
37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

Workspace Modeling: Visualization and Pose Estimation of 
Teleoperated Construction Equipment from Point Clouds 

Jingdao Chena , Pileun Kimb, Dong-Ik Sunc, Chang-Soo Hanc, Yong Han Ahnd, Jun Uedae, and 
Yong K. Chob* 

aInstitute for Robotics and Intelligent Machines, Georgia Institute of Technology, U.S.A 
bSchool of Civil and Environmental Engineering, Georgia Institute of Technology, U.S.A 

cDepartment of Mechatronics Engineering, Hanyang University ERICA, South Korea 
dDepartment of Architectural Engineering, Hanyang University ERICA, South Korea 

eSchool of Civil and Environmental Engineering, Georgia Institute of Technology, U.S.A 
E-mail: jchen490@gatech.edu, pkim45@gatech.edu, jeniussdi@naver.com, cshan@hanyang.ac.kr,

yhahn@hanyang.ac.kr, jun.ueda@me.gatech.edu, yong.cho@ce.gatech.edu  (*corresponding author)

Abstract –
In order to teleoperate excavators remotely, 

human operators need accurate information of the 
robot workspace to carry out manipulation tasks 
accurately and efficiently. Current visualization 
methods only allow for limited depth perception and 
situational awareness for the human operator, 
leading to high cognitive load when operating the 
robot in confined spaces or cluttered environments. 
This research proposes an advanced 3D workspace 
modeling method for remotely operated construction 
equipment where the environment is captured in real-
time by laser scanning. A real-time 3D workspace 
state, which contains information such as the pose of 
end effectors, pose of salient objects, and distances 
between them, is used to provide feedback to the 
remote operator concerning the progress of 
manipulation tasks. The proposed method was 
validated at a mock urban disaster site where two 
excavators were teleoperated to pick up and move 
various debris. A 3D workspace model was 
constructed by laser scanning which was able to 
estimate the positions of the excavator and target 
assets within 0.1 - 0.2m accuracy. 

Keywords – 
Pose estimation; laser scanning; excavator 

1 Introduction 
Robotic agents have enormous potential to be used to 

perform manipulation tasks for excavation, sample 
collection and repair work in remote areas. In hazardous 
environments such as nuclear power plants or post-
earthquake disaster sites, it is common for these robots to 
be teleoperated by human operators from a remote 
location [1,2]. Such challenging conditions require a high 

level of situational awareness from the operator. It is 
difficult for human operators to efficiently and accurately 
carry out manipulation tasks through a teleoperation 
medium without clearly perceiving the pose of the robot 
and objects around it. 

Research and field studies at major disaster relief 
operations such as the World Trade Center collapse 
showed that when mobile robots were deployed in 
confined spaces, the lack of perceptive data processing 
capability reduced the robotic skill set and added to the 
operator’s cognitive responsibilities [2]. Armed with 
only a raw video feed with noisy and blurry images, 
operators and rescuers were unable to keep track of 
where the robots searched and the conditions during the 
deployment [2]. This problem of deficient perceptive 
information is amplified in the case of grasping tasks. 
Conventional teleoperation systems [1,3,4] make use of 
only a video camera that provides 2D images to the 
operator and the lack of depth perception makes it 
difficult for the operator to estimate the size and distances 
of unknown objects. Moreover, visual cameras do not 
work well at night or in adverse weather conditions. As a 
result, operators require a significant amount of trial and 
error to correctly control the robot to complete a grasping 
task. 

An integral part of intelligent perception is 
transforming sensor data into knowledge and expressing 
that knowledge as information for use by other members 
in a human-robot team [5]. The idea of workspace 
modeling is to create a 3D representation of the robot and 
its surrounding environment [6–8] containing both 
semantic and geometric information that can be shared 
among all human and robotic agents in the operational 
team. The workspace model is constructed in real-time 
by processing the raw sensor data, organizing it, and 
labelling relevant objects [9]. Then the workspace model 
is used to provide visual feedback to the operator on the 
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task progress. 

