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Abstract – 

Lean construction (LC) and Building Information 
Modeling (BIM) support an integrated vision for 
short cycle plan-do-check-act cycles of planning and 
control in construction. However, operations control 
tasks, such as delivery of design information to the 
field, monitoring, progress evaluation and error 
detection are still largely manual and thus time-
consuming, costly and error-prone. Innovations in 
construction technologies can be applied to reduce 
cycle time, waste, construction errors and the rework 
that necessarily follows. In this context, we propose 
application of a projection and scanning technology 
to provide workers with real-time information and 
feedback regarding the quality and accuracy of their 
handiwork. The goal is to achieve proper quality in 
the first iteration, with fully automated inspection, 
and no rework.  

As a proof-of-concept, we demonstrate the system 
using an example of wall plastering. The result of 
plaster application is difficult to measure in 
conventional means, and errors are difficult to detect. 
Our system monitors the progress of the procedure 
(Field-to-BIM), evaluates the surface flatness and 
projects corrections onto the surface itself, after 
optimizing with respect to industry standards and 
tolerances (BIM-to-Field). We demonstrate the 
concept in an experimental setup using a Trimble™ 
TX8 laser scanner and an angled adjustable projector. 
The results show high precision detection of wall 
flatness deviations, of up to 2 mm accuracy.  
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1 Introduction 
Lean construction (LC) and Building Information 

Modelling (BIM) support an integrated vision for short 
cycle plan-do-check-act cycles of planning and control in 
construction [1]. LC aims to maximize the value and 
eliminate the wastes in the construction process while 
BIM supports closer collaboration among project teams 
during the design and construction phases. Yet thorough 
implementation of the potential remains elusive because 
manual methods of information delivery from BIM-to-
field (a process to automatically transfer product and/or 
process information from BIM environment to 
construction field), and of monitoring operations in the 
field and reporting the data to the Information 
Technology (IT) systems (Field-to-BIM: a process to 
automatically collect/collate raw data from construction 
field, to interpret the data and store situational 
awareness information in BIM environment), are costly, 
time-consuming and error prone.  

IT, BIM and other construction technologies (3D 
scanners, sensors and cameras, etc.) can be applied to 
automate these information delivery and collection tasks. 
Especially noticeable is three-dimensional laser scanning 
technology which is widely used around the construction 
industry in tasks like mapping buildings and creating 
detailed as-built models, deterioration tracking, quality 
assurance and progress monitoring. Laser scanners 
provide fast, extremely detailed, easily manageable 
information about their surroundings in the form of point 
clouds. These data can then be processed for useful as-
built information to be recorded and organized. Point 
cloud processing is possible using proprietary software 
tools but unfortunately, their abilities are limited and 
sometimes not accurate enough. Where the use of laser 
scanners is task-specific, the algorithmic support must be 
tailored to meet the unique requirements. 
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In this paper we demonstrate the use of terrestrial 
laser scanning technology and image projection as a 
proof-of-concept for parallel, short cycle time control of 
a construction operation. Figure 1 summarizes the flow 
of the presented proof-of-concept demonstration. The 
specific use-case is a wall plastering operation, and the 
demonstration includes monitoring and quality 
assessment. We implement our algorithmic approach to 
track the progress of construction while detecting errors 
and suggesting corrections, all in near to real-time. We 
showcase the positive effect of information transfer from 
site to BIM using laser scanners and data processing, and 
from BIM-to-field by projecting our results, in the form 
of images, using standard projectors. We demonstrate our 
results with a small-scale experiment, performed in a 
rectangular room, defining one of its walls as our target 
wall.  

2 Related Work 
The following sub-sections discuss the 

implementation of construction tech and computer vision 
for on-site data collection, monitoring, and information 
projection.  

