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Abstract – 

Unmanned Aerial Vehicles (UAVs) are an 

emerging technology that serve a range of 

applications for construction purposes including the 

creation of site survey maps, jobsite monitoring for 

routine progress reports, and structural inspections. 

Though while promising, drones have not yet been 

widely utilized by the construction industry to their 

fullest potential and there are still many areas to 

explore. One such activity is utilizing drones to 

optimize concrete delivery to a jobsite.  Ready-mix 

concrete is an essential part of many projects, but its 

quick setting time makes proper delivery planning 

essential. The purpose of this paper is to investigate 

the application of UAVs and traffic data in scheduling 

a concrete delivery and develop an overall framework 

to optimize this activity.  The proposed Automated 

Construction Data Acquisition and Simulation 

(ACDAS) framework is comprised of three main steps: 

collection, simulation, and reporting. To implement 

the concept, traffic data of a construction site in San 

Luis Obispo, California was collected and EZStrobe 

discrete event simulation modelling was used to model 

three potential routes from a local concrete batch 

plant to the specified job site.  The model was able to 

predict the most efficient route for concrete delivery 

in a congested traffic area. 

Keywords – Unmanned Aerial Vehicles; UAVs; 

optimization; ready mix concrete; construction 
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1 Introduction 

A large amount of information is involved in the 

planning of construction projects and the 

interdependency among information imposes a heavy 

burden on planners [1]. Construction projects often 

involve huge operations, with activities taking place over 

large areas so one of the major issues that construction 

practitioners struggle with is having real-time control of 

the project. This is simply because real-time control 

requires a high volume of real-time data. Without a 

comprehensive set of real-time data about all parameters 

that impact the project, it will be difficult to reach the 

optimum productivity of construction activities. The 

most common tools used for recording visual data on 

construction sites include digital cameras, smart phones, 

tablets, laser scanning devices, and terrestrial and aerial 

unmanned vehicles [2,3]. Information that is collected 

manually generally is not comprehensive and does not 

relate the data to other parameters that impact the project. 

In recent years, Unmanned Aerial Vehicles (UAVs) have 

gained popularity thanks to their demonstrated 

superiority over traditional methods in various 

construction tasks by offering an opportunity to capture 

information for visualizing site layout, planning, and 

organization in real-time [4]. Drones are currently used 

in construction to examine terrain at future construction 

sites, track progress at existing construction sites, 

inventory the assets, and provide routine facility 

maintenance [5]. They achieve this by using LiDAR (a 

detection method utilizing lasers) or a technique called 

Photogrammetry which uses photography to extract 

measurements of the environment. Overlapping imagery 

provides multiple perspectives of the same feature and 

allows for distance and volume measurements to be taken 

and provides outputs in the form of “point clouds”, 3D 

images used to render the observed environment in a 

virtual setting [6]. While drones are a proven powerful 

tool, they have not yet been widely utilized by the 

construction industry. This has been partly due to low 

familiarity and autonomy of project teams with the use of 

the visual data technologies [7]. Because of this, many 

aspects of the construction process could still incorporate 

drones to improve efficiency.  

One integral activity that could benefit from UAV 

incorporation is scheduling concrete deliveries to a 

construction site. Delivering concrete to a jobsite is an 

essential step in many construction projects and must be 

completed with precision. Procuring, delivering, and 

pouring concrete is a major milestone in many projects 

as concrete is often the foundation. Propper planning is 

essential as conflicts between delivery and production 
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will arise during the execution of plans which can cause 

chaos in operations management [8]. Planning is 

especially important for the ready-mix concrete (RMC) 

industry as it has more potential transport barriers than 

any other manufacturing industry since RMC has a low 

value-to-weight ratio and is highly perishable as it must 

be laid on site before it solidifies [9]. Per ASTM C94, 

concrete discharge should occur within 90 minutes after 

the introduction of the mixing water to the cement and 

aggregates [10]. Going over this threshold can result in 

the batch being sent back to the plant and essentially 

wasted. Therefore, optimizing the travel time and 

distance the concrete travels in the truck is extremely 

important to ensure the concrete is poured within the 90-

minute window.  

