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Abstract – 

Workers in a construction site may be exposed 

various hazards and risks and may work with 

excessive demands beyond their physical abilities. It 

is important for construction companies to sustain a 

workforce in the work environment that does not 

sacrifice worker safety and health and maintains the 

required productivity. The purpose of this study was 

to develop a method for real-time estimation of the 

workload risk of individual workers at a 

construction site. Based on previous studies, we 

developed a workload model that includes 

behavioral information and physical characteristics 

of workers in addition to heart rate reserve (%HRR). 

Recent wearable devices have sufficient performance 

for measuring biological and physical load data 

without interfering from their work. In this case 

study, heart rate and physical activity were 

measured using smart wear equipped with a 

biosensor, an acceleration sensor and IoT system 

developed in our research. Using a logistic regression 

analysis as the statistical methods and SPSS as the 

analysis tool, we analyzed the risk caused by the 

workload. As a result, it became clear that the 

physical activity and the heart rate will be the 

important parameters for estimating workload risk 

in construction works. However, worker age and 

body mass index (BMI) did not have a significant 

effect on estimating workload risk. In the 

construction site, types of works and skills of 

workers will change according to the progress of the 

project. In order to ensure a stable workforce and 

productivity, it is necessary for construction industry 

to manage workers’ health and safety. In conclusion 

of this paper, we propose that the real-time 

monitoring of heart rate and physical activity during 

construction work can be used for human resource 

management (HRM). With the development of this 

study, it will be possible to determine how the 

workers’ workload affects productivity. It is believed 

that this research will be useful as an element of the 

integrated management technology of the entire 

construction site using ICT tools. 
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1 Introduction 

The construction industry serves as the base for 

several other industries in every country  and 

contributes significantly to the national economy. In 

order to maintain the industry’s productivity, it is 

essential to ensure the safety and health of its workers 

[1,2]. Characterized by poor working environments, 

such as poor scaffolding, aerial work platforms, high 

humidity at high temperatures, and a worksite adjacent 

to heavy construction equipment, construction sites 

often contribute toward increasing the physical 

workload of construction workers [3,4]. A high-

temperature or highly humid work environment and 

long-term physical workload expose workers to chronic 

fatigue, injury, illness, and health risk, and thereby 

reduce a site’s productivity [5]. 

This study uses heart rate to understand the impact 

of the physical load of a job as well as that of the 

personal and environmental factors [6,7]. Since it is 

difficult to identify the important factors affecting 

workers’ health in every situation, an analysis based on 

workers’ heart rate can be useful for understanding their 

work capacity. As an indicator, the heart rate reserve 

(%HRR) has been reported to be a major predictor for 

estimating an individual’s workload capacity [8,9]. This 

method assumes resting HR resting (i.e., minimum HR 

849



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

 

during resting) as a level with no physical load, and 

calculates a percentage of the difference between 

working and resting HRs among HR reserve (i.e., HR 

reserve indicates the difference between HR max and 

HR resting) [8-10]. Considering the health risks of 

workers, workers with more than 40% HRR should not 

undertake any heavy workload exceeding 30 minutes 

[9,10]. In this study, workers with more than 40% HRR 

were considered to be at health risk. Although %HRR is 

a useful determination method, most studies often 

identify HRR based on certain activities such as walking, 

jogging, or treadmill. Given the frequent inflow and 

outflow of workers at construction sites, it often 

becomes difficult to use specific activities to measure 

the HR max and HR resting for each worker precisely. 

Hence, it is difficult to use %HRR as an indicator of 

workload at construction sites. 

It uses a model composed of workers’ movement 

acceleration, age, body mass index, and the wet bulb 

globe temperature (WBGT), which take into account 

temperature, humidity, and radiant heat. By using the 

model, the impact of workload risk is estimated through 

the worker's %HRR. In order to formulate strategies to 

manage workers and improve their productivity, it is 

important to determine the impact of workload on their 

health using simple and accurate methods. 

2 Materials and Methods 

2.1. Measurement system 

In order to evaluate the type of work environment, 

the study measured the air temperature, relative 

humidity, and WBGT; HRR and acceleration (ACC) 

detected from the respiratory rate (R-R) interval in ECG 

were measured in order to determine the workload. 

