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Abstract -
Fast and accurate inspection of elevated structures is im-

perative for sustaining the increasing traffic flow o n dete-
riorating bridges. Despsite their importance, today’s in-
spection processes still require dedicated equipment, impact 
traffic flow, and expose i nspection personnel t o s afety con-
cerns. The advent of Unmanned Aerial Vehicles (UAVs) and 
the ability to position a camera close to elevated highway 
structures presents an opportunity to perform inspections 
quickly, safely and effectively. Towards this goal, we present 
an end-to-end system for robotic bridge inspection. Our sys-
tem is structured around integrated methods to (a) create 
UAV flight m issions; ( b) e valuate a ccuracy a nd complete-
ness of data collection plans; (c) generate 3D models of the 
structures of interest; (d) detect surface distresses in 3D; 
and (e) generate inspection reports in compliance with the 
requirements of highway agencies. We present results on 
validating each algorithm and the system as a whole. We 
also share lessons learned from an owner’s perspective on 
deploying this system for bridge inspection in Japan partic-
ularly around procedures for documenting, communicating, 
and following up on bridge inspectors’ recommendations.
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1 Introduction
The discovery of fractures in steel members of Kisogawa

Ohashi Bridge and Honjo Ohashi Bridge in 2007, yet again
raised alarms about the deterioration and fragile state of
the infrastructure in Japan. By March 2019, deficient or
functionally obsolete bridges constitute 9.6% of all the
700,000 road bridges in Japan [1]. Japan’s geography
creates additional risks associated with natural disasters.
Thus, evaluating as-is conditions of Japan’s bridges and
infrastructure assets is more important than many other
places around the world.
Today’s bridge inspection practices are expensive and

can be disruptive to ongoing traffic. Onsite documen-
tations are also time-consuming and assessments can be
inconsistent. This means additional data collection may
be necessary in many cases, while resource allocation
is always challenging. The advent of agile aerial plat-
forms with the ability to carry digital cameras, along

with a greater awareness of the technology has created
an cost-effective alternative to conduct bridge inspection
in a quick, safe and effective manner. Application of aerial
platforms resolves issues of access and traffic disruptions.
Also, cloud-based analysis lowers the need for onsite en-
gineer visits, reducing cost associated with inspection. As
such, the Ministry of Land, Infrastructure, Transport and
Tourism (MLIT) in Japan launched an initiative in 2015
with the aim of leveraging advanced robots and artificial
intelligence technologies to improve productivity in con-
struction and infrastructure inspection tasks.

Because of theMLIT initiative as well as similar ones in
the United States, a large body of work has emerged from
the industry and academia which focuses on computer vi-
sion and visualization methods to process, analyze and
share inspected drone data. Much of these efforts has fo-
cused on improving one step in the process, rarely offering
an insight or recommendation on how various techniques
can be applied in an integrated manner to streamline the
data collection, analytics, and reporting in an end-to-end
fashion. While there are promising computer vision meth-
ods such as 3D reconstruction, image classification, object
detection and semantic segmentation that can been applied
to bridge inspection processes, yet their adaptability as part
of an end-to-end system has not been investigated.

To address the existing gaps in knowledge, we present
an integrated end-to-end system for robotic bridge inspec-
tion consisting of five integrated methods: (a) creation
of flight missions for data collection; (b) evaluation of
flight missions based on requirements of inspection and
visual quality of collected data; (c) 3D reconstruction of
elevated structures; (d) automated detection and localiza-
tion of surface distresses in 3D; and (e) report genera-
tion in compliance with owner requirements. We validate
each underlying algorithm and the end-to-end system as
a whole. We also share best practices on documentation,
communication and following up on bridge inspection rec-
ommendations based on deploying our systemon30 bridge
inspection projects in Japan and the United States.
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2 Related Work
A large body of work in the literature has focused on

robotic infrastructure inspection. In this section, we dis-
cuss the most recent methods and their gaps in knowledge:

