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Abstract -
Boom cranes are among the most common material han-

dling systems due to their simple design. Some boom cranes
also have an auxiliary jib connected to the boom with a flex-
ible joint to enhance the maneuverability and increase the
workspace of the crane. Such boom cranes are commonly
called knuckle boom cranes. Due to their underactuated
properties, it is fairly challenging to control knuckle boom
cranes. To the best of our knowledge, only a few techniques
are present in the literature to control this type of cranes
using approximate models of the crane. In this paper we
present for the first time a complete mathematical model for
this crane where it is possible to control the three rotations
of the crane (known as luff, slew, and jib movement), and
the cable length. One of the main challenges to control this
system is how to reduce the oscillations in an effective way.
In this paper we propose a nonlinear control based on en-
ergy considerations capable of guiding the crane to desired
sets points while effectively reducing load oscillations. The
corresponding stability and convergence analysis is proved
using the LaSalle’s invariance principle. Simulation results
are provided to demonstrate the effectiveness and feasibility
of the proposed method.
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1 Introduction
Cranes are material handling machines which are used

in different industries (i.e., construction, manufacturing,
shipbuilding and freight handling) for transporting heavy
materials that humans cannot handle. Cranes have the
capability of moving the load vertically and horizontally,
either along a straight or a curved path. Nowadays, most
cranes are manually operated by skilled operators. In
this paper we focus on the design of an effective automatic
control to obtain accurate positioning and reduce the swing
of the load.

Cranes come in various sizes and designs to perform
different tasks. Depending on their dynamic proper-
ties they can be classified as gantry cranes and rotary

cranes. Gantry cranes can be further classified into over-
head cranes and container cranes. Rotary cranes can be
classified into tower cranes and boom cranes [1].

In this paperwewill focus on a so called ’knuckle boom’
crane which is one of the most common type of boom
crane. Boom cranes are characterized by a first boom
that can rotate around two orthogonal axes (e.g. slew and
luff motions). From the free end of the boom, a payload is
suspended using a hoisting rope. The length of the hoisting
rope can be driven using a winch. A boom crane can
move the payload in the 3D space using the luff and slew
movements of the boom and the hoisting of the payload.
Such cranes are commonly used in construction sites [2].
Boom cranes can also havemore than one boom. Common
variant of the boom crane has an auxiliary jib connected
to the boom to enhance the maneuverability. Such boom
cranes are the knuckle boom cranes (see Fig. 1). In this
paper we present for the first time a completemathematical
model for this kind of crane which takes into account not
only the three main rotations (e.g. luff, slew, and jib
movement), but also the cable dynamic and the payload
oscillations.

As all cranes, knuckle cranes are nonlinear systemswith
complicated underactuated dynamics. Underactuated sys-
tems [3] are commonly found in several areas and ap-
plications, such as robotics, aerospace systems, marine
systems, flexible systems, mobile systems, and locomo-
tive systems. The condition of underactuation refers to a
system with more DoF (number of independent variables
that define the system configuration) to be controlled, than
actuators (input variables). This restriction implies that
some of the configuration variables of the system cannot
be directly commanded, which highly complicates the de-
sign of control algorithms. In particular for the proposed
model of knuckle crane the non-actuated variable are the
swing angles of the payload, whereas the four actuated
variable will be the three main rotation (i.e. luff, slew, and
jib movements) and the length of the cable.

Cranes can be controlled using different control laws
depending on their operations, which usually involve the
process of gripping, lifting, transporting the load, lower-
ing, and releasing the load. A damping capacity of the sys-
tem plays a significant role towards the precision motion
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performance. The control schemes developed for cranes
can mainly be categorised into open loop and closed loop
techniques [4]. Control schemes based on a combination
of open and closed loop techniques have also been pro-
posed. Input shaping is one of the most used open loop
techniques, mostly based on a linearized system, that can
be applied in real time, mainly for control of the oscil-
lations of the payload. Anti-swing crane controls using
input shaping have been widely implemented in the lit-
erature [5]-[6]. Concerning closed loop techniques, Pro-
portional Integral Derivative (PID) control laws have been
proposed for instance in [4], where the authors proposed a
position control of a gantry crane system. A state feedback
controller has been implemented in [7] for a boom crane
system in order to control the load sway angles in the verti-
cal and horizontal boom motions, as well as in the vertical
and horizontal boom angles. In [8] the authors present a
constrained control scheme based on the ERG framework
for the control of boom cranes. In [9] a model predictive
control (MPC) approach was used for a boom crane in
order to reduce the swing angles as much as possible.