Unfortunately, this time constraint can pose a 

problem since transportation of RMC is heavily 

influenced by current traffic conditions such as traffic 

congestions [11]. Understanding the access routes 

available for travel to the construction site and their 

potentials for congestion. While the traffic impact caused 

by isolated incidents such as car accidents cannot be 

predicted, understanding overall traffic patterns can be an 

important tool in concrete delivery planning. The time 

chosen for a concrete delivery can have a significant 

impact on the success of the delivery as the travel time 

between concrete batching plants and construction sites 

can significantly fluctuate at different hours of the day 

and on different days of the week [12]. Therefore, barring 

the unexpected, historical traffic data is a useful resource 

in selecting the optimal time to leave. In addition to 

traffic delays, pedestrian and bicycle traffic can also 

impact concrete dispatch by increasing the amount of 

time the concrete is in transport. This issue can be 

assumed to be especially pertinent to college campuses 

and city centres, locations often undergoing construction 

activities. All these hurdles pose the question: how can 

concrete be delivered efficiently? 

This constraint can be referred to as the Concrete 

Delivery Problem (CDP). The CDP aims to find efficient 

routes for a fleet of (heterogeneous) vehicles, alternating 

between concrete production centres and construction 

sites, adhering to strict scheduling and routing constraints. 

Procuring and coordinating a fleet is especially important 

since the amount of concrete requested by a single 

customer typically exceeds the capacity of a single truck 

[13]. When multiple deliveries are needed, the temporal 

spacings between the consecutive deliveries may not 

exceed certain limits (time lags) to prevent the concrete 

already poured from partially hardening before the rest of 

the supply arrives at the site [14]. Therefore, with 

multiple deliveries (variables) required, optimizing the 

concrete delivery path is essential to avoid time-induced 

failure. 

2 Background 

With such a high level of uncertainty in concrete 

operations travel times, traditional practices for 

scheduling concrete production and delivery are largely 

based on trial and error and depend on the dispatcher's 

experience [15]. Transitioning from this reliance on 

human intuition to sophisticated data collection and 

modelling techniques can help to optimize concrete 

delivery time. This paper seeks to utilize data collected 

by UAV, Google Maps, and local transportation 

departments to model and simulate concrete delivery to a 

construction site. The model output is expected to impact 

the construction schedule and provide more reliable dates 

and times to pour the concrete.  

2.1 Traffic Impacts on RMC Delivery 

Concrete delivery is an integral part of the 

construction process. RMC delivery planning is mainly 

determined by skilled batch plant managers that schedule 

truck assignments to single deliveries and estimate the 

vehicles needed such that the total demand can be 

satisfied. The goal is to plan the whole process optimally 

to ensure utilization of machinery and workers of the 

batch plant and construction site [11,16]. A major 

variable in concrete delivery is traffic. Because of this, 

traffic patterns and their effects on construction activities 

have been investigated. Carr 2000 created a Construction 

Congestion Cost system for the Michigan Department of 

Transportation to balance construction productivity and 

traffic delay using 5 excel sheets to produce an output of 

daily user cost, total user cost, and project cost [17]. Naso 

et al. 2007 determined that on-time delivery of RMC can 

be significantly affected by peak-hour and non-peak-hour 

traffic [18]. Hadiuzzaman et al. 2014  directly utilized 

traffic information by creating a construction-traffic 

interdisciplinary simulation (CTISIM) framework based 

on high level architecture [19]. After determining the 

optimal arrangement of truck-mixers, their deviation 

between simulated and requested arrival of truck mixers 

was reduced by 68.7%, compared to the deviation for the 

arrangement as in the off-peak hour. In addition, their 

requested and optimized arrival intervals were all below 

5.0 min, showing the feasibility of their integrated 

simulation model. These studies highlight that any useful 

simulation model for concrete delivery must consider 

traffic factors and conditions. 

2.2 Simulation Modeling 

The construction industry has embraced the power of 

simulation in recent years. Construction Simulation can 

be defined as the science of developing and 

experimenting with computer-based representations of 

construction systems to understand their underlying 
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behaviour [20]. Various researchers have utilized this to 

solve problems related to construction planning and 

activities.  

Simulation modelling has been investigated as a 

means for optimizing scheduling of various construction-

related activities. Maghrebi et al. 2015 investigated six 

machine learning algorithms tailored to RMC 

dispatching and compared them to observed human 

decision data that was employed for a specific case study 

[21]. While some models worked faster than others, they 

all were more successful than the human-decision control. 