2.1 Model-driven Data Capture using UAVs

Visual data collection with the UAVs has many applica-
tions including surveying, inspections, safety and progress
monitoring. Based on whether models are used as a pri-
ori, these methods can be categorized into two classes: (1)
Conventional methods that focus on ensuring minimum
overlap between collected images to generate complete
3D point clouds; and (b) model-driven methods which use
3D CAD or BIM as a priori to simulate and evaluate the
3D visual coverage of structures and in turn reduce safety
risks associated with the UAVs. Flight plans with way-
points sampled at a safe offset distance from the structure
[2] and the utilization of 4D BIM for path planning in con-
struction monitoring use-cases [3] are examples of these
model-driven approaches. Our method builds on these
model-driven path planning methods, but it also enables
verifying and planning for requirements such as preserving
line-of-sight to UAVs, or orthogonality of camera view-
points against the structure during data capture.

2.2 Image-based 3D reconstruction

Structure from Motion (SfM) and Simultaneous Lo-
calization and Mapping (SLAM) algorithms have been
widely used as 3D reconstruction techniques to generate
high fidelity 3D point cloud and mesh models using im-
ages or videos collected with aerial robots. These tech-
niques allow for better organization of collected data by
identifying locations and viewpoints of images relative to
3D models. While these techniques have matured over the
past decade, nevertheless they can still result in incomplete
and inaccuratemodels. To address these issues, recent ef-
forts such as [4] propose simulators or empirical metrics to
examine quality of data collection and their impact on 3D
reconstruction. Nonetheless, these studies have been val-
idated in contexts which are not relevant to data collected
from varying heights and viewpoints relative to elevated
structures. Tools that can generate elevation or under-deck
orthoviews are also required for inspection reports, how-
ever current 3D reconstruction pipelines do not produce
such deliverables.

2.3 Metrics for visual quality assurance

The percent overlap between collected images, the reso-
lution of bridge elements in each image, and the quality of
3D reconstruction are three key parameters that influence
the accuracy of automated condition assessment system.

Model-driven flight paths have been deployed to improve
the quality of collected visual data [2] but these methods
lack quality assurance capabilities. [5, 6] show parame-
ters such as proximity of camera to the bridge elements
and orientations of the collected images, which can im-
pact accuracy of defect detection and appearance-based
classification of structural components. To evaluate ac-
curacy of 3D reconstruction in simulation environments,
metrics such as (a) visibility per element and (b) redun-
dancy in visibility have been introduced by [7]. Met-
rics such as Ground Sampling Distance (GSD) have also
been employed to guarantee resolution of 3D reconstruc-
tion before image capture is conducted [8]. In this study,
we build upon previously studied visual quality assurance
metrics and investigate new metrics focusing on defect de-
tection such as perpendicularity of image viewpoints while
achieving a specific GSD per inspection target.

2.4 Defect Recognition, Severity Assessment and
Mapping

Computer vision methods can be used on site images to
detect and classify surface defects such as crack, spalling,
exposed rebar, efflorescence and corrosion. Particularly,
deep learning-based approaches have shown promising re-
sults in the recent years. Deep Convolutional Neural Net-
work (CNN) architectures such as VGG, AlexNet, ResNet
and MetaQNN for single and multi-class defect classifi-
cation [8] have resulted in exceptional results (e.g., VGG
architecture achieved 70.61% for multi-class defect classi-
fication) but thesemethod do not predict defect regions and
at best, they only focus on a Single-class defect detection.
[9, 10, 11, 12] in among the fewworks that has investigated
feasibility of an end-to-end framework for bridge inspec-
tion, however no previous work has considered multi-class
defect detection and localization within a 3D context. Lo-
calizing defect in 2D and 3D is essential for assessing
seriousness of defects and to prioritize maintenance oper-
ations.