Compared with the other kinds of cranes like boom
cranes, the study of knuckle cranes is still at an early stage
with much less reported control strategies. In [10] the
authors focus on controlling mobile electro-hydraulic pro-
portional valves to move the crane to a desired position. In
[11] the authors solve the problem of controlling knuckle
crane through the inverse kinematics without take into ac-
count the dynamic of the cable and the payload. In [12]
an anti-sway control is shown which is performed by sim-
plifying the dynamic model and assuming that the tip of
the crane can be controlled directly.

To the best of our knowledge, no research has been
carried out to develop a detailed mathematical model and
develop a control strategy taking into account the strongly
nonlinear nature of this type of crane. In this paper we
advance the state of the art of the knuckle crane by intro-
ducing for the first time a complete mathematical model in
which we takes into account all of the degrees of freedom
(DoF) that characterize this type of system (i.e. the three
rotations, the length of the rope and the payload swing
angles) and proposing novel control strategy designed di-
rectly on the nonlinear model.

The rest of this paper is organized as follows. In Section
2, the dynamic model of the knuckle crane and the control
objectives are provided. In Section 3, the proposed con-
troller is designed, and the corresponding stability analysis
is provided in detail. Section 4 shows the results of the
simulations regarding the proposed control strategy.

Figure 1. Model of a knuckle crane [1].

Figure 2. Payload swing angles.

2 Dynamic Model
A schematic view of knuckle crane is shown in Fig.1.

The knuckle crane consists of a first boom of length lb and
mass mb connected to the tower with one revolute joint.
The auxiliary jib of length lj and mass mj is linked to the
first boom by a revolute joint. For the sake of simplicity
in this paper, both of these two links are considered to be
rigid. The cable is supposed to be massless and rigid, thus
the lifting mechanism can be represent as a prismatic joint.
The payload ofmassm can be represented as lumpedmass.
The two swing angles of the payload are represented in the
Fig.2.

The configuration of the crane can be represented by six
generalized coordinates, in which, α is the slew angle of
the tower, β is the luff angle of the boom, γ is the luff angle
of the jib, d is the length of the rope, θ1 is the tangential
pendulation mainly due to the motion of the tower and θ2
is the radial sway mainly due to the motion of the boom.

To simplify the ensuing analysis, the following ab-
breviations are used: Sα , sin(α), Sβ , sin(β), Sγ ,
sin(γ), Sθ1 , sin(θ1), Sθ2 , sin(θ2),Cα , cos(α),Cβ ,
cos(β),Cγ , cos(γ),Cθ1 , cos(θ1),Cθ2 , cos(θ2).

The dynamic model of the knuckle crane is obtained
by using the Lagrange method [13]. Firstly, we need to
express the system kinematic energy T(t), which consists
of three parts, the boom kinematic energy Tt (t), the jib
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kinematic energy Tj(t), and the payload kinematic energy
Tp(t). Then, the system potential energy U(t) consists of
the boom gravity energyUt (t), the jib gravity energyUj(t),
and the payload gravity energy Up(t). Next, the Lagrange
function is constructed as

L(t) = T(t) −U(t)
= Tb(t) + Tj(t) + Tp(t) −Ub(t) −Uj(t) −Up(t),

(1)

where

T(t) =
1
8

(mB((lBCβSα Ûα + lBCαSβ Ûβ)2 + (lBCαCβ Ûα

−lBSαSβ Ûβ)2 + l2
BC2

β
Ûβ2)) +

1
2

(mJ ((lBCβSα Ûα + lBCαSβ Ûβ

+
1
2

(lJCγSα Ûα) +
1
2

(lJCαSγ Ûγ))2 + (lBCαCβ Ûα +
1
2

(lJCαCγ Ûα)

−lBSαSβ Ûβ −
1
2

(lJSαSγ Ûγ))2 + (lBCβ Ûβ +
1
2

(lJCγ Ûγ))2))

+
1
2

(m((Cθ2 SαSθ1
Ûd − CαSθ2

Ûd + lBCβSα Ûα + lBCαSβ Ûβ

+lJCγSα Ûα + lJCαSγ Ûγ − CαCθ2
Ûθ2d + SαSθ2 Ûαd

+CαCθ2 Sθ1 Ûαd + Cθ1Cθ2 Sα Ûθ1d − SαSθ1 Sθ2
Ûθ2d)2 + (lBCβ Ûβ

−Cθ1Cθ2
Ûd + lJCγ Ûγ + Cθ2 Sθ1

Ûθ1d + Cθ1 Sθ2
Ûθ2d)2

+(SαSθ2
Ûd + lBCαCβ Ûα + lJCαCγ Ûα

−lBSαSβ Ûβ − lJSαSγ Ûγ + CαSθ2 Ûαd + Cθ2 Sα Ûθ2dv

+CαCθ2 Sθ1
Ûd + CαCθ1Cθ2

Ûθ1d − Cθ2 SαSθ1 Ûαd

−CαSθ1 Sθ2
Ûθ2d)2)) +

1
2

Itot Ûα2 +
1
2

IB Ûβ2 +
1
2

IJ Ûγ2,

(2)