Torjai and Kruzslicz 2016 sought to optimize the delivery 

of biomass from satellite storage locations to a central 

biorefinery and found that the mean trip duration is a 

good estimation of the minimal number of required 

trucks and a schedule without truck idle time was always 

found even when the number of trucks had been locked 

at its minimum [22]. Razavialavi and AbouRizk 2017 

outline a framework to enable planners to anticipate site 

layout variables (temporary facilities size, location, 

orientation) and construction plan variables (resources 

and delivery plans) to simultaneously optimize them in 

an integrated model [23]. Khan et al. 2017 describes the 

implementation of a failure mode, effects, and criticality 

analysis (FMECA) tool and discrete event simulation to 

assess supply chain risks, identify vulnerabilities, and 

measure the impact of disruptions of a ready-mix 

concrete supply chain [24]. Kim et al. 2020 proposes a 

dynamic model for precast concrete production 

scheduling by using discrete-time simulation method to 

respond to due date changes in real time and by using a 

new dispatching rule that considers the uncertainty of the 

due dates to minimize tardiness [25]. The results of these 

studies indicate that simulation modelling is a viable 

method for planning and optimizing activities and should 

be investigated for applying to ready mix concrete 

delivery.  

Although these studies indicate that simulation 

modelling is a proven tool that can be used to charter the 

optimal path from a concrete batch plant to a job site, they 

all share a limitation in that they do not account for the 

impacts smaller scale factors, mainly pedestrians and 

bicyclists, can have on deliveries to populated areas and 

many do not explicitly use data collected by drones, 

which could prove a beneficial addition.  

While there are many studies on the impact 

construction activities have on pedestrians, no previous 

studies have been found that investigate how pedestrians 

and bicyclists impact the construction schedule. While 

this may not seem like an issue at first glance, 

underestimating the impacts of non-vehicles on 

construction can have just as much impact when trying to 

prevent delays. Take, for example, a model that perfectly 

simulates the local traffic data in San Luis Obispo, 

California and schedules the optimal concrete delivery to 

Cal Poly to arrive at 8:05 AM on a Tuesday. This falls 

during a passing period where thousands of students will 

be entering and leaving campus on foot and on bike. This 

severely compromises the simulation model and what 

was originally thought to be the best choice based solely 

on vehicular traffic can end up being the worst when 

pedestrian and bicycle data is included. Therefore, data 

should be collected on pedestrian and bicycle patterns 

around populated job sites; this can be accomplished with 

unmanned aerial vehicles (UAVs). 

3 Methodology 

The literature review conducted by the authors 

revealed both drones and simulation modeling are 

effective tools for construction practitioners, but they 

have not been combined for concrete delivery 

applications. The following is a contribution to bridge 

this gap. Traffic data and drones can be used to provide 

data to model the optimal delivery scenarios. The 

proposed framework is named Automated Construction 

Data Acquisition and Simulation (ACDAS) and consists 

of three modules. 

3.1 Simulation Model 

The following sections detail the framework modules 

created. The steps in sequence are Collect, Simulate, and 

Report. Fig. 1 summarizes the steps of this framework.  

Figure 1. Main Steps of ACDAS Framework 

3.1.1 Data Collection  

The first step of this framework is to capture relevant 

traffic data for the potential concrete delivery routes. For 

this proposal, the data collected is two-fold: traffic data 

for the roads leading to the site and traffic data 

immediately on and around the site. Historical traffic data 

for the roads leading from the concrete batch plant to the 

job site will be collected from Google Maps, a common 

GPS system used by drivers (Fig. 2). Google Maps not 

only provides data for how long a trip will take at the 

given time; it can also predict the duration of a trip 

planned in the future based on historical precedents. This 

allows the eventual model to compare the durations of 

different paths and different departure times. In addition 

to Google Maps data, local databases can be utilized to 

determine information about the roads relevant to the 

planned delivery. For our experimental study in San Luis 

Obispo, the County of San Luis Obispo provides Traffic 
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Counts can provide valuable information to our model 

[26]. This site lists the peak hour (the time and traffic 

volume for the highest AM and PM peak hour for the 

duration of the count) and peak day volume (the day of 

the week and the traffic volume on the highest day for the 

duration of the count) for all county maintained roads. 

This information is compiled for every day of the year 

from 2015 to present and thus can provide good 

estimations of historical precedents. 

Figure 2. Sample Google Maps routes between a 

concrete batch plant and construction site. 

While traffic data can predict the impact vehicles will 

have on deliveries, other site-specific factors such as 

pedestrian traffic and bicycles should be incorporated 

into the analysis. Drones can be utilized on construction 

sites to survey conditions around the site to determine 

when any pedestrian- or bicycle-induced traffic could 

occur. Drone data collected daily can be fed into the 

model to determine if there are any patterns in small-

scale traffic at specific times in the day to allow the model 

to account for and avoid these bottlenecks. The following 

case study is the first iteration of this framework so data 

from drones was not included but will be the focus of 

future expansions. 