2.5 Virtual inspection and report generation

There is plenty of work in the literature on generating
3D point clouds of bridges and detection of multiple type
of defects; nevertheless there are still many components
missing to enable an end-to-end robotic inspection; i.e., (a)
Comparative views of point clouds and images over time,
(b) interactive orthoviews generated automatically, and (c)
ability to view images overlaid on 3D point clouds through
an interactive interface, similar to ones implemented for
project controls [13], are much needed. 3D measurements
and annotations could also be enabled through a visual
interface for defect severity assessment purposes. These
tools and systems can automate and significantly improve
how owner-compliance reports are generated. The work in
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[9, 14] demonstrate methods to generate reports utilizing
BIM of bridges. However, creating BIM from point clouds
is not a trivial task and is often cost-prohibitive for large
number of bridges in need for inspection.
In the following, we present an end-to-end solution that

addresses these gaps in knowledge. Our solution has been
deployed by the MLIT in Japan and other bridge owners
and operators in the United States.

3 Method
We propose a new end-to-end system for robotic inspec-

tion (see Figure 1). Each step in our system’s is discussed
in the following sections:

Figure 1. A new end-to-end system of bridge inspection, 
with relevant user inputs and expected outputs.

3.1 Model-driven Visual Data Inspection

Automatic visual data collection is the first step in our 
end-to-end bridge inspection system. To achieve this, we 
developed a web-based virtual environment with client-
server architecture for fast and easy access to aerial data 
collection missions and automatic 3D flight plans genera-
tion. The user sets the inspection region with a 2D satellite 
map and specified the data collection parameters to gen-
erate the 3D flight p lan. The parameters considered the 
requirements of the data collection, such as altitudes of 
bridge deck underside and topside, waypoints offset dis-
tance from the structure, drone and camera settings, the 
field of view to keep line-of-sight during flight execution 
and the required overlap between image frames. The gen-
erated flight p lan i s s liced i nto m issions t o a ccount for 
line-of-sight requirements and the drone’s battery life.

The 3D virtual environment is used to render the flight
mission alongside BIM/reality models of the bridge for
evaluation and communication. This allows adjustments
to the flight mission parameters for improving visual cov-
erage and safety. Execution is supported via an iOSmobile
application adapted from a previous study [3].

3.2 Quality Evaluation and Feedback on Data Col-
lection Plan

Wedeveloped fourmetrics to define the visual quality of
bridge inspection data with regards to the requirements of
bridge inspection data: (1) visual coverage completeness
of inspection region; (2) redundancy of observations of
bridge elements across images needed for accurate 3D re-
construction; (3) target pixel resolution or GSD needed for
precise defect detection; and (4) canonical orientation of
camera against bridge elements for minimal distortion and
required pixel resolution. Redundancy in observations is
used for cross-referencing detection across images, which
improves detection reliability.
A priori 3D model needs to be generated to perform

the flight mission simulation. Without previous capture,
we perform a 3D reconstruction from synthetic images ex-
tracted from 3D terrain map platforms to create a priori
model. Using this model, the simulation can estimate:
(1) the visibility of each element in each data frame; (2)
redundant visibility of elements across all data frames;
(3) the average pixel resolution of each element in every
frame; and (4) the relative orientation of each element to
each frame. The elements are rendered in the virtual en-
vironment by a simulated camera with the parameters of
the actual camera used for data collection. In the eval-
uation of visibility and redundant visibility of elements,
an element ID color-coding scheme is implemented, and
an element’s visibility is determined by whether the num-
ber of back-projected pixels of the corresponding color
exceeds a user-defined threshold in a frame.
A similar approach is applied to estimate pixel resolu-

tion of an element in each frame with color-coding based
on the depth of the element. The relative orientation of
each element to each data frame is estimated in the final
simulation. We utilize the surface normal shader to render
elements’ surface normals as RGB colors. The results of
the simulation are provided to the user visually for flight
plan adjustment.