U(t) = gm(lBSβ + lJSγ − Cθ1Cθ2 d) + gmJ (lBSβ

+
1
2

lJSγ) +
1
2
glBmBSβ,

(3)

The equations of the motion of the crane are derived
using the Lagrange’s equation

d
dt

(
∂L(q, Ûq)
∂ Ûq

)
−
∂L(q, Ûq)
∂q

= ζ, (4)

where q = [α, β, γ, d, θ1, θ2]T ∈ R6 represents the system
state vector, and ζ = [u1, u2, u3, u4, 0, 0]T ∈ R6 represents
the control input vector.
The dynamic model of a knuckle crane (see Fig. 1) can

be written as:

M(q) Üq + C(q, Ûq) Ûq + F( Ûq) + g(q) =
[
I4x4
02x2

]
u. (5)

The matrices M(q) ∈ R6x6,C(q, Ûq) ∈ R6x6,F( Ûq) ∈ R6

and g(q) ∈ R6 represent the inertia, centripetal-Coriolis,

air dynamic friction [14], and gravity. The systemmatrices
(see Appendix for the detailed description) are defined as
follows:

M(q) =



m11 m12 m13 m14 m15 m16
m21 m22 m23 m24 m25 m26
m31 m32 m33 m34 m35 m36
m41 m42 m43 m44 0 0
m51 m52 m53 0 m55 0
m61 m62 m63 0 0 m66


, (6)

C(q, Ûq) =



c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 0 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66


, (7)

g(q) =
[
0, g2, g3, g4, g5, g6

]T
. (8)

F( Ûq) =
[
0, 0, 0, 0, f1, f2

]T
, (9)

Although the equation of motion (5) is quite compli-
cated, it has several fundamental properties that can be
exploited to facilitate the design of the controller. The two
main properties that will be exploited in the next section
are:

Property 1. The matrix

1
2
ÛM(q) − C(q, Ûq),

is skew symmetric which means that

ζT
[
1
2
ÛM(q) − C(q, Ûq)

]
ζ = 0, ζ ∈ R6

Property 2. The gravity vector (8) can be obtained as the
gradient of the crane potential energy (3), i.e., g(q) =
∂U(q)
∂ Ûq .

2.1 Control objective

The aim of the control is to move the crane to the desired
position and to dampen the swing angles of the load as
much as possible.

The control objective can be described mathematically
as

lim
t→∞

[α(t), β(t), γ(t), d(t), θ1(t), θ2(t)] = [αd, βd, γd, dd, 0, 0],

lim
t→∞

[ Ûα(t), Ûβ(t), Ûγ(t), Ûd(t), Ûθ1(t), Ûθ2(t)] = [0, 0, 0, 0, 0, 0],
(10)
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where αd, βd, γd, dd are the desired references for the
actuated states.
In our development we will consider the following reason-
able assumptions.

Assumption 1 The payload swings satisfy the following
inequality |θ1,2 | <

π
2 .

Assumption 2 The cable length is always greater than
zero to avoid singularity in the model (5): d(t) >,∀t ≥ 0.

3 Control Design and Stability Analysis
The control strategy proposed in this paper consists of

a nonlinear control law based on energy consideration.
The corresponding stability and convergence analysis is
demostrated by using the LaSalle’s invariance principle.

In order to develop our control law, we started to con-
sidered the energy of system (2)-(3), wich is

E(t) =
1
2
ÛqT M(q) Ûq + mgd(1 − Cθ1Cθ2 ), (11)

where the first term is the kinetic energy of the crane,
whereas the second term represents the payload poten-
tial energy. Based on (11), we can define the following
Lyapunov function candidate:

V(t) =
1
2
ÛqT M(q) Ûq + mgd(1 − Cθ1Cθ2 )

+
1
2

kpαe2
α +

1
2

kpβe2
β +

1
2

kpγe2
γ +

1
2

kpde2
d,

(12)

where eα, eβ, eγ, ed are the error signals defined as:

eα = αd − α, eβ = βd − β, eγ = γd − γ, ed = dd − d.
(13)

Differentiating the equation (12) with respect to the time
and using (5) we obtain

ÛV(t) = Ûα(u1 − kpαeα)

+ Ûβ(u2 − kpβeβ − glBCβ(m +
1
2

mBmJ ))

Ûγ(u3 − kpγeγ − glJCγ(m +
1
2

mJ ))

+ Ûd(u4 − kpded + mgCθ1Cθ2 + mg(1 − Cθ1Cθ2 ))

−dθ1C2
θ2
|θ1 | Ûθ

2
1 − dθ2 |θ1 | Ûθ

2
2 .