If the collected data is not sufficient, the collection 

process can be expanded to fill in any gaps. Once all 

required data is captured and complied, the next step is to 

input that data into a simulation model. 

3.1.2 Discrete Event Simulation Model 

The modelling steps of the concrete delivery process 

are shown in Fig. 3. The first step involved is developing 

a discrete simulation that depicts the real-world scenario 

of the concrete delivery process. The model for this study 

was built using EZStrobe simulation software [27]. 

EZStrobe is used in the construction industry as a 

general-purpose simulation system designed for 

modelling construction processes. However, it is also 

utilized to model other types of systems because it is 

domain independent. EZStrobe takes multi-step activities, 

such as concrete delivery, and models them as 

just one activity and provides a duration that represents 

the time it takes to perform all n steps. After the 

simulation model is generated, it can be run for each of 

the route alternatives. The model results for each scenario 

are then analysed and summarized to highlight the most 

efficient route.  

Figure 3. Development of the discrete event 

simulation model. 

 

3.1.3 Reports 

The purpose of this framework is to generate a report 

that accurately outlines the most efficient delivery path 

for a truck to take from a concrete batch plant to a job site. 

The report outputs include: the optimal route to take to 

the job site, the total delivery duration, the optimal time 

to start the delivery, the forecasted arrival time, and the 

number of trucks required. This report will aid Project 

Managers in planning the concrete pour activities months 

in advance and will allow the activity to proceed as 

efficiently as possible when the time comes.  

3.2 Experimental Study 

The proposed framework was implemented to verify 

its applicability. The implementation was specifically 

tried to verify how collected traffic data can help in 

developing an optimum schedule for the concrete 

delivery to the construction site. The site investigated in 

this study is a four-level 102,000 square foot construction 

project at the California Polytechnic State University 

campus in San Luis Obispo, California (Fig. 4). This site 

was selected because it can only be accessed by a limited 
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Figure 4. An image of the construction site 

investigated for this study. 

number of heavy traffic routes. The goal is to utilize 

simulation modeling to determine the best route to 

deliver the concrete to the site to assist the project team 

in planning this activity efficiently. The preliminary 

implementation collected traffic data on three routes that 

started at a local batch plant and ended at the job site; 

these routes are denoted as R1, R2, and R3 (Fig. 5).  

Figure 5. Project site layout before construction 

with potential delivery routes (Google Maps).  

The traffic data collected was sourced using a 

combination of Google Maps data and local data. This 

data was fed into a developed simulation model that held 

the number of trucks available, number of mixing 

stations, and total amount of concrete required constant 

for each route (Table 1).  

Table 1. Constants used in the simulation model. 

Three simulations were run to account for each of the 

three routes. Each analysis follows the life cycle of a 

single truck and uses statistical modelling to determine 

the total durations of each step in the concrete pour 

activity and the total duration of the concrete pour event. 

The flowchart in Fig 6. summarizes the simulation model 

created in EZStrobe for Route 1. The circles represent the 
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Figure 6. EZStrobe simulation model flow for 

Route 1. 

queuing systems the trucks encounter such as loading and 

pouring while the rectangles represent the truck entity. 

When the entity (truck) and its resource (concrete) are 

two units (i.e. the truck cannot leave until all concrete is 

loaded or poured) the rectangle has a corner missing and 

when the entity and resource are one unit (i.e. the truck 

and concrete traveling together to the job site) the 

rectangle is intact. The model assumes each truck has a 

capacity of 25 CY and estimates of the minimum, mean, 

and maximum durations for each segment in the event 

(values denoted in brackets in each rectangle). A 

triangular distribution is used based on these values to 

determine the overall duration of each 25 CY delivered 

to the site; this process is repeated until all 720 CY of 

concrete have been delivered. At the end of the 

simulation a total activity duration is outputted. The 

process is repeated for Routes 2 and 3. A summary of the 

preliminary results for each of the three routes is 

highlighted in Table 2.  