3.3 Image-based 3D modeling

We developed different 3D reconstruction methods to
address the issues that appear more frequently for bridges.
These issues include incompleteness, misregistration, and
curvature (drift). The 3D reconstruction pipeline follows
an extension of previous studies [15], which include Struc-
ture from Motion (SfM) algorithm, patch-based multi-
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view reconstruction and mesh modeling steps. However,
point cloud misregistration often occurs in bridges due
to the repetitive bridge structures in typical SfM process.
To resolve the ambiguity in the feature matching process,
we introduced a feature clustering mechanism that utilizes
GPS coordinates extracted from image metadata to reduce
the misregistration. To mitigate point clouds curvature
caused by the radial distortion ambiguity, we implemented
the camera model [16] that estimates the intrinsic matrix
including the distortion coefficient. In the final mesh mod-
eling process, a digital depth model is generated to allow
users to create orthographic views from any user-defined
view necessary for inspection (e.g., under the deck view
or side view). The digital depth model is presented in the
form of a raster image with pixels representing depth value
arranged in rows and columns. The images are stitched
together along the seam lines with the correction of radial
and depth distortion utilizing the digital depth model.

3.4 Damage Detection, Localization and Mapping

We use the Faster-RCNN architecture [17] and present
a new algorithm to detect, localize, and determine the
3D spatial mapping of each type of damage. The detec-
tion output is a predicted label with its bounding box and
score. In our new method, these outputs are projected
into the 3D point clouds and back-projected to all related
images to analyze intersected area and then fed into the
3D spatial mapping algorithm to determine final labels for
each fragment in the 3D point cloud (Fig. 2).

Faster-RCNN includes a Region Proposal Network
(RPN) and an object detection network Fast-RCNN, which
shares a backbone CNN to form a unified network. The
backbone CNN architecture is initialized with a pretrained
network (e.g., VGG, Alexnet, ResNet) and fed with in-
put images to extract feature maps. The RPN utilizes
the feature maps to generate region proposals by sliding
a network with fully-connected n × n spatial windows,
which are output as a lower-dimensional (512 for VGG,
1024 for Resnet) vector and fed into box-regression and
box-classification layers. Translation and scale-invariant
outputs are achieved using k anchor boxes set as a grid,
and k regions are predicted simultaneously. Anchors are
associated with three scales and three aspect rations and
are generated at the center of the sliding window. Loss
function for training of RPN is computed using eq. 1 with
a binary class label assigned to each anchor box, where
positive labels have Intersection over Union (IoU) over
70% with ground truth. The Feature Pyramid Network
(FPN) utilizes deep CNN pyramidal feature hierarchy to
build a semantically rich feature pyramid from low to high
levels to both learn local and spatial features.

L{di} , {ti} =
1

Ncls
Lclsdi, d

∗
i

+λ
1

Nreg
d∗

iLregti, t
∗
i

(1)

where, i is the index of the anchors, di the correspond-
ing predicted probability and the ground truth label d∗

i the
binary classification of the anchor. ti is the coordinate of
the bounding boxes where t∗i denotes the ground truth box
associated with the positive anchor. Lcls is the classifica-
tion loss and Lreg is the regression loss, while these two
terms are normalized to Ncls and Nreg by batch size and
total anchor locations.

3.5 3D Spatial Mapping

The 3D spatial mapping developed in this study helps
eliminate the annotation and prediction inconsistencies.
We utilize computer graphics techniques and camera pro-
jection matrices estimated in 3D reconstruction to localize
the same damages. All defect bounding boxes from each
data frame are projected to 3D space and back-projected to
any images that contain the corresponding region. Ideally,
all such back-projected boxes should perfectly align with
the same defect, but due to errors in projection and defect
detection, that is not the case. To address such errors and
increase detection precision, we present an algorithm to
identify the most probable back-projected boxes for each
defect.

Three user-defined parameter thresholds are used for
this purpose. An IoU threshold is used to identify bound-
ing box clusters within a user-defined 3D spatial distance
to limit reprojection error. Clustered bounding boxes
over a threshold count are then processed by performing
a greedy Non-maximum suppression (NMS) to choose
the most probable box. This approach is first applied to
the ground-truth bounding boxes obtained from annota-
tions and then to the predicted detection bounding boxes.
Ground-truth bounding box clusters with lower box count
than the threshold are kept, and detection box clusters with
lower box count than the threshold and lower IoU than the
threshold are removed. Similar approach is also applied
to the detection process.