(14)

In order to cancel the gravitational terms and keep ÛV(t)
non-positive, the following controller is designed:

u1 = kpαeα − kdα Ûα, (15)

u2 = kpβeβ − kdβ Ûβ + glBCβ(m +
1
2

mBmJ ), (16)

u3 = kpγeγ − kdγ Ûγ + glJCγ(m +
1
2

mJ ), (17)

u4 = kpded − kdd Ûd + mg, (18)

where kpα, kpβ , kpγ, kpd , kdα, kdβ , kdγ, kdd ∈ R are
positive control gains.
Substituting (15)-(18) into (14), one obtains

ÛV(t) = −kdα Ûα2 − kdβ Ûβ2 − kdγ Ûγ2

−kdd Ûd2 − dθ1C2
θ2
Ûθ2
1 − dθ2

Ûθ2
2 ≤ 0,

(19)

The following theorem describes the stability property
of the crane using the proposed control law (15)-(18).

Theorem 1 Consider the system (5)-(9). Under Assump-
tions 1-2, the controller (15)-(18) makes every equilibrium
point (10) satisfying Assumptions 1-2, asymptotically sta-
ble.

Proof: As already seen, the derivative of the Lyapunov
function candidate (12) is (19) which is negative semidef-
inite.
At this point let Φ be defined as the set where ÛV(t) = 0,

i.e.
Φ = {q, Ûq | ÛV(t) = 0}. (20)

Further, let Γ represent the largest invariant set in Φ
where the Assumptions 1-2 are verified. Based on (19), it
can be seen that Γ is the set such that:

Ûα = 0, Ûβ = 0,⇒ Üα = 0, Üβ = 0,
Ûγ = 0, Ûd = 0,⇒ Üγ = 0, Üd = 0,
Ûθ1 = 0, Ûθ2 = 0,⇒ Üθ1 = 0, Üθ2 = 0,
Ûeα = 0, Ûeβ = 0,⇒ eα = φ1, eβ = φ2,

Ûeγ = 0, Ûed = 0,⇒ eγ = φ3, ed = φ4,

(21)

where φ1,2,3,4 are constants to be determined.
Combining (21) with (15)-(18) and (5), we obtain the

conditions:

kpαeα = 0,
kpβeβ = 0,
kpγeγ = 0,

−gmcosθ1cosθ2 = −mg + kpded,

gmdcosθ2sinθ1 = 0,
gmdcosθ1sinθ2 = 0.

(22)

From the first three equations of (22),we will have that

kpαeα = 0⇒ eα = 0⇒ φ1 = 0⇒ α = αd, (23)

kpβeβ = 0⇒ eβ = 0⇒ φ2 = 0⇒ β = βd, (24)

kpγeγ = 0⇒ eγ = 0⇒ φ3 = 0⇒ γ = γd . (25)
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From the last two equations of (22), due to Assumption 2,
one can be obtained that:

cosθ2sinθ1 = 0,
cosθ1sinθ2 = 0,

(26)

The following conclusion can be achieved:

θ1 = θ2 = (kπ) ∨
(2k + 1)

2
π, k ∈ Z. (27)

However, due to Assumption 1, the only acceptable solu-
tion will be:

θ1 = θ2 = 0. (28)

By inserting the (28) in the forth equation of (22), one can
conclude that:

kpded = 0⇒ ed = 0⇒ φ4 = 0⇒ d = dd, (29)

�

Remark 1 Other types of cranes such as overhead cranes,
boom cranes, tower cranes etc, have similar dynamic char-
acteristics to a knuckle cranes. Accordingly, the controller
proposed in this paper may be adapted to all these under-
actuated system.