 
Figure 1. Feedback loop for teleoperation with 3D 
workspace modeling 

This research proposes a context-aware 3D 
workspace modeling of remote equipment to improve 
perception and situational awareness for efficient 
teleoperation (Figure 1). In contrast to contemporary 
methods [1,4] which only provide views of the 
environment from the camera viewpoint to the remote 
operator, this research proposes a third-person viewpoint 
with automated state estimation and visualization of the 
relative pose between the end effector and salient objects. 
In addition, this research was validated at a large-scale 
outdoor environment with real construction equipment, 
compared to existing methods which were more focused 
on small to medium scale indoor environments [10,11]. 
To summarize, the contributions of the proposed work 
are as follows: 
• designed a 3D workspace modeling and 

visualization scheme for teleoperated construction 
equipment 

• developed an accurate algorithm for pose estimation 
of articulated equipment without prior dynamic 
models 

• demonstrated the effectiveness of the 3D workspace 
modeling system with field trials using a multi-
excavator system teleoperated in real-time 

2 Literature Review 

2.1 Remote Excavator System 
Demand has recently been increasing for unmanned 

robotic excavator systems to carry out dangerous 
construction operations or disaster relief work. In such 
hazardous environments, direct human operation of 
excavators is unsafe due to the threat of rollover 
accidents, collisions, or radioactivity in the case of 
nuclear disaster sites. If the excavator could be robotized 
and teleoperated from a remote location, this would lead 
to a safer work environment for the human operators 
involved. 

There are several teleoperation systems for 
excavators that have been studied in the literature. For 
example, [12] developed a excavator teleoperation 
system using the human arm, where sensors are attached 
to the operator’s arm in order to detect movements so that 
command signals from sensors can be transmitted to the 
excavator. It is also possible to perform motion control 
with the teleoperation system by using posture sensor 
devices for receiving the kinematic information [13,14]. 
In these existing teleoperation systems, operators receive 
feedback either in the form of visual feedback [15,16] or 
force feedback [17] to monitor the interaction between 
the machine and the environment. More advanced 
excavator teleoperation systems [18,19] make use of a 
modular system such that a single operator can control 
multiple excavators with multiple end effectors at once to 
carry out more complex manipulation tasks. In such cases, 
effective feedback for teleoperation becomes even more 
important due to the higher risk of collision and other 
confounding factors such as occlusion and requirement 
for a larger field of view. 

2.2 Workspace Visualization Systems 
In a general teleoperation scenario, there are multiple 

ways to provide feedback to the remote operator 
including video feeds [3], laser scans [7], and haptic 
feedback [13]. In spite of these options, conventional 
teleoperated robots [1,4] mostly rely on a single video 
camera due to its simplicity and ease of use. Even when 
additional sensors are installed on the robot, they are 
poorly utilized due to the lack of information processing 
[2]. This causes the remote operator to have a limited 
field of view of surrounding objects and have limited 
depth perception. 

There are several strategies in the literature to 
improve the visualization system for robot operation. [3] 
used a separate robot arm for visualization to overcome 
occlusions while performing visual servoing. However, 
being a primarily visual system, it still had limitations in 
terms of field of view and depth perception. [10] and [11] 
used RGBD-cameras paired with interactive 
visualizations to allow the operator to customize the 3D 
view. However, these works only considered the case of 
a single robot on an indoor, tabletop environment without 
any base displacement. [6] used 3D laser scanning to 
track the motion of construction equipment, but only 
modeled the construction equipment itself without 
visualizing the surrounding objects. [20] employed a 
multi-sensor system using four fisheye cameras and a 
360◦ laser scanner to continuously reconstruct a 3D 
model of the surroundings with Simultaneous 
Localization and Mapping (SLAM). However, the 
method was only tested in static, indoor environments. 
Moreover, these methods have no automated object 
recognition or annotation of task-relevant entities, 
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leading to difficulty in identifying objects in cluttered or 
confined spaces. For the case of construction equipment, 
there exist algorithms for recognition [21,22] and pose 
estimation [23–25], but they still lack integration into a 
complete workspace visualization system. 