We measured the heart rate and the physical activity 

of workers on the basis of the ECG signals captured 

using the smart clothing worn by  construction 

workers, as shown in Figure 1., a is heart rate and 

acceleration sampling sensor (WHS-2), b is smart 

clothing (COCOMI) and  c is  Data acquisition device 

(CC2650). 

The smart clothing is an underwear-type shirt 

integrated with biometric information sensor (detection 

of heart rate) [11-13] and a 3-axis acceleration sensor. 

Since the smart clothing is made of stretchable fabric, 

stretchable ECG electrodes were integrated with the 

hardware for measuring the heart rate [14]. The heart 

rate was detected by detecting the R-R intervals in the 

ECG signals. HRRs during load and rest were obtained 

by converting the detected R-R intervals. We attached a 

small heartbeat sensor device (WHS-2) to the smart 

clothing; we monitored the heart rate and the amount of 

physical activity by taking the 3-axis acceleration 

showing the spacing between the R-R waves of and the 

physical activity the subjects [15]. Using a Bluetooth 

low energy device, the heart rate and 3-axis acceleration 

data were sent to the data acquisition device used by the 

workers (Texas Instruments, Inc. CS2650). 

Subsequently, data from the data acquisition device 

were transmitted to and stored on the server installed on 

network using the established wireless access point 

(data transfer device) in the work area. 

Based on the data provided by workers on their 

height, weight, and age, we calculated their BMI; the 

WBGT was calculated based on their labor time. In 

order to grasp the temperature and the relative humidity 

of the work environment, the WBGT was measured at 

5-minute intervals. 

 

Figure 1. Picture of measurement equipment. 

2.2. Measurement method 

Table 1 shows the measurement parameters and 

techniques used in this study. The participants were 

expected to be aware of their body measurements as 

they worked in construction companies that conducted 

these measurements on a regular basis. We asked 

questions related to age, height, and body weight of the 

subject and, subsequently, used the responses to 

determine the BMI. As per a study [16] on an East 

Asian cohort, people with a BMI between 22.6 and 27.5 

had the lowest death risk, whereas people in a higher 

BMI range were at a higher risk of deaths from cancer, 

cardiovascular diseases, and other causes. The BMI was 

added to this study's explanatory variables to examine 

worker health risk. 

Heart rate during work (HR working) was determined 

by the average value of the heart rate measured every 5 

minutes for each worker. Thus, the heart rate during 

work denotes the average of the data collected every 5 
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minutes; this data has been corrected by deleting null 

data or outliers [17,18]. An accurate measurement of the 

HR max is not suitable for construction workers who are 

often in flux. Therefore, the HR max was predicted using 

the equation of Tanaka [19]. In order to confirm the 

stability of the heart rate at rest time, the subject’s heart 

rate at rest time was measured more than thrice at 5-

minute intervals; the lowest average heart rate was used 

to determine the HR resting. 

Table 1. Measurement parameters. 

Measurement parameters [unit] 

BMI = weight / (height)2  [kg/m2] 

HR working = average heart rate in 5 minutes during 

working hours [bpm] 

HR resting = average heart rate in 5 minutes during the 

rest hours [bpm] 

HR max = 208 - 0.7 × age [bpm] 

%��� = �� �	
��� � �� 
�����
�� ���.� �� 
����� × 100 [%] 

��� [��] = 

 !�"# − �"#%&'( + !�*# − �*#%&'( + !�+# − �+#%&'( 

By using the 3-axis acceleration sensor for 

continuous monitoring, the physical activity level of the 

subject was evaluated to get ACC [20] of the three axes 

(the longitudinal axis: X, the lateral axis: Y, and the 

vertical axis: Z); the resulting ACC, which is physical 

activity, was calculated by an average value generated 

during the 5-minute intervals. The intensity level of the 

physical activity is shown to be a predictor of good 

health [21]. The 3-axis acceleration method observed 

the strength of each worker’s overall movement during 

the working hours. Unlike office workers, construction 

workers can provide a more detailed operating data than 

those derived from the measured parameters; this data 

may include data on their capacity to lift load up the 

stairs. In other words, the method captures the intensity 

of the workers’ movement between the work activities 

(for example, walking, standing, and crouching) 

performed during the working hours. 

2.3. Participants 

The data were collected at the water injection pump 

construction sites of a construction company in the 

following dates of the year 2018: May 25th, June 29th, 

and November 16th (Kumagai Gumi Co., Ltd.). The 

participants were tasked with the dismantling of the 

steel scaffolding. Specifically, eight steeplejack workers 

performed repetitive tasks (of those involved in the 

demolition) and four assistant workers carried out 

indirect work such as equipment installation. These 12 

participants were notified of their selection as subjects 

in the experiment. 