2.1 Construction Technology Integration for 
Automated Site Monitoring Systems 
(Field-To-BIM Data Gathering) 

The construction industry, to date, has many 
construction technologies innovations. Many research 
papers have discussed a variety of technologies with 
potential for improving operation control. Lee and Choi 
presented a study of combination between laser scanning 
and imagery for building reconstruction purposes [2]. 
Shih and Wang reported a laser scanning system for 
controlling the dimensional compliance of finished walls 
[3]. Gordon, Lichti et al. discussed the results of using the 
laser scanning for structural health monitoring [4]. 
Biddiscombe discussed the uses of laser scanning for 
controlling as-built dimensions [5].  

Akinci, Boukamp et al. used spatial raw data 
gathering from the construction field, integrated the 
collected data into the project models, and developed a 
formalism for pro-active QA/QC construction for defect 
detection [6]. Ordóñez, Arias et al. proposed an image-
based approach for controlling dimensions of flat 
elements, but it requires significant human input [7]. 
Bhatla, Choe et al. used a 3D laser scanner to capture and 
record the site progress data. The results were proven as 
more accurate than traditional site progress tracking [8].  

 
Figure 1. Flow of proof-of-concept demonstration. (a) Begin by scanning for progress detection, (b) obtain 
high accuracy as-built point cloud, (c) compare to the as-planned BIM data and detect errors, (d) cost 
optimization, (e) output projection, (f) correction of errors in accordance with image projection on the wall. 
Repeat scanning for updating status and next flow iteration until reaching termination at satisfactory 
conditions. 

1248



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

Braun, Tuttas et al. presented a test case of on-site 
progress tracking and recording. The presented work 
discussed ways to transfer collected raw progress data to 
BIM workspace using point cloud technology for 
construction control purposes [9]. 

Pučko, Šuman et al. presented a method where site 
works are constantly monitored, instead of scanning of a 
whole building under construction from time to time [10]. 
As a result, the as-built BIM model is continuously 
updated during the construction cycle. The presented 
method depends on low precision 3D scanning devices 
which are small enough to fix on workers’ helmets and 
on the active machinery as well. The 3D scanning devices 
allow workers to capture the workspace and work that 
has been done, inside and outside of the building, in real-
time. The recorded data include workers’ locations and 
capturing time. The captured point-clouds were imported 
to 4D as-built BIM models. Then, the comparison 
between 4D as-built model with 4D as-planned model 
enabled identification of the differences between both 
models and the deviations from the time schedule as well. 

Current approaches to control surface flatness are 
inefficient. Bosché and Guenet proposed an automatic 
surface flatness control process using laser scanning and 
BIM [11]. Their approach applied straightedge and F-
Numbers methods. Their experiments demonstrated the 
suitability of laser scanning for standard dimensional 
controls and validated its quality and efficiency benefits 
vis-à-vis traditional measurement approaches. Valero, 
Forster et al. presented a method for automated defect 
detection and classification in ashlar masonry walls using 
laser scanning and machine learning [12]. The algorithm 
they developed identifies material defects and 
discoloration. Neither of these methods included in-situ 
feedback to the workers, as our system does. 

Clearly, laser scanning technology is one of the 
leading methods for spatial data gathering. Past success 
encouraged us to choose this technology for our 
experiments. 

2.2 BIM and Construction Technology 
Integration for Information Management 

BIM and construction technology integrated 
applications are still not very common. Alizadehsalehi 
and Yitmen [13] and Patraucean et al. [14] discussed the 
impact of the combination of data capturing techniques 
with BIM in construction companies; both discussed the 
point cloud based method for creating as-built BIM 
models. The results show that site surveying for work 
done on site could be prepared in less time and more 
accurately by overlaying as-designed BIM models with 
3D as-built captured BIM models, than by manual 
surveying. 

Bosché, Ahmed et al. discussed the value of 
integrating Scan-to-BIM and Scan-vs-BIM techniques 

for construction monitoring [15]. They used laser 
scanning and BIM in a unified approach for automated 
mapping of as-built vs. as-planned MEP works to 
monitor earned value (work done), and to assist in 
delivering as-built BIM models from as-designed ones 
(performance measurement). Among the incremental 
improvements of their approach: (1) recognition and 
identification of objects not built at their as-planned 
locations; and (2) consideration of pipe completeness in 
the pipe recognition and identification metric. 