3 Methodology 
This research proposes a workspace modeling 

framework for teleoperation of remote construction 
equipment. As shown in Figure 1, the workspace model 
enables a feedback loop where the remote operator is able 
to simultaneously observe the effect of control inputs and 
interpret the remote environment from a 3D visualization 
interface, thus improving the situational awareness and 
efficiency for performing complex manipulation tasks. 
The workspace modeling procedure is designed to be 
independent from the equipment control such that the 
visualization and pose estimation process can remain the 
same regardless of any control configuration changes. 
The following subsections will provide details for each 
component of the proposed framework. 

3.1 GHOST teleoperation system 
This research makes use of the GHOST teleoperation 

system [19], which retrofits construction equipment such 
as excavators to be operated remotely. The manipulators 
are controlled wirelessly from a remote operation room 
equipped with monitors, joysticks and pedals. In general, 
each excavator can receive six different types of control 
signals which are assigned to the boom, arm, bucket, 
cabin, left track and right track respectively. Since the 
combination of one set of joystick and pedals is sufficient 
to transmit six control signals, the complete system 
allows a single operator to control two excavators at the 
same time. 

However, teleoperating multiple excavators at once 
using conventional visualization methods is challenging 
even for experienced operators. Besides problems with 
the limited field of view and limited depth perception, the 
remote operator has to continuously monitor for multiple 
events including coordination between the excavators, 
occlusions, risk of collisions and risk of rollovers. This 
leads to a high cognitive burden for the operator, 
potentially causing lower efficiency and higher risk of 
accidents. To overcome this problem, this study 
implements a remote laser scanning system to provide 3D 
visualization of the environment surrounding the 
excavators, which will be described in the following 
sections. 

3.2 Remote laser scanning system 
Figure 2 shows the remote laser scanning system used 

to acquire a 3D reconstructed model of the excavator 

workspace. The VLP-16 LiDAR was mounted on a small 
teleoperated tracked mobile robot and utilized to acquire 
real-time laser scans of the site. The VLP-16 has a range 
of up to 100 meters with ± 15o vertical field of view. This 
means that the vertical angular resolution is only 2o 
because the VLP-16 has only 16 scan lines (channels) in 
the vertical direction. Thus, the scanned point cloud will 
be overly sparse for regions far away from the scan origin. 
For this reason, this study implemented an improved 
scanning system by installing the VLP-16 at 90o 
sideways and spinning it continuously with a stepper 
motor (refer Figure 2). In this way, the limited vertical 
resolution (now horizontal resolution) can be mitigated 
by rotating the scans horizontally, thus creating a higher 
resolution point cloud. 

The effectiveness of 3D workspace modeling 
depends heavily on the point cloud update rate and 
resolution, which can impact the subsequent object 
recognition and pose estimation [26]. From the rotation 
mechanism discussed previously, the LiDAR scanner can 
generate a 360o point cloud of the surrounding 
environment after spinning about the vertical axis for half 
a revolution [27,28]. The update interval, between which 
the point cloud is updated to capture changes in the 
environment, is thus determined by the time it takes for 
the LiDAR scanner to spin for half a revolution. There 
exists a tradeoff between the rotation speed and resulting 
point cloud resolution due to this rotation mechanism of 
the laser scanner. When the rotation speed of the laser 
scanner is increased, the update rate increases but the 
point cloud resolution degrades because of the larger 
distance covered between consecutive scans. In contrast, 
when the rotation speed of the laser scanner is decreased, 
the point cloud resolution improves but the update rate 
decreases. 

To find the best rotation speed, a simulation was 
carried out to determine the generated non-overlapping 
vertical scan lines when rotating the scanner. Based on 
this simulation, the average angle between the vertical 
scan lines as well as the maximum angle between the two 
adjacent vertical scan lines were calculated as shown in 
Table 1. From these results, the rotation speed 
corresponding to a 2.4s update interval was selected to 
minimize the update interval while maintaining a high 
horizontal resolution. This means that it is difficult for 
the scanner to capture rapid motions in the environment, 
but the higher resolution is necessary for object 
recognition. 

Using this rotation setting, the resulting laser 
scanning system has a 0.25o resolution in the horizontal 
direction and a 0.4o resolution in the vertical direction, 
generating 324,000 points per update. The individual 
scans within each update are registered by multiplying by 
a rotation matrix, calculated from the rotation angle of 
the stepper motor. The laser scan data is published 
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wirelessly to the operation room as a ROS (Robot 
Operating System) message. 