2.5. Data collection 

Table 2 shows the dates of data collection, ages of 

the subjects, work tasks, and body measurements each 

subject. The data were measured from 8:30 am to 5:00 

pm, and the data were collected during the entire period 

or at any of the 5-minute interval in the time zone of 

half of the period of the working day. All the subjects 

were men; they were asked about their age, job title, and 

the provision of information about their body and 

weight. Since the cardiopulmonary function aims to 

eliminate the unhealthy subjects from the measurement, 

the subjects were also asked about the presence or 

absence of the history of cardiovascular disease and 

their current health condition (for example, whether 

they suffer from chronic cardiovascular disease). 

Among the 13 workers who expressed a desire to 

participate, 1 subject with arrhythmia did not participate 

in the experiment. Except for the preparation time for 

data collection, 5 minutes were given to each of the 882 

datasets collected from 12 subjects. 

When measuring the subject, we checked for the 

Hawthorne effect [22]. In this experiment, we did not 

monitor the activity of the subject; we waited a little 

farther from the work area and recorded and 

photographed the work with the help of two cameras 

installed in the work area. In general, manual laborers 

performing high-load work have their own health 

concerns; they also focus on the physical workload 

resulting from their daily operations. Hence, before 

starting the measurements, we instructed the subjects 

not to depart from the usual work patterns; they were 

also informed that the study did not intend to measure 

their productivity but their physical workload. 

Table 2. The Collected Data on the Subjects. 

ID# 
Age 

(years) 

Main job 

task 

Height 

(cm) 

Weight 

(kg) 

S1 20 Scaffolder 159.0 57.0 

S2 39 Scaffolder 179.0 74.0 

S3 32 Scaffolder 177.0 93.0 

S4 25 Scaffolder 182.0 82.0 

S5 41 Scaffolder 176.0 70.0 

S6 40 Scaffolder 176.0 75.0 

S7 36 Scaffolder 170.0 68.0 

S8 22 Scaffolder 165.0 55.0 

L1 43 Worker 168.0 70.0 

L2 50 Worker 174.5 87.5 

L3 27 Worker 170.5 62.5 

L4 59 Worker 169.0 76.0 
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2.6. Model development and statistical analysis 

The independent variables comprised subjects’ ages, 

BMI, the amount of physical activity during labor, and 

the WBGT in the field environment. The binomial 

logistic regression was used to analyze the health risks 

determined by the level of %HRR. Logistic regression 

assessed the value of new medical treatments. It is one 

of the regression analysis methods evaluating the factors 

affecting a problem surrounded by controversies [23]. 

Logistic regression modeling is not limited to the study 

of physiological medicine, but it is also used in biology, 

engineering, ecology, health policy, linguistics, and 

business and finance [24]. Regression analysis has 

become an integral element of data analysis for 

describing the relationship between the independent 

variables and one or more of the explanatory variables. 

A prediction model considering the parameters of 

these independent variables improves the accuracy of 

risk detection; in this study, we observe a strong 

correlation between risk factors. Therefore, it is 

necessary to consider the possibility of multicollinearity 

while conducting the statistical analysis. When 

developing the statistical model, the Pearson's 

correlation coefficient and variance inflation factors 

(VIF) were calculated for determining the physical 

activity ACC, AGE, and BMI of the subjects and 

WBGT in the work environment. 

Table 3. Correlation matrix for workers’ risk. 
 

ACC BMI AGE WB

GT 

VIF 

ACC 1.00    1.17 

BMI 0.02 1.00   1.48 

AGE 0.33*** 0.42*** 1.00  1.43 

WBGT -0.07* 0.39*** 0.05* 1.00 1.20 

Table 3 shows the results obtained with respect to 

the correlation coefficient and the VIF between 

independent variables. A p-value less than 0.05 

(typically ≤ 0.05) is statistically significant, *** 

indicates p ≤ 0.001 and * indicates p ≤ 0.05. A weak 

negative correlation coefficient (-0.33) was observed 

between physical activity ACC and the AGE of the 

subjects, while there was no correlation against the BMI 

and WBGT. The BMI of the subjects was slightly 

positively correlated (0.42) with the AGE and weakly 

correlated with the WBGT (-0.39). Furthermore, it was 

observed that the AGE of subjects was hardly correlated 

with the WBGT. The VIF serves as a reference for 

checking multicollinearity; the values of all the 

independent variables were the extent of the value 1-2, 

indicating a low likelihood of multicollinearity [25]. 