Kim, Chen et al. presented a navigation and object 
recognition method that was implemented and tested 
with a custom-designed mobile robot platform, which 
uses multiple laser scanners and a camera to sense and 
build a 3D environment map [16]. The study shows that 
the 3D colour-mapped point clouds of construction sites 
generated were of sufficient quality to be used for many 
construction control applications such as construction 
progress monitoring, safety hazard identification, and 
defect detection. 

Kopsida and Brilakis have evaluated different 
methods for reality augmentation by BIM model 
information and came to the conclusion that sparse 3D 
data leads to the most robust results when as-built and as-
planned information overlay is requested for progress 
management [17]. 

2.3 Construction Technology Integration for 
Product and Process Information 
Transfer (BIM-To-Field) 

To date, Augmented Reality (AR) has rarely been 
applied to construction control. However, it has the 
potential to improve the efficiency and quality of 
construction work by providing digital content on top of 
physical surface views to assist teams in the field [18]. 
Different approaches to integration of BIM and AR in 
construction have been proposed. Yang and Ergan 
discussed integration of BIM and AR, showing how 
semantic information can be transferred from a BIM 
platform to an AR system to improve the user 
visualization interface [19]. Williams, Gheisari et al. 
proposed an approach for BIM model translation to be 
used in a mobile AR application, which improves the 
direct use of BIM information through AR on-site [20].  

Degani et al. presented an integrated BIM-Robot-AR 
system with self-localization method using data from 
distance sensors to find the probable pose (position and 
orientation) of system in an identified space [18]. The 
study showed the accuracy of self-localization and the 
system’s feasibility for accurate projection of BIM model 
data directly onto physical surfaces in the field. In this 
work, we extend the capability of that system, focusing 
on two-way communication of information, from BIM-
to-field and from field-to-BIM. 
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3 Methodology and Algorithms 

3.1 Initial Assumptions 
To reduce extra effort for unlikely scenarios, a few 

assumptions were made. The main assumption, regarding 
the operational area, is a rectangular shaped room. The 
room is assumed to have four walls, a ceiling and a floor, 
six planes in total, all perpendicular (or parallel) to each 
other. The origin of the coordinate system is assumed to 
lie within the room, in the geometric center. It is also 
assumed to be almost empty, without furniture or clutter. 
These assumptions help organize the initial conditions 
and partially assure consistency in the point clouds 
received after scanning the operational area. In previous 
work, we have demonstrated the ability to localize a 
moving AR projector using Markov localization [18]. In 
this work, we simplify by assuming a static projector in a 
known location. 

3.2 Laser Scan Pre-Processing 
To achieve satisfactory conditions for working with 

the point cloud recorded by the laser scanner, each scan 
needed to be pre-processed. Each scan was acquired from 
two scanning stations and registered manually. The use 
of two scanning stations enhanced the overall accuracy 
of the scanned data. The stations were located opposite 
one another, one on each side of the operation room. 
Combining two scans roughly evens out the point density 
of the entire cloud, since the point spacing grows linearly 
with the distance between the scanned object and the 
laser scanner. Using Trimble Realworks™, the point 
clouds of the two stations were manually registered 
together and aligned with the X, Y and Z axes. Later, the 
alignment is manually refined as discussed in the next 
section. The point cloud was down-sampled by a factor 
of 10, yielding a dataset that was easy to work with 
without compromising accuracy. A RANSAC algorithm 
was applied on the points and a normal was estimated for 
each point based on 10 of its nearest neighbors [21]. This 
normal represents the plane on which the point is 
assumed to lie. Finally, the point cloud's center of mass 
was calculated by averaging all the X, Y and Z 
coordinates of the points. With two stations, each with its 
own deviations, we could refine the alignment between 
the two. In the next section, we will describe the process 
of wall detection. This is needed for two reasons: first, 
we impose no requirements or constraints on the position 
and orientation of the laser scanner during the scans; 
second, as we are capturing the status of the operation at 
partial progress, with possible errors already present on 
site, we can use the as-planned information only as 
reference while making sure the detection of walls, errors 
and progress status are correct. 