4 Simulation Results
In order to demonstrate the effectiveness of the proposed

strategy, in this section we simulate the knuckle crane in
Fig. 1. The practical performances of the proposed control
approach are compared with a linear quadratic regulator
(LQR) obtained by linearization.The physical parameters
are selected as follows: mb = 2kg, mj = 3kg, m =
1k, lb = 5m, lj = 4m.
The parameters for the control law (15)-(18) are the
following:kpα = 30, kpβ = 10, kpγ = 10, kpd = 1, kdα =
50, kdβ = 30, kdγ = 50, kdd = 10.
For the LQR control approach, first, the crane dynamics is
linearized around the equilibrium point, and then, the fol-
lowing weight matrices have been chosen to stabilize the
plant: Q = diag{25, 400, 450, 200, 1, 1, 1, 1, 1, 1, 120, 120}
and R = diag{0.1, 0.1, 0.1, 1}.

As one can see in Figg. 3-4-5 both controllers success-
fully move the crane towards the desired angular positions.
Although the LQR controller moves the first three degrees
of the cranes (tower, boom, and jib angles) slightly faster
than the method presented in this paper, one can notice
that our method produces much less oscillations of the
load (see Figg.7-8) and of the cable (see Fig. 6) , resulting
in an overall faster and safer stabilization of the load. It is
worth noting that in both methods, the input profiles and
maximum values are almost similar. This values are well
within the typical limits of the crane actuators.
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Figure 3. Tower angle α. Black line: Desired
reference. Blue line: Nonlinear controller. Red
line: LQR.
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Figure 4. Boom angle β. Black line: Desired
reference. Blue line: Nonlinear controller. Red
line: LQR.
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Figure 5. Jib angle γ. Black line: Desired reference.
Blue line: Nonlinear controller. Red line: LQR.
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Figure 6. Rope length. Black line: Desired ref-
erence. Blue line: Nonlinear controller. Red line:
LQR.

5 Conclusion
This paper proposed a nonlinear control scheme for the

control of knuckle crane. The main contribution of this
article is that for the first time a detailed mathematical
model is shown where the complexity of this type of sys-
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Figure 7. Payload angle θ1. Blue line: Nonlinear
controller. Red line: LQR.
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Figure 8. Payload angle θ2 Blue line: Nonlinear
controller. Red line: LQR.
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Figure 9. Control inputs u1 & u2. Blue line: Non-
linear controller. Red line: LQR.
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Figure 10. Control inputs u3 & u4. Blue line:
Nonlinear controller. Red line: LQR.

tem emerges. Furthermore, the proposed control is based
directly on the nonlinear system avoiding linearization.

Despite the complexity of the model, the proposed control
scheme is able to guide the crane towards a desired refer-
ence and ensuring that the non-actuated variables (i.e., θ1
and θ2) go to zero in a fast way.

Appendix
The nonzero entries of the system matrices M(q),

C(q, Ûq), F( Ûq) and g(q) are define as follows:

m11 = Itot + d2m + A1C2
β + A2C2

γ + A3CβCγ

+2A4dCβSθ2 + 2A5dCγSθ2 − d2mC2
θ1

C2
θ2

m22 = A1 + IB m33 = A2 + IJ m44 = m

m55 = dmC2
θ2

m66 = dm m12 = m21 = A4dCθ2 SβSθ1

m13 = m31 = A5dCθ2 SγSθ1 m14 = m41 = Cθ2 Sθ1 (A4Cβ + A5Cγ)
m15 = m51 = dCθ1Cθ2 (A4Cβ + A5Cγ + dmSθ2 )

m16 = m61 = −dSθ1 (dm + A4CβSθ2 + A5CγSθ2 )

m23 = m32 =
1
2

(A3Cβ−γ),m24 = m42 = −A4(SβSθ2 + CβCθ1Cθ2 )

m25 = m52 = A4dCβCθ2 Sθ1

m26 = m62 = −A4d(Cθ2 Sβ − CβCθ1 Sθ2 )
m34 = m43 = −A5(SγSθ2 + CγCθ1Cθ2 )

m35 = m53 = A5dCγCθ2 Sθ1 ,m36 = m63 = −A5d(Cθ2 Sγ − CγCθ1 Sθ2 )
c11 = 2d Ûdm − A2 ÛγS2γ − A1 ÛβS2β + 2A4 ÛdCβSθ2

