process involved an original photo shoot, dense model 

quality prediction, on-site best-view guidance, and 

additional photo shoots to record the installation of 

wave-dissipating blocks.  

To decrease the time required to upload images from 

a camera to the cloud system, a smartphone (HUAWEI 

Mate20-Pro) with a built-in high-resolution camera was 

used. The image resolution was set to 9.7 million pixels 

to reduce the transfer time, and a wide-angle lens was 

used. By using a smartphone, captured images could be 

automatically uploaded to Google Drive immediately. 

In addition, with this image resolution setting, the 

upload time could be significantly reduced to within a 

few seconds per image. Since the SfM and best-view 

guidance server does not necessarily need to be installed 

near the construction site, we installed it at the Sapporo 

campus of Hokkaido University. A high-speed internet 

connection is available between the university and the 

construction site on the Toyoura coast. 

Figure 10 outlines the process flow of this case study. 

Forty-four original photos were taken from sparse 

positions using the smartphone camera by an on-site 

worker while walking on the top of the wave-dissipating 

blocks. Next, the next-best target positions to capture 

additional images were estimated. Then, an instruction 

image was generated on the server-side and sent to the 

worker’s smart phone. Finally, according to the 

instruction image, the worker took five to 10 additional 

photos once and repeated the process of transmitting the 

images to the server three times. The time required by 

the process is summarized in Table 1.  

Figure 11 shows the dense model reconstructed by 

MVS from only the 44 original photos, the estimated 

best target positions, the corresponding instruction 

images, and an example of the photos added by the 

worker. The dense model geometries generated by MVS 

with those additional images added at each stage are 

also shown in Figure 11.  

As can be seen from Figure 11, it is possible to 

visually confirm that the 3D model can be generated 

with relatively good quality even with images captured 

by the built-in smartphone camera. In addition, using 

the model quality prediction and estimation of the best 

target positions to capture additional images, the defects 

and holes between blocks generated in the model 

reconstructed from the original images disappeared in 

the model generated after images were added, and the 

correct block geometry could be reproduced. The area 

near the drainage pipes on the upper left of the slope 

was greatly expanded. As shown in Table 1, estimating 

the best shooting target position once could be 

completed in approximately 1.5 min. 

From the above results, it is evident that, in a 

construction site, using a smartphone camera to capture 

images and as communication device is suitable for 3D 

photogrammetry measurement in which the model 

geometry is successively improved. Although the 

improvement in model quality depends on the number 

of shots, the result suggested that the proposed process 

might be able to complete the reconstruction of the 

dense 3D model on the day that the one-site images 

were captured.  

On the other hand, some areas around the blocks still 

require additional photo shoots and setting the criteria 

for terminating these repetitive image capture processes 

was left as an open problem. 

4.2 Estimation of Processing Efficiency 

Figure 10. Process flow of the case study 

Table 1. Processing time in the proposed 

photogrammetry process 
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Addition
58 (9) 1 min 20 sec 5.08 sec -

3rd

addition
68 (10) 1 min 40 sec - 20 min

Red Bold： Processing time actually required for 

the dense model generation using the proposed process

Figure 9. Scene of the construction site of wave-

dissipating block installations at Toyoura coast 
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To quantify how efficient dense model 

reconstruction using the proposed photogrammetry 

process is compared to two conventional processes.  We 

compared processing times for the following three 

approaches.  

(1) Conventional photogrammetry with single photo 

shoot and an excessive number of images. Here, a 

dense model was reconstructed by performing the 

SfM-MVS together for approximately 400 images 

captured at the site.  

(2) Conventional photogrammetry with a single 

additional photo shoot. First, 44 original photos 

were obtained, and a dense model was generated 

once by SfM-MVS. Then, the low-quality portions 

of the dense model were identified manually, and 

24 target points for an additional photo shoot were 

determined. Finally, the SfM-MVS process was re-

executed with 68 images to reconstruct a final 

dense model. 

(3) The proposed process. Here, the process started 

with 44 original images. Then, SfM was 

performed, target positions to obtain additional 

images were identified using a computer, and five, 

nine, and ten photographs were added to the 

original images. Finally, the dense model was 

reconstructed by performing MVS only once for 

the 68 images acquired.  

Note, for the processing efficiency comparison, the 

Toyoura coast construction site was taken as an example 

(Section 4.1). 

The bar chart in Figure 12 shows the comparison 

results. In estimating the processing time, referring to 

the values obtained from the construction site of section 

4.1, the required shooting time per photograph was 

estimated to be 15 s. The SfM and MVS processing 

time per photo was 0.03 and 0.3 min, respectively. 

Moreover, the time required to estimate the shooting 

target positions was assumed to be constant at 6 s. Note 

that the image upload time was included in the shooting 

time because it was only a few seconds per photo. 

As can be seen from the comparison in Fig. 12, 

process (1) required approximately 3.5 h to reconstruct 

the dense model from the excessively captured photos. 

With the proposed process (3), the dense model could 

be reconstructed in 40 min, which is approximately one-

fifth of the time required by process (1).  

In addition, since process (1) requires MVS 

processing of a significant number of images, which 

takes considerable amount of time, the quality of the 

dense model cannot be confirmed until the processing is 

Figure 11. Changes in the dense models by 1st, 2nd, and 3rd addition of images 
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complete, i.e., approximately 3.5 h after the photo shoot. 

On the other hand, with the proposed process (3), we 

estimate that the shooting target positions that reflect the 

prediction of the dense model quality for the currently 

captured photos can be fed back to a site worker in 

approximately 2–3 min after capturing the photo. Thus, 

it is possible to ensure that all required images are 

captured and to realize an efficient photo shoot.  

Furthermore, in processes (1) and (2), the selection 

of shooting positions is left to the user; thus, there is no 

guarantee that the additional photos will improve the 

reconstructed model's quality. In contrast, with the 

proposed process (3), since the computer selects the best 

positions at which additional photos should be taken 

based on the model quality estimation, it is highly likely 

that additional images will effectively contribute to the 

quality improvement of the reconstructed dense model. 

5 Conclusion 

In this paper, we have proposed a new 

photogrammetry process that improves the quality and 

efficiency of dense model reconstruction of construction 

sites. The proposed process begins with a small original 

photo set. Then, the computer-supported best-view 

guidance system predicts the geometric quality of the 

dense model, estimates the best target positions for 

additional photo shoots using only SfM results, and 

feeds back those positions to a site worker. Depending 

on the number of target positions, the feedback process 

could complete in 1.5 min. The effectiveness of the 

proposed process and the system was evaluated at a 

real-world construction site. As a result, it was found 

the process and the system could prevent excessive 

image capture, improve the efficiency of the on-site 

photo shoots, and generate the dense model with a 

certain degree of quality assurance. We also found that a 

smartphone, which can send and receive images to and 

from the construction site, was the most suitable 

shooting device for implementing the process. 

However, currently, some server-side operations still 

require manual processing. In the future, we would like 

to implement fully automated processes that include 

SfM and best-view guidance on a cloud server. 
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