3. Results 

3.1 The relationship between ACC and %HRR 

Figure 2 shows the results of the %HRR for the 

ACC measured in each subject. The relationship 

between the ACC and the %HRR is shown in linear 

approximation; Table 5 describes the correlation 

coefficient r L1-L4 of L1-L4 and the correlation 

coefficient r S1-S8 of S1-S8. In all the subjects, 

the %HRR increased according to the increase in the 

ACC, and the correlation coefficient r of the ACC and 

the %HRR was at about 0.7–0.9. When compared to 

assistant workers, the higher heart trend of the scaffold 

workers shows their exposure to a high physical 

workload. During the break time, the workers’ ACC 

and %HRR were relatively low and their physical 

activity and heart rate at rest time were stable. 

Figure 2 also shows that, despite an increase in ACC 

from S5 to S8, the %HRR tends to be relatively large. 

S1 recorded the highest ACC among all subjects 

because S1 not only placed the dismantled steel 

materials under the scaffold stairs but also carried them 

to the collection location. It is presumed that there was 

an increase in the transportation task between the 

unloading location of the scaffold stairs and the 

collection location, which led to an increase in 

both %HRR and ACC. S1 is the youngest among the 

subjects; as HR max increased by the calculation based on 

age, there is a possibility that even same HR working is no 

longer conspicuous when compared to the other subjects. 

Conversely, although relatively high-age assistant 

members, such as L3, had a relatively low ACC without 

a big movement behavior, S1’s %HRR was seen to be 

higher than the other assistant workers. This can be 

attributed to the fact that HR max obtained for L1’s age is 

lower than that for the other subjects. 

 

Figure 2. Relationship between ACC and %HRR 

(Scaffolder S1-S8, Assistant worker L1-L4). r S1-S8 denotes 

the correlation coefficient of the relationship between 

ACC and %HRR for S1-S8, and r L1-L4 is the correlation 

coefficient of the relationship between ACC and %HRR 

for L1-L4. 
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3.2. Logistic regression model 

Logistic regression analysis was performed using the 

statistically significant (p <0.05) independent variables 

in Table 4. The logistic model formula used in this 

study is shown below. 

 Workers’ health risk ( ≥%40 HRR: 1, <%40 HRR: 0 )  

= f（ACC、AGE、BMI、WBGT） 

where the objective variable is 1 for the worker's 

health risk (≥40% HRR), and it is 0 for no health risk 

(<40%HRR).  

The independent variables are physical activity ACC, 

AGE of subjects, BMI calculated from height and 

weight, and WBGT in the work environment. Using the 

HR max and HR resting of each subject and calculating 

their %HRR, the independent variable was estimated by 

whether HRR ≥40%. 

Table 4 shows the estimation results of the model on 

the health risks of workers examined in this study. In 

the Model 1, ACC, AGE, BMI, and WBGT were 

independent variables. By p-value, the ACC, AGE, and 

WBGT of the subjects of the work environment were 

statistically significant, but the BMI of workers was not 

significant. Wald χ2 shows the contribution of each 

variable to the model, and it indicates that the larger the 

value, the higher is its importance [26]. In the Model 1, 

compared to AGE and WBGT, the contribution of the 

ACC was relatively high. To determine the influence of 

the dependent variable, we use the odds ratio in the 

logistic regression. It is indicated that independent 

variable increases due to an increase in the odds when 

OR>1; hence, the odds ratio can be a measure of a 

likelihood of a decline in independent variable with an 

increase in the odds when OR <1 [23,24,27]. 

Table 4. Estimation by logistic regression model. 

Model Variables Coeff. p-value 
95% CI 

for Odds 

 

Model 

1 

Constant 

ACC 

AGE 

BMI 

WBGT 

-25.6 

 0.041 

 0.074 

-0.035 

 0.705 

< 0.001 

< 0.001 

< 0.001 

0.548 

< 0.001 

– 

1.04 – 1.05 

1.04 – 1.12 

0.86 – 1.08 

1.67 – 2.44 

 

Model 

 2 

Constant 

ACC 

AGE 

WBGT 

-28.1 

0.041 

0.066 

0.742 

< 0.001 

< 0.001 

< 0.001 

< 0.001 

– 

1.04 – 1.05 

1.04 – 1.10 

1.82 – 2.43 

     When the odds ratio is larger than 1, while the lower 

limit of the confidence interval (CI) is not less than 1, 

the ACC, AGE of workers, and WBGT in the work 

environment are independent variables. However, the 

BMI of workers is the independent variable whose odds 

ratio is less than 1—the lower limit does not exceed 1. 