Table 2. Preliminary Results of the Simulation Model 

Model Parameters S01 S02 S03 

Number of Mixer 

trucks  6 6 6 

Number of loading 

Stations  1 1 1 

Amount of Concrete 

in CY 720 720 720 

Factory Loading 

Station Utilization 0.87 0.87 0.85 

Mixer Truck 

utilization 1 1 1 

Time of operation in 

hours 5.9 3.1 5.95 

Production rate in 

CY/hr 133 131 135 

The results of this experiment highlight the complex 

relationship between route selection and delivery time. 
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Immediately, it is noted from Table 2 that S01 and S03 

(R1 and R3) are very similar with total operation times of 

5.9 and 5.95 hours, respectively. Conversely, the results 

for S02 (R2) yield a duration of 3.1 hours, almost three 

hours faster than the previous two options. Looking at the 

results for all three routes shows the impact route 

selection has on the overall duration of a large concrete 

pour activity. The conclusion that can be drawn from this 

is R2 should be chosen over R1 or R3 for the concrete 

delivery in this specific task. 

It is important to note that this analysis held the 

number of trucks present at the jobsite constant at 6 and 

only compared the different routes. If the number of 

trucks available were to change this model can quickly 

show how, if at all, that would impact the optimal route 

selection. Determining the number of trucks present is 

another key part of project optimization and is a function 

of the cycle time of each truck. Because the cycle time is 

in part determined by how long the trucks are driving 

from location to location, changing the selected route 

may (in some cases) allow for additional trucks to be 

added in the system if their cycle times are reduced 

substantially. This may be beneficial for projects 

prioritizing saving time over the incurred costs of 

expanding the truck fleet. If the number of available 

trucks is not subject to change under any circumstances 

this model will still optimize the trucks in their present 

condition. 

Currently, we are working on including UAV data 

into the simulation model to account for small-scale 

factors such as bicycle and pedestrian traffic around the 

job site. Once the university population is back to normal, 

UAVs will collect data around the job site to determine 

time frames of peak-traffic. These times are hypothesised 

to occur in the morning and at passing periods throughout 

the day when students and faculty are going to and from 

classes. Our future analysis will reveal the magnitude of 

influence of these small-scale factors and if they should 

be considered in future simulation models. Through data 

collection, simulation, and analysis of multiple scenarios, 

better construction productivity can be achieved. 

3.3 Conclusion 

This paper proposes a framework for simulation 

modeling and drone integration in planning the delivery 

of a concrete pour activity. This framework is known as 

Automated Construction Data Acquisition and 

Simulation (ACDAS) and is achieved through a three-

step process. First, the site conditions are quantified using 

vehicular traffic data and pedestrian and bicycle traffic 

data, with vehicular data sourced from Google Maps and 

local databases and pedestrian and bicycle data sourced 

from on-site UAVs. Second, a simulation model is 

developed using the collected information to investigate 

the many possible scenarios the delivery could take. 

Third, the model determines the most efficient option and 

outputs the optimal delivery path and delivery time the 

trucks will take from the batch plant to the construction 

site. This study will contribute to the construction 

industry in two major ways. Firstly, utilization of the 

ACDAS framework in concrete delivery will improve 

project performance by increasing the efficiency of 

concrete deliveries to a job site. This will minimize waste 

and maximize productivity which will lead to lower costs, 

fewer delays, and less wasted concrete in concrete 

activities. Secondly, the easy-to-follow nature of the 

ACDAS steps busts one of the major myths involving 

using drones (and other advanced technologies) in the 

construction industry, implementation is too difficult. 

With this ACDAS path laid out, it will be much easier for 

interested parties to invest in the new technologies 

described and utilize their benefits to improve concrete 

pour deliveries in their projects. Gaining experience in 

these technologies could also lead to improvements in 

other aspects of their projects as simulation modeling and 

drones have proven to be useful for other construction 

applications.  

Our preliminary experiment proved the efficacy of 

using vehicular traffic data in a simulation model to 

determine the optimal route for trucks to take while 

delivering concrete to the jobsite. These findings are not 

exclusive to just concrete delivery. The constants in our 

model (Number of trucks, distance of R1, distance of R2, 

etc.) can be adjusted to fit other activities and routes 

relevant to the construction process and a similar analysis 

can be performed to find the optimal course of action.  

A limitation of this framework is the lack of a major 

case study utilizing the ACDAS process in a large-scale 

construction project. Because of this, while optimization 

of individual activities has been tested and proven to 

work, the theorized effects of this framework have yet to 

be confirmed. Further research is already under way on 

expanding this topic to include UAV data and future 

publications will seek to qualitatively measure the 

efficacy and results of the ACDAS framework. 
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