+2A5 ÛdCγSθ2 − A3 ÛβCγSβ − A3 ÛγCβSγ

−2d ÛdmC2
θ1

C2
θ2

+ 2A4d Ûθ2CβCθ2 + 2A5d Ûθ2CγCθ2 − 2A4d ÛβSβSθ2

−2A5d ÛγSγSθ2 + 2d2 Ûθ1mCθ1C2
θ2

Sθ1 + 2d2 Ûθ2mC2
θ1

Cθ2 Sθ2

c12 = A4 ÛdCθ2 SβSθ1 + Ad
ÛβCβCθ2 Sθ1 + A4d Ûθ1Cθ1Cθ2 Sβ − A4d Ûθ2SβSθ1 Sθ2

c13 = A5 ÛdCθ2 SγSθ1 + A5d ÛγCγCθ2 Sθ1 +
A5d Ûθ1Cθ1Cθ2 Sγ − A5d Ûθ2SγSθ1 Sθ2

c14 = Ûθ1Cθ1Cθ2 (A4Cβ + A5Cγ) − Cθ2 Sθ1 (A4 ÛβSβ + A5 ÛγSγ)
− Ûθ2Sθ1 Sθ2 (A4Cβ + A5Cγ)

c15 = dCθ1Cθ2 ( ÛdmSθ2 − A4 ÛβSβ − A5d ÛγSγ + d Ûθ2mCθ2 )
+ ÛdCθ1Cθ2 (A4Cβ + A5Cγ + dmSθ2 ) − d Ûθ1Cθ2 Sθ1 (A4Cβ
+A5Cγ + dmSθ2 ) − d Ûθ2Cθ1 Sθ2 (A4Cβ + A5Cγ + dmSθ2 )

c16 = −dSθ1 ( Ûdm + A4 Ûθ2CβCθ2 + A5 Ûθ2CγCθ2−

A4d ÛβSβSθ2 − A5 ÛγSγSθ2 ) − ÛdSθ1 (dm + A4CβSθ2 +
A5CγSθ2 ) − d Ûθ1Cθ1 (dm + A4CβSθ2 + A5CγSθ2 )

c21 =
1
2

( ÛαSβ(2A1Cβ + A3Cγ + 2A4dSθ2 ))+

1
2

(3A4 ÛdCθ2 SβSθ1 ) +
1
2

(A4d ÛβCβCθ2 Sθ1 )+

1
2

(3A4d Ûθ1Cθ1Cθ2 Sβ) −
1
2

(3A4d Ûθ2SβSθ1 Sθ2 )

1595



37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

c22 =
1
4

(A3 ÛγSβ−γ) +
1
2

(A4 Ûd(CβSθ2 − Cθ1Cθ2 Sβ))

+
1
2

(A4d Ûθ2(CβCθ2 + Cθ1 SβSθ2 )) −
1
2

(A4d ÛαCβCθ2 Sβ)

+
1
2

(A4d Ûθ1Cθ2 SβSβ), c23 = −
1
4

(A3Sβ−γ)( Ûβ − 2 Ûγ))

c24 =
1
2

(A4 ÛβCθ1Cθ2 Sβ) − A4 Ûθ2Cθ2 Sβ −
1
2

(A4 ÛβCβSθ2 )

+A4 Ûθ1CβCθ2 Sβ + A4 Ûθ2CβCθ1 Sθ2 +
1
2

(A4 ÛαCθ2 SβSβ)

c25 = A4 ÛdCβCθ2 Sβ +
1
2

(A4d ÛαCθ1Cθ2 Sβ)

+A4d Ûθ1CβCθ1Cθ2 −
1
2

(A4d ÛβCθ2 SβSβ) − A4d Ûθ2CβSβSθ2

c26 = A4d Ûθ2SβSθ2 −
1
2

(A4d ÛβCβCθ2 ) − A4 ÛdCθ2 Sβ+

A4 ÛdCβCθ1 Sθ2 −
1
2

(A4d ÛβCθ1 SβSθ2 )

−A4d Ûθ1CβSβSθ2 −
1
2

(A4d ÛαSβSβSθ2 ) + A4d Ûθ2CβCθ1Cθ2

c31 =
1
2

( ÛαSγ(2A2Cγ + A3Cβ + 2A5dSθ2 ))

+
1
2

(3A5 ÛdCθ2 SγSθ1 ) +
1
2

(A5d ÛγCγCθ2 Sθ1 )

+
1
2

(3A5d Ûθ1Cθ1Cθ2 Sγ) −
1
2

(3A5d Ûθ2SγSθ1 Sθ2 )

c32 = −
1
4

(A3Sβ−γ)(2 Ûβ − Ûγ))

c33 =
1
2

(A5 Ûd(CγSθ2 − Cθ1Cθ2 Sγ)) −
1
4

(A3 ÛβSβ−γ)

+
1
2

(A5d Ûθ2(CγCθ2 + Cθ1 SγSθ2 )) −
1
2

(A5d ÛαCγCθ2 Sθ1 )