By the results, without BMI, the Model 2 examined a 

model based on independent variables ACC, AGE, and 

WBGT. It is indicated the statistical significance of the 

three independent variables; AGE, ACC, and WBGT 

may be high to show the health risks of workers, which 

is important for the Model. Furthermore, according to 

the odds ratio, the influence of the WBGT on the health 

of workers was the largest. 

Concerning the estimation results of the model, 

Table 5-1 shows predicted results by model and Table 

5-2 show the suitability index of the model due to its 

goodness of fit (GoF). The positive discrimination rate 

by the estimation of Model 1 was 88.9%; the positive 

discrimination rate by the estimation of Model 2, except 

the BMI that did not have statistically significant results, 

increased to 89.2%. Three indicators were determined to 

test the significance of the model by GoF. Akaike's 

information criteria (AIC) = -2logL + 2k were defined, 

and AIC were considered as indicative of the model fit 

[28,29]. Here, k denotes the number of parameters in the 

model; the first term model represents the true goodness 

of AIC, and the second term represents the penalty due 

to an increase in the variable. The values of the AIC are 

small. According to the obtained AIC, the adaptation of 

Model 2 was slightly better than the Model 1. The Cox-

Snell R2 corresponds to determining coefficients of a 

linear regression analysis R2, referred to as pseudo-R2. 

The fit of the model becomes better as the Cox-Snell R2 

becomes larger; the Cox-Snell R2s of Model 1 and 

Model 2 are 0.4-0.5, while the fit of the independent 

variable for the dependent variable was not very high 

[30,31]. However, when Nagelkerke R2 approaches 

from 0.5 to 1, the fit becomes higher [32-34]. The fit of 

the independent variable for the dependent variable of 

Model 1 is 0.590 and the one of Model 2 is 0.589. Both 

of them were high. Both the fit of Model 1 and Model 2 

were good by these results. 

Table 5-1. Estimation of subjects’ physical load. 

Model 

(independent 

variables) 

 

 

Predicted 

 Risk       Percentage 

Observed 0          1 (%) 

Model 1 Risk    0  487     53 90.2 

(ACC, AGE, 

BMI, WBGT) 

        1  

Overall 

45   297 86.8 

88.9 

Model 2 

(ACC, AGE, 

WBGT) 

 Risk   0  

        1  

Overall 

486     54 

41   301 

90.0 

88.0 

89.2 
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Table 5-2. GoF of Estimation. 

Model 

(independent 

variables) 

GoF 

AIC 
Cox-Snell 

R2 

Nagelkerke 

 R2 

Model 1 

(ACC, AGE, 

BMI, WBGT) 

57.5 0.435 0.590 

Model 2 

(ACC, AGE, 

WBGT) 

59.5 0.434 0.589 

4. Discussion 

This study shows that a continuous measurement of 

the physical load of construction workers can change 

work conditions and increase an understanding of their 

health conditions. It measures the load fluctuation of the 

workers by using data collected from the smart clothing; 

this fluctuation corresponds to workers’ age, the 

temperature of the working environment, and working 

conditions (e.g. foreman and the real workers and the 

difference between the assistants and the scaffold 

workers). In line with the results of previous studies, 

this study shows that the physical demands differs in 

case of each worker; hence, results seen in previous 

studies on wearable devices (wristband-type devices) 

correspond [4,34] to this study. 

Based on the work patterns (dismantling, 

transportation task, and the percentage of work activities, 

including preparation work), the physical demands of 

the workers vary even in the same construction site. In 

order to understand the health risks of workers, there is 

a need for continuously measuring a work in progress. 

When measuring the subjects, we observed that the 

physical demands should not be sustained for a longtime. 