3.6 Interactive Web-based Viewers for Inspection

The interactive web-based viewer is extended from [13]
with added components specifically developed for the pur-
pose of bridge inspection. In our system, the octree struc-
ture stores a point cloud in different hierarchical levels of
detail for efficient rendering. The system automatically
loads the points inside the user’s field of view via a lazy
scheme to reduce the loading speed.
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Figure 2. The network architecture. Feature maps extracted from backbone Resnet50, FPN are input to RPN. Bounding 
boxes with labels and scores as output from classifier mapped in 3D environment is re-injected to finalize prediction.

In addition to visual data collection planning and cap-
ture quality evaluation, the virtual walkthrough provides
the necessary measurement capabilities for inspection.
The image-based measurement tools utilize raycasting to
find the closest point and backproject the point using the
camera intrinsic, extrinsic to the image. We improved
the raycasting accuracy by implementing a cylindrical ray
with a radius r to get accurate results when the point
cloud is sparser with varying depth. Theweb-based viewer
also provides a non-linear transformation from 3D point
clouds to 2D orthophoto using feature matches, estimated
depth, and gravity direction from 3D reconstruction. A 4D
(3D+time) point cloud timeline is formed chronologically
by the capture date with the images, point clouds. Side-
by-side or overlaid image comparison interface over time
is also enabled by finding the closest image and transform
it into the same coordinates using McMillan & Bishop
warping method.
Per-pixel distance values are used to warp pixels to their

correct location for the current camera position. Side-by-
side or overlay views enable observation of defect progres-
sion over time and severity assessment for the inspectors.

3.7 Report Generation

Bridge inspection results are summarized in necessary
reporting forms that (a) present schematic views of various
bridge components and relative location and severity of
defects; and (b) defect images as well as their associated
inspection info. Our process leverages defect information
and associated attributes already mapped in the 3D point
cloud to speed up the generation of such reports. An
image with a pin is automatically attached to the reports
with associated information. These are exported as excel
sheetswith hyperlinks to the 3D location in the viewer. The
related information includes properties such as severity,
notes, inspector’s name, and GPS location. Inspectors can
easily access all the information that needs to be used to
assess the defect from these excel sheets that follow owner
reporting guidelines (fig. 3).
Our surface mapping tool creates 2D orthophoto from

different viewpoints, facilitates the schematic drawing cre-
ation with more information than the traditional. The 2D
orthophoto with the analysis of the inspected structure
provides the overall status of the bridge in a short glance.

Figure 3. Examples of inspection forms (left) that re-
quire bridge elevation view to illustrate defect location and 
(right) detailed description of each defect with additional 
notes

4 Technical Validation
We validated the developed end-to-end system through 

30 bridge inspection projects in Japan and the United 
States. In this section we present a couple of these projects 
for the purpose of demonstrating our results, mainly we 
show the qualitative and quantitative findings of deploying 
the new system to two Japanese bridge inspection projects. 
For each of the later projects, we focused on automatic de-
fects detection for one of the bridge’s spans covering the 
underside and lateral sides of the inspection region. Ac-
cordingly, detailed results for each stage of the inspection 
workflow are presented as follows.

4.1 Data Collection

The first step of bridge inspection system i s using the 
developed web-interface to select the inspection region for 
each of the bridges, such region is selected by navigating a 
2D map to the project location and using satellite images 
to define the boundary of the r egion. Next we set the data 
collection parameters as discussed in the method section, 
for instance, we provide an example of the parameters set 
for one of the bridges in Table 1.
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Table 1. Flight plan parameters

Parameter Value
Top offset 6 m
Bottom offset 3 m
Sides offset 4 m
Images overlap 80%
Drone battery life 20 mins
Drone speed 25 kph
Line-of-sight FOV 90°
Aerial platform DJI Phantom4

The developed flight planning interface automatically
generates a 3D flight plan with missions covering the top,
lateral and under sides of the bride structure. The total
flight distance and flight-time for the plan are 2,200 me-
ters and 79 minutes respectively. We provide a visual
representation for the later flight plan in Figure 4 which
shows the 3D missions along with as-is point cloud model
of the bridge.