3.3 Wall Detection 
Once the point cloud had been pre-processed, the 

walls were detected, and a specific target wall was 
identified. The walls, or planes, of the point cloud were 
detected using a clustering algorithm, K-means [22]. The 
clustering algorithm receives the normals of the points as 
input. The points were then divided into six clusters. 
Each cluster represented one of the walls, the floor, or the 
ceiling. The algorithm also assigns a center of mass 
(COM) to each group, which is not necessarily a member 
of the cluster. This COM was then validated by averaging 
all X, Y and Z arguments of the normal of the points 
related to each cluster. The central normal of each cloud, 
at this stage, has slight deviations from the absolute 
Cartesian axes. This can be fixed effortlessly by 
calculating a transformation between the absolute axes 
and the current plane normals. This transformation was 
then applied to the entire point cloud, aligning it with the 
absolute coordinate system of the as-planned information. 
For simplicity’s sake, the experiment focused on a single, 
randomly chosen wall called the ‘target wall’. The wall 
was identified by its ID output of the k-means algorithm 
and separated from the point cloud. At this stage, all 
elements of the room are known and identified. Any 
construction progress made with respect to previous 
scans can be updated and registered. The process is 
detailed in algorithm 1. 

 

3.4 Plane Optimization 
Two main features of our proposed system are error 

detection and correction. After detecting the error, a cost 
assessment must be performed for the repair operation. 
To estimate this cost, we must know how different the 
current state is from the desired, optimal one, i.e. how 

Algorithm 1: Wall Detection 

Input: 
• Scan of the room [PCL file] 
• Target wall normal vector [float vector]  

Output: Target wall point cloud aligned to wanted vector 
Constants: 

• NUM_OF_WALLS 
• WALL_NORMALS 

Mean_PCL = avg{ PCL (x), PCL (y), PCL (z)} 
Displacement = -1* Mean_PCL 
Normals = find_normals(PCL) 
Normals = rotate normals towards Mean_PCL 
Walls = cluster(Normals, num_of_walls) 
for wall_index :=1 to num_of_walls: 
    normal := avg{ Normals (x), Normals (y), Normals (z)} 
Rotation = angle(normal(1), const_normal(1)) 
PCL = translate and rotate(Displacement, Rotation) 
for wall_idx := 1 to num_of_walls: 
    if wall_normal == target wall normal 
        target_wall_idx = wall_idx 
target_wall_ PCL = PCL (wall_idx) 
rotate (target_wall_ PCL [0,0,1])  
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severe the detected errors are. Note that the optimal result 
does not necessarily conform to the originally designed 
state defined in the BIM model. In certain situations, 
considering underlying deviations from the original 
design, such as deviations in the concrete or block face, 
an optimal result may be one that can be achieved 
economically while still satisfying design performance 
conditions (such as planarity, verticality). The decision 
needs to be made simultaneously with the construction 
operation. As part of our proof-of-concept experiment, 
we are dealing with monitoring and correcting plaster 
application. Our goal is to supply real time improvement 
suggestions and we want it to be optimal in terms of cost. 
A tight constraint we face is the fact that the wall must be 
perpendicular to the floor. In 3D terms, we are left with 
two degrees of freedom for plane adjustments, keeping 
the plane's normal parallel to the floor. Figure 2 shows in 
top view, the exaggerated features of the wall surface 
with a blue line and the red line is the optimal plane. 

 As can be seen in Figure 2a, one option is to move 
the plane along its normal, basically controlling the "d" 
parameter of the plane equation. The equation of a plane 
in the three-dimensional space is: 

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 (1) 

 
In Figure 2b and Figure 2c the second degree of freedom 
is presented – rotating the plane about the Z axis. Each 
one of the two described changes in the plane's location 
results in a different topography of protrusions and 
depressions. Figure 2d shows the grid of cost calculation. 
The calculations are demonstrated in algorithm 2.  