Concerning the workplace and physical demands, 

specific guidelines were created. (i.e., the work 

activities that increase the %HRR beyond 40% should 

be limited to 30-60 minutes [10].) Based on these 

guidelines, as shown in the subjects S5 and S7 (Table 5 

and Figure 2), there were several workers with more 

than 40%HRR who continued to work throughout the 

day. Therefore, in order to reduce the high physical 

demands of these workers, some intervention must be 

implemented. This study provides insights on the 

appropriate interventions required for managing 

excessive physical requirements. 

Most studies determine %HRR based on typical 

activity patterns and experimental environments, and 

there are very few cases that consider an actual 

construction site. Concerning the application of methods 

for determining %HRR of construction workers, it is 

difficult to measure HR max and HR resting [35] in 

advance for workers, and it is likely that %HRR will 

interfere with actual use as the indicators. 

The important finding of this study is that it proved 

its hypothesis on the impact of physical workload on 

the %HRR of workers, by using the covariates in 

logistic regression. The relationship among these 

covariates influence the heart rate of workers [36]. 

WBGT has the largest odds ratio among all the 

covariates and the impact on workers' %HRR was 

significant [16]. To the best of our knowledge, this is 

the first study to report how the physical activity, 

workers’ age, and WBGT could be used to determine 

workers’physical workload without calculating 

their %HRR. Concerning ≥40%HRR, the accuracy rate 

is about 89.2%, based on the estimation of the 

judgement model of the health risks of workers. Thus, 

in an environment where HR max and HR resting 

cannot be measured, it was indicated that the health risk 

could be judged by %HRR. 

We have several limitations in our study. First, the 

sampled Japanese construction company had only 12 

workers in total. Due to this limited number of subjects, 

the dataset used the average of the physical activity and 

heart rate collected at 5-minute intervals. We recognized 

that the observation period is sufficient for analyzing 

workers because previous studies have used data on 

heart rate and physical activity collected at about 30-

minute and 5-minute intervals, respectively [8-10,18,37]. 

However, since the measured values are averaged, rapid 

changes in the worker's condition could not be observed. 

Second, some physical activity and heart rate data were 

missing, which might have led to measurement errors. 

However, almost the same results were obtained even 

when these outliers were included in the analyses (data 

not shown in table). These outliers may slightly affect 

the heart rate mean or standard variance. To avoid these 

technical errors, there is a need to monitor more 

accurately the heart rate and physical activity. Third, the 

study used a self-reporting method that could result in 

differences between workers’ information on their 

height and weight. Future research should seek to 

include observable data to better understand the 

potential impacts of the physical workload on workers. 

Finally, this study provides an insight into the degree of 

contribution of the physical activity and other variables 

for estimating workload. Workers’ health is very fragile, 

and it is affected by their physical workload, mental 

state, and lifestyle. Hence, it is necessary to carry out 

further study in this regard. Further studies in other 

working conditions are required to accumulate more 

evidence and assure the accuracy of the models. 

5. Conclusions 
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In this study, the heart rate and physical activity, the 

age, BMI, and WBGT of the working environment were 

measured for workers of a Japanese construction 

company. Given the high workforce mobility in the 

construction industry, this study developed a new 

judgement model of workers’ health risks as an 

alternative to %HRR. By using workers’ physical 

activity, age, BMI, and WBGT of the work environment 

as independent variables, it can be easily observed the 

physical load of worker without preparation such as HR 

max and HR resting. It measured the heart rate and 

physical activity of construction workers by using a 

smart clothing equipped with biological and 

acceleration sensors. By logistic regression analysis, the 

risk to health by physical workload was analyzed. The 

results showed that physical activity, age and WBGT 

are important parameters of workload estimation. 

However, BMI of workers was not statistically 

significant, and hence it did not have a significant 

impact on the estimation of the health risks posed by the 

workload. 

This study aimed to develop a method to facilitate a 

practical estimation of the workload risk of individual 

workers at a construction site in real-time. The use of a 

lightweight wearable device in this study has important 

theoretical implications in that it presents a real-time 

monitoring mechanism for examining workers’ health 

condition. This monitoring mechanism is very easy, 

without special preparation. It can also be adopted by 

firms to minimize the workers' health damage. 

In managing the health and safety of workers, it is 

useful to assess workers’ workload and health state 

quantitatively. Although there are several studies on 

workforce management [38-40], few studies focus on 

using workers' individual heart rate, physical activity, 

and body measurements. Further research on the use of 

these attributes can improve the identification of the 

health risks of workers quantitatively and promote the 

productivity of workers at construction sites. 
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