Figure 4. Generated 3D flight plan with top, bottom and 
one of the side missions visualized in unique colors.

4.2 Visual Quality Evaluation

Feedback for the visual quality of the data collection 
plan is presented in Figure 5 which provides an example of 
the visual feedback for visibility, resolution and orientation 
evaluations. For such task, the bridge mesh was divided 
into fine fragments that are color-coded to show the visual 
quality value for each fragment.

The visual evaluation criteria are set according to the 
requirements for bridge inspection, the later criteria and 
results of the evaluation feedback are shown in Table 2. 
13 fragments found to be outside the acceptable criteria 
which happen to be on the ground and outside the inspec-
tion scope. In future iterations of the tool, we plan to 
remove these elements from the resolution evaluation pro-
cess, thus, revisions and further modifications to the flight 
plan were not needed.

Figure 5. Color-coded visual feedback for data collection 
plan. (top) visibility evaluation, (bottom-left) resolution 
evaluation, and (bottom-right) orientation evaluation. The 
red region, being outside scope of evaluation, is ignored.

Table 2. Flight plan evaluation results

Metric Criteria # of ele-ments % of ele-ments

Visibility
Not met (< 3 obser-
vations)

13 16.88%

Acceptable (3 − 8 ob-
servations)

3 3.90%

Satisfactory (≥ 8 ob-
servations)

61 79.22%

Resolution
Not met (> 0.01
m/pix)

11 14.29%

Acceptable (0.005 −
0.01 m/pix)

0 0.00%

Satisfactory (≤ 0.005
m/pix)

66 85.71%

Orientation
Not met (> 45°) 1 1.30%
Acceptable (15−45°) 2 2.60%
Satisfactory (≤ 15°) 74 96.10%

4.3 Damage Localization, Detection and Mapping

4.3.1 Dataset preparation and annotations

The image dataset was created from inspection images
captured for the two bridges, the defects in these images
were labelled into five common defect classes, namely:
crack, spalling, efflorescence, corrosion stains and ex-
posed rebar. For the annotation process, we extended
Computer Vision Annotation Tool (CVAT) by integrating
the collected dataset and specifying new labels. The in-
spection images were annotated by experts and validated
by two reviewers per each annotation job following the
quality assurance/control process in [18]. A total of 30
engineering experts served as annotators and reviewers in
this study. Attributes of the resulted dataset are detailed
in Table 3. For defect detection, the dataset was split into
training and testing datasets with the 80/20 convention. A
total of 653 images with 14,302 defect instances were used
for training and 89 images with 4804 object instances for
testing.
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Table 3. Results from the annotation process and detection

Defect Class Number of
annotations AP (%)

w/Mapping
AP (%)

Spalling 5,013 84.6 85.3
Exposed rebar 1,545 84.5 85.2
Corrosion stains 3,310 74.1 74.9
Efflorescence 1,944 57.6 61.1
Crack 5,779 49.2 53.2

Figure 6. (Left): Results of the localization bounding-
boxes for defects in green with projected boxes from other 
frames -generated through 3D mapping process- colored 
in blue; (Right) the final localized bounding boxes -after 
3D mapping process- overlaid on registered image in 3D 
point cloud context.

4.3.2 Experimental Results and Discussions

FasterRCNN architecture was implemented using py-
torch framework and was fine-tuned with MS-COCO ob-
ject detection model to expedite initial training with six 
object classes including defects mentioned earlier and the 
background. The model was trained from scratch for each 
layer with the Stochastic Gradient Descent (SGD) opti-
mizer. The learning rate was set using cosine annealing 
schedule cycling between 1e-5 to 1e-2 in every 10 epochs 
to avoid local minimum and overfitting. Results o f the 
detection are shown in Fig. 6.