 

 

4 Experiment 

4.1 Experimental Setup 
The experimental setup includes a rectangular, 32 m2 

room (8 m x 4 m), a laser scanner (Trimble™ TX8) and 
a standard projector. As can be seen in Figure 3, the room 
has bare, unfinished walls, a convenient state for 
benchmarking the accuracy of the laser scanner. The 
room is rectangular, and all of its parameters are in 
accordance with the initial assumptions given in section 
3.1. The purpose of the experimental setup is to construct 
a proof-of-concept system that can monitor, assess, and 
evaluate a wall plastering operation. The system is 
required to perform in near real-time and provide a 
complete start-to-end solution. System demands include 
progress monitoring and surface quality assessment by 
error detection and optimal error correction. Three visual 
steps of the flow can be seen in Figure 4. 

4.1.1 Indistinguishable Discrepancies 

A reasonable assumption is that errors of plaster 
application are difficult to notice with the naked eye. 
Imperfections will usually be due to gradual straying 
from a desired plane, without rough changes or 
noticeable edges. 

 
Figure 2. Surface flatness optimization. (a) 
Nominal plane, (b) rotated plane to positive 
angle limit, (c) rotated plane to negative angle 
limit, (d) visualization of grid for cost 
calculations. 

Algorithm 2: Cost Optimization 
Input: 

• Target wall point cloud [PCL file] 
• Nominal plane [plane parameters] 
• Filling up cost [float number]-FU_cost 
• Shaving off cost [float number]-SO_cost 

Output: optimal plane [plane parameters] 
Constants: 

• Target wall absolute normal vector-TWANV 
• Industry tolerance-IT 
• Design constraints-DC 

DC_vec := [0:0.001:DC] 
IT_vec := [-IT:0.001:IT] 
Optimal_plane := Nominal_plane 
Fill_up_cost := 0 
Shave_off_cost := 0 
Cost_TOT = max(FU_cost,SO_cost)*num_of_ PCL _pts 
for D in DC_vec: 
    for Angle in IT_vec: 
        Curr_plane := [Angle, D] 
        Fill_TOT = (num_wall_points > curr_plane)*FU_cost 
        Shave_TOT = (num_wall_points< curr_plane)*SO_cost 
        Curr_cost := Fill_up_cost_TOT + Shave_off_cost_TOT 
        If Curr_cost < Cost_TOT: 
            Cost_TOT = Curr_cost 
            Optimal_plane = Curr_plane 
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In these cases, our system is most useful, which was 

the motivation of this experiment. This experiment is 
performed in the same room, but with a target wall with 
thin cardboard sheets attached to it as shown in Figure 5a. 
The sheets are fixed adjacent to one other and cover most 
of the surface of the wall. The main purpose of the setup 
was to simulate a gradual drift of the plaster surface 
instead of rough, highly visible discrepancies. The target 
wall imperfections were also taken into consideration, 
but their effect was negligible as the optimal plane 
placement is fixed with respect to absolute X, Y and Z 
global coordinates. 

4.2 Experimental Flow 
The experiment is used to show the full extent of the 

construction operation. The main target of our proof-of-
concept experiment was to demonstrate the cycle of 
construction work monitoring, error detection, error 
correction and status update. The experiment comprised 
a few stages, which are discussed in the next subsections. 

4.2.1 First Scan 

The first scan was performed to calibrate and prepare 
the system. Two scanning locations ("stations") were 
used as described in section 3.2. Each scan was 
performed with highest accuracy setup of the laser 
scanner. For the Trimble™ TX8, used in this work, the 
point spacing at 30 m is 5.7 mm. Each scan took about 10 
minutes. Both stations were registered using a proprietary 
software tool that receives manual input – the user needs 
to mark three pairs of locations on both scans. The same 
scan setup was performed twice, both in an illuminated 
environment and in complete darkness. The scans were 
compared, and the results were similar - both point clouds 
met the requirements of section 3.2 and had equal errors. 
In accordance with sections 4.1.1 and 4.1.2, a wall was 
chosen for demonstration purposes and two types of 
plaster lookalikes were applied. 