+
1
2

(A5d Ûθ1Cθ2 SγSθ1 )

c34 =
1
2

(A5 ÛγCθ1Cθ2 Sγ) − A5 Ûθ2Cθ2 Sγ −
1
2

(A5 ÛγCγSθ2 )

+A5 Ûθ1CγCθ2 Sθ1 + A5 Ûθ2CγCθ1 Sθ2 +
1
2

(A5 ÛαCθ2 SγSθ1 )

c35 = A5ddCγCθ2 Sθ1 +
1
2

(A5d ÛαCθ1Cθ2 Sγ)

−
1
2

(A5d ÛγCθ2 SγSθ1 ) − A5d Ûθ2CγSθ1 Sθ2 + A5d Ûθ1CγCθ1Cθ2

c36 = A5d Ûθ2SγSθ2 −
1
2

(A5d ÛγCγCθ2 ) − A5 ÛdCθ2 Sγ

+A5 ÛdCγCθ1 Sθ2 −
1
2

(A5d ÛγCθ1 SγSθ2 )

−A5d Ûθ1CγSθ1 Sθ2 −
1
2

(A5d ÛαSγSθ1 Sθ2 ) + A5d Ûθ2CγCθ1Cθ2

c41 = d Ûθ2mSθ1 − d Ûαm − A4 ÛαCβSθ2 − A5 ÛαCγSθ2

+d ÛαmC2
θ1

C2
θ2

+
1
2

(A4 Ûθ1CβCθ1Cθ2 ) +
1
2

(A5 Ûθ1CγCθ1Cθ2 )

−
1
2

(3A4 ÛβCθ2 SβSθ1 ) −
1
2

(A4 Ûθ2CβSθ1 Sθ2 )

−
1
2

(3A5 ÛγCθ2 SγSθ1 ) −
1
2

(A5 Ûθ2CγSθ1 Sθ2 ) − d Ûθ1mCθ1Cθ2 Sθ2

c42 = A4 ÛβCθ1Cθ2 Sβ − (A4 Ûθ2Cθ2 Sβ)/2 − A4 ÛβCβSθ2

+
1
2

(A4 Ûθ1CβCθ2 Sθ1 ) +
1
2

(A4 Ûθ2CβCθ1 Sθ2 ) −
1
2

(A4 ÛαCθ2 SβSθ1 )

c43 = A5 ÛγCθ1Cθ2 Sγ −
1
2

(A5 Ûθ2Cθ2 Sγ) − A5 ÛγCγSθ2

+
1
2

(A5 Ûθ1CγCθ2 Sθ1 ) +
1
2

(A5 Ûθ2CγCθ1 Sθ2 ) −
1
2

(A5 ÛαCθ2 SγSθ1 )

c45 = d Ûθ1m(S2
θ2
− 1) −

1
2

( ÛαCθ1Cθ2 (A4Cβ

+A5Cγ + 2dmSθ2 )) −
1
2

(A4 ÛβCβCθ2 Sθ1 ) −
1
2

(A5 ÛγCγCθ2 Sθ1 )

c46 =
1
2

(A4 Ûβ(Cθ2 Sβ − CβCθ1 Sθ2 )) +
1
2

(A5 Ûγ(Cθ2 Sγ

−CγCθ1 Sθ2 )) − d Ûθ2m +
1
2

( ÛαSθ1 (2dm + A4CβSθ2 + A5CγSθ2 ))

c51 = 2d2 Ûθ2mCθ1C2
θ2
−

1
2

(d2 Ûθ2mCθ1 ) +
1
2

(A4 ÛdCβCθ1Cθ2 )

+
1
2

(A5 ÛdCγCθ1Cθ2 ) −
1
2

(3A4d ÛβCθ1Cθ2 Sβ) −
1
2

(A4d Ûθ1CβCθ2 Sθ1 )

−
1
2

(A4d Ûθ2CβCθ1 Sθ2 ) −
1
2

(3A5d ÛγCθ1Cθ2 Sγ) −
1
2

(A5d Ûθ1CγCθ2 Sθ1 )

−
1
2

(A5d Ûθ2CγCθ1 Sθ2 ) + 2d ÛdmCθ1Cθ2 Sθ2

−
1
2

(d2 Ûθ1mCθ2 Sθ1 Sθ2 ) − d2 ÛαmCθ1C2
θ2

Sθ1

c52 =
1
2

(A4 ÛdCβCθ2 Sθ1 ) −
1
2

(A4d ÛαCθ1Cθ2 Sβ)