Table 1. Relationship between update interval and 
horizontal angular resolution 

Update 
Interval 

1.2s 1.4s 2.1s 2.4s 2.5s 2.9s 

# vertical 
lines 

374 447 641 720 523 927 

avg. horiz. 
resolution 

(o) 

0.48 0.40 0.28 0.25 0.34 0.19 

max. horiz. 
resolution 

(o) 

0.50 0.43 0.29 0.25 0.40 0.28 

Figure 2. Remote laser scanning system 

3.3 Point cloud pre-processing and 
segmentation 

Processing the point clouds in real-time is challenging 
due to noisy sensor data, limited resolution of the laser 
scanner (refer Section 3.2), limited data bandwidth, and 
motion blurring of objects. Moreover, the point cloud is 
dynamically changing due to the movement of equipment 
and in the scene, meaning that it has to be processed 
incrementally. 

A voxel grid filter is first used to equalize the point 
cloud resolution to 0.1m throughout the scene. This 
serves a dual purpose of allowing more consistent 
segmentation as well as speeding up the processing time 
by downsampling the point cloud. Next, the point cloud 
scene is segmented into smaller units corresponding to 
individual objects to enhance visualization of the scene. 
To meet the real-time constraint, the fast segmentation 
method of [29] is used. The ground plane is first 
segmented using the RANSAC algorithm [30] to 
estimate the 3D plane parameters. Alternatively, for the 
case of non-flat ground, the ground segmentation 
algorithm from [21] can be used. From the remaining 
points, Euclidean clustering is used to form clusters 

consisting of points that neighbor each other within a 
margin of 0.15m. As new scan points are acquired, they 
are matched to the closest existing clusters and each 
cluster is then updated. New scan points also cause new 
clusters to be initiated if no neighboring clusters are 
found. This allows the segmentation process to occur 
incrementally, similar to the method used in [31]. 

(a) Raw point cloud acquired by laser scanning

(b) Segmented point cloud showing relevant entities

Figure 3. Point cloud segmentation results for a 
scene with two excavators and a single target asset 

Next, the following relevant entities are automatically 
labeled in the scene: (i) laser-scanning robot, (ii) 
construction equipment, and (iii) target assets for 
manipulation tasks. The position of the laser-scanning 
robot can be easily determined as the origin of the point 
cloud scan. On the other hand, the positions of various 
construction equipment can be determined by using the 
method in [21], where a feature descriptor is computed 
for each point cloud cluster and classified with a pre-
trained classifier. Finally, the point cloud clusters for 
objects lying on the ground close to the construction 
equipment are labelled as potential targets for 
manipulation. 

Figure 3 shows an example of the segmentation 
results for a scene with two excavators and a single target 
asset. The segmentation results are additionally overlaid 
with CAD models of the end effectors (bucket or gripper) 
and other relevant entities (e.g. target asset and scanning 
robot) to enhance the visualization. From Figure 3, the 
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raw point cloud data is extremely blurry, and it is difficult 
to keep track of the movement of objects in the robot 
workspace. However, with automated segmentation and 
annotation of the point cloud data, the remote operator is 
able to better perceive the robot workspace. 

3.4 Point cloud-based pose estimation 

(a) Model parameters for excavator joint configuration

(b) Pose estimation result for a gripper and a target asset

Figure 4.  Excavator pose estimation

Figure 4a shows the model of the excavator joint
configuration used in this study. For each excavator, 
the robot pose can be described in terms of the 
following variables: (xb, yb, zb), position of the mobile 
base; α1, rotation of the mobile base with respect to 
the z-axis; α2, rotation of the boom relative to the 
mobile base; α3, rotation of the arm relative to the 
boom; α4, rotation of the end effector relative to  the 
arm. Similarly, the pose of the end effector can be 
described in terms of the following variables: (xe, ye, 
ze), the position of the end effector and  (ψe, θe, φe), 
yaw, pitch, roll angles of the end effector with respect 
to the world frame. In addition, the variable α5 is used 
to describe the opening angle of the end effector if a 
gripper is used. 