Average Precision (AP) is then calculated by dividing 
count of true positive detections over all positive detec-
tions and is used to evaluate the detection results. The 
average precision values from the detection are summa-
rized in Table 3. NMS removes some detection boxes not 
meeting threshold earlier defined leading to reduced total 
detections. NMS parameters were fine-tuned to balance 
trade-off for best result.

3D spatial mapping was found to increase the AP for 
crack and efflorescence by more than 4% with improve-
ments in all defect types (Table.3). Detection results are 
also continuously improved through user inputs provided 
through the interactive web viewer such as verification of 
correct defects and adding missing detections for docu-
mentation and reporting by expanding dataset and detec-
tion model retraining.

4.4 Web-based Viewer and Inspection Reports

We adopted Charette test method [19] to evaluate the 
user’s feedback about the web-viewer and report genera-

Figure 7. The MLIT in Japan has outlined a three-phase 
path towards a fully automated bridge inspection process, 
where more automation is introduced one step at a time. 
Currently, Phase II is in full testing mode with the solution 
presented in this paper.

tion process. The validation works by evaluating effective-
ness, repeatability, and reliability of our method, which 
measure productivity improvement, performance of sys-
tem under different inspection conditions and users. These 
were measured qualitatively through interviews and ob-
servations from MLIT practitioners interacting with the 
system. We have provided training and guidelines for 
bridge inspectors, transportation professionals and civil 
engineers to perform virtual inspection tasks. Users ex-
pressed through the training that time required for defect 
localization and creating reports using corresponding im-
ages was significantly r educed. Users also expressed that 
the output generated can be easily transformed to action-
able format which is vital for effective bridge maintenance.

5 Discussion - Gradual Transition to a Fully
Automated System

The components of the presented system were deployed
on bridge inspection projects in Japan and the United
States. Based on discussion and interviews with bridge
inspectors, JapanMLIT has decided to engage in a gradual
transition from their current workflow to full automation,
due to the many components, bridge owners, and engi-
neering personnel involved. Fig. 7 shows MLIT’s plan
and perceived benefit from this transition.
In the current workflow, inspectors spend significant

time measuring, capturing and organizing damages and
related information. Phase II will involve automating data
collection and report generation processes consisting of
the robotic solutions that collect and process the data in the
web-based system. The system will also actively improve
the automatic defect detection through (a) user input of
correcting and adding missing detections, and (b) retrain-
ing of detectionmodel on a timely basis over moremassive
ground truth datasets. Phase III will introduce automated
pre-analysis of bridge condition, 3D reconstruction, defect
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detection, and report generation. Analyzed data will be
used for verification of condition and to perform physical
examinations on the field. Full adaptation of automation
by Phase III is expected to cause substantial time savings
(30% based on Charettes) and cost-savings in the inspec-
tion process. A reliable defect detection component is an
essential step towards Phase III.
We have shown in this study that the data collection pro-

cess improves the visual quality of collected data to meet
MLIT inspection and report generation requirements. Fu-
ture work will focus on improvements of the flight plan
optimization by eliminating user manual inputs, the evalu-
ation process by removing simulated fragments that are not
in the inspection scope, the detectionmodel by phased roll-
outs of improved models, and expansion of ground-truth
dataset with a generalized distribution of defect shapes,
colors and incorporating 3D geometry information in the
detection process.

6 Conclusion
We presented an end-to-end system to automate robotic

bridge inspection processwith integration of flightmission
generation, assessment of visual quality of collected data,
ensuring accuracy and completeness of reconstructed re-
ality model, 3D reconstruction for elevated structures, au-
tomated detection and localization of damages and report
generation. Our proposed system shows the connections
between components and how robotic bridge inspection
solutions can be streamlined systematically and gradually.
We introduced the phase-based implementation of detec-
tion models that enables continuous improvement and ac-
tive learning over time through dataset expansion and user
input. Our holistic approach through the proposed end-
to-end system connects the dots between the components
of robotic bridge inspection for the MLIT in Japan. We
plan to implement this system across 100s of bridges in
the coming year.
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