−A4d ÛβCθ2 SβSθ1 −
1
2

(A4d Ûθ2CβSθ1 Sθ2 ) +
1
2

(A4d Ûθ1CβCθ1Cθ2 )

c53 =
1
2

(A5 ÛdCγCθ2 Sθ1 ) −
1
2

(A5d ÛαCθ1Cθ2 Sγ) − A5d ÛγCθ2 SγSθ1

−
1
2

(A5d Ûθ2CγSθ1 Sθ2 ) +
1
2

(A5d Ûθ1CγCθ1Cθ2 )

c54 = −
1
2

( ÛαCθ1Cθ2 (A4Cβ + A5Cγ)) −
1
2

(A4 ÛβCβCθ2 Sθ1 )

−
1
2

(A5 ÛγCγCθ2 Sθ1 )

c55 =
1
2

(d ÛαCθ2 Sθ1 (A4Cβ + A5Cγ + dmSθ2 ))

−
1
2

(A4d ÛβCβCθ1Cθ2 ) −
1
2

(A5d ÛγCγCθ1Cθ2 )

c56 =
1
2

(d ÛαCθ1 (dm + A4CβSθ2 + A5CγSθ2 ))

+
1
2

(A4d ÛβCβSθ1 Sθ2 ) +
1
2

(A5d ÛγCγSθ1 Sθ2 )

c61 =
1
2

(3A4d ÛβSβSθ1 Sθ2 ) −
1
2

(d2 Ûθ1mCθ1 )

−A4d ÛαCβCθ2 − A5d ÛαCγCθ2 −
1
2

(A4d ÛdCβSθ1 Sθ2 )

−
1
2

(A5d ÛdCγSθ1 Sθ2 ) −
1
2

(A4d Ûθ1CβCθ1 Sθ2 )

−
1
2

(A4d Ûθ2CβCθ2 Sθ1 ) −
1
2

(A5d Ûθ1CγCθ1 Sθ2 )

−
1
2

(A5d Ûθ2CγCθ2 Sθ1 ) − 2d ÛdmSθ1 +
1
2

(3A5d ÛγSγSθ1 Sθ2 )

c62 =
1
2

(A4d Ûθ2SβSθ2 ) − A4d ÛβCβCθ2 −
1
2

(A4d ÛdCθ2 Sβ)

+
1
2

(A4d ÛdCβCθ1 Sθ2 ) −
1
2

(A4d Ûθ1CβSθ1 Sθ2 )

+
1
2

(A4d ÛαSβSθ1 Sθ2 ) +
1
2

(A4d Ûθ2CβCθ1Cθ2 )
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c63 =
1
2

(A5d Ûθ2SγSθ2 ) − A5d ÛγCγCθ2 −
1
2

(A5d ÛdCθ2 Sγ)

+
1
2

(A5d ÛdCγCθ1 Sθ2 ) − A5d ÛγCθ1 SγSθ2

+
1
2

(A5d ÛαSγSθ1 Sθ2 ) +
1
2

(A5d Ûθ2CγCθ1Cθ2 )

c64 =
1
2

(A4 Ûβ(Cθ2 Sβ − CβCθ1 Sθ2 )) +
1
2

(A5 Ûγ(Cθ2 Sγ

−CγCθ1 Sθ2 )) +
1
2

( ÛαSθ1 Sθ2 (A4Cβ + A5Cγ))

c65 =
1
2

(d2 ÛαmCθ1 ) − d2 ÛαmCθ1C2
θ2

+
1
2

(A4d ÛαCβCθ1 Sθ2 )

+
1
2

(A4d ÛβCβSθ1 Sθ2 ) +
1
2

(A5d ÛγCγSθ1 Sθ2 )

c66 =
1
2

(d ÛαCθ2 Sθ1 (A4Cβ + A5Cγ))−

1
2

(A5d Ûγ(SγSθ2 + CγCθ1Cθ2 )) −
1
2

(A4d Ûβ(SβSθ2 + CβCθ1Cθ2 ))

g2 =
1
2
glBcosβ(2m + mB + 2mJ ),

g3 =
1
2
glJcosγ(2m + mJ ), g4 = −gmcosθ1cosθ2,

g5 = gmdcosθ2sinθ1, g6 = gmdcosθ1sinθ2

f1 = dθ1C2
θ2
|θ1 | Ûθ1, f2 = dθ2θ2 | Ûθ2

where the following auxiliary variables are defined: A1 =
l2
Bm + (l2

BmB)/4 + l2
BmJ, A2 = l2

Jm + (l2
JmJ )/4, A3 =

2lBlJm + lBlJmJ, A4 = 2lBm, A5 = 2lJm
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