To perform pose estimation on articulated 
equipment such as excavators, the strategy used is to 
approximate each joint as a line segment and use line 
detection algorithms to extract corresponding 
segments from the point cloud. Due to the noisy 
nature of the point cloud, robust parameter estimation 
methods such as RANSAC [30] and PCA [32] are 
used. Then the tangent direction of each line segment 

is used to estimate the joint rotation angles α. 
Empirically, using RANSAC for detecting the boom 
and PCA for detecting the arm gives the best results. 
Next, the end effector points are segmented by taking 
the rightmost points of the excavator after correcting 
for rotation. (xe, ye, ze) is calculated by taking the 
centroid of this segment whereas (ψe, θe, φe) can be 
inferred from the internal joint angles. The gripper 
opening angle, α5, is estimated by taking the width of 
the end effector segment after correcting for rotation. 
On the other hand, to perform pose estimation of a 
target asset for manipulation, the position, (xa, ya, za), 
is first estimated by taking the centroid of the 
corresponding point cloud segment. Then the 
orientation, αa is estimated by extracting the convex 
hull and solving for the minimum bounding box [33]. 
Each step of the pose estimation process also employs 
error correction using the smooth motion constraint. 
That is, if a new prediction differs from the previous 
prediction by more than a predetermined threshold 
(e.g. due to outlier data), the new prediction is 
discarded. 

Figure 4b shows an example of the point-cloud 
based pose estimation result for an excavator 
equipped with a gripper. The segmentation can be 
computed in 0.05 - 0.1s whereas the pose estimation 
can be computed in 0.02 - 0.03s. The delay in 
showing the 3D visualization depends on network 
latency, but is usually within 1s. The final 3D 
workspace model is displayed through an interactive 
user interface. The remote operator is allowed to 
select the target asset of interest for manipulation. The 
user interface will then display task progress in terms 
of grasping the target asset. 

4 Results 

4.1 Experimental setup 

Figure 5. Experimental setup of two excavators at 
a mock urban disaster site. 

The experimental setup consists of two robotic 
unmanned excavators deployed at a mock urban disaster 
site (Figure 5). The operator has two options to remotely 
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monitor the test environment: (i) 2D images from 
cameras mounted on the excavator roof and (ii) 3D 
visualization obtained from the mobile laser scanning 
system. One excavator is equipped with a gripper as the 
end effector whereas the other excavator is equipped with 
a bucket. Using one or both of the excavators, the 
operator is tasked with carrying out various manipulation 
tasks such as picking up miscellaneous wreckage and 
moving them to a specified location. The accuracy and 
effectiveness of the proposed workspace modeling and 
visualization system is then validated using the pose 
estimation accuracy. 

4.2 Pose estimation accuracy 
The pose estimation results are visualized as shown 

in Figure 6. Note that this evaluation only considers a 
single excavator, but the proposed system is able to 
estimate the poses of multiple excavators simultaneously. 
The left 4 columns show results for a propane tank as the 
target object whereas the rightmost column show results 
for a plastic container as the target object. From the 2D 
images of the operator view, it is difficult to perceive 
whether the gripper is in line with the target object and 
the distance of the gripper to the target object. On the 
other hand, the 3D visualization provides helpful 
information in terms of physical distances and poses that 
can assist the remote operator in decision making. 

As shown in Table 2, the pose estimation accuracy is 
measured using three metrics: (i) error in estimating the 
distance from the center of the end effector to the center 
of the target asset, d1, (ii) error in estimating the distance 
from the center of the end effector to the ground, d2, (iii) 
error in estimating the distance from the center of the end 
effector to the center of the excavator body, d3. The 

accuracy of the proposed method is compared against 
two baselines methods: (i) simple line-fitting with linear 
least-squares regression [34] and (ii) Iterative Closest 
Point (ICP) [35] to fit the end effector model to the 
scanned point cloud. Results show that the proposed 
method achieved lower pose estimation errors compared 
to the two baseline methods. This is because the scanned 
point cloud is too noisy and has low resolution for simple 
line-fitting or ICP to work, whereas the proposed method 
is able to estimate the pose parameters from point clouds