 
The cardboard sheets were placed on the wall to 

simulate low frequency plaster irregularities and the play 
dough was placed to simulate rough inaccuracies and to 
benchmark the laser scanner accuracy. People find it 
difficult to identify small inaccuracies in a plastered wall. 
This is why the cardboard setup was chosen for the rest 
of the experiment. 

 
Figure 3. Experimental room 

 

 
a 

 
b 

 
c 

Figure 4. Using modelling clay to simulate 
discrepancies in the wall. (a) Hand sculptured 
modelling clay, (b) point cloud of the target 
wall, (c) projection on the target wall. 
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4.2.2 Data Processing 

Data processing was performed as described in 
sections 3.2 and 3.3. After extracting all the points of the 
working wall, a mean normal was calculated and a plane 
was fitted by this normal. This was the nominal plane that 
identified the current baseline target wall from which the 
optimization calculations could start. 

4.2.3 Optimization 

After making sure that the nominal plane was 
perpendicular to the plane of the floor, an optimization 
process was initiated. With the current state of the target 
wall, an optimal plane was derived from the optimization 
process. In some areas the optimal plane was 
"submerged" in the target wall and in others – raised 
above it. This was evident in the projected image as 
different areas had different colors. 

4.2.4 Projection 

A topographic map was produced, relative to the 
direction of the optimal plane normal. A manual 
calibration of the projector's location was done in order 
to project the image on the wall with the correct 
perspective. We have previously demonstrated the ability 
to localize a projector based on an image captured by a 
camera in a known location [18]. As can be seen in Figure 
5b all areas on the target wall that needed to be shaved 
off were colored in shades of red and the ones that needed 
to be filled up with plaster were colored in blue. The color 
map helped with visualizing 3D data in a 2D image. The 
gradient of colors was equally spread between the 
"highest top" and the "lowest bottom". All the high 
contrast areas that can be seen in Figure 5b are edges 
between sheets of cardboard or between a sheet of 
cardboard and the wall itself.  

4.2.5 Additional Iterations 

The cardboard sheets were flattened to simulate a 
flattening procedure in accordance with the projection. 
The room was then scanned once again, with identical 
parameters as the previous time. The second cycle was 
about finer detail correction, in comparison to the first 
one. The scan was similarly processed, and another 
complete flow cycle was carried out, resulting in a new 
heat map. The heat map was projected using the same 
static projector and both iterations included high 
precision projection accuracy with offsets no more than 
1 cm. Within the projected image, the measured errors 
had a mean of 2 mm. The projection process was not 
optimized and can be improved in future executions. This 
procedure can be repeated as often as needed, terminating 
once the work complies with some predetermined 
accuracy threshold.  

5 Conclusion 
In this work we have successfully demonstrated 

practical implementation of a conceptual short cycle of 
construction control composed of progress monitoring, 
error detection and optimal error correction. We have 
planned and carried out a small-scale experimental setup 
dealing with wall plastering assessment.  

The experiment indicated that maximal accuracy is 
within reach and is restricted only by the capabilities of 
the hardware in use, i.e. laser scanner. In our model and 
scan setup we were able to achieve 2 mm accuracy of 
scan that was reflected on the measured results. We have 
iterated over two complete cycles of the flow, improving 
the plastering quality with every iteration.  In each cycle 
we measured the distance between the projected elements 
and the real ones before mending the work. 

We assume that the principles demonstrated by our 
proof-of-concept experiment can be applied to other 

 
a 

 
b 

Figure 5. (a) Using cardboard sheets attached 
to a target wall to simulate minor 
discrepancies in the wall, (b) error correction 
projection on target wall. 
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construction operations, and that our bi-directional 
workflow can help automate operations. We stress that 
from a technological perspective, each task must be 
treated in a different manner with appropriate algorithms. 
The robustness of the specific implementation is 
restricted to the task at hand and cannot be easily 
transferred to other construction tasks. We plan to 
integrate automated localization for the projector in 
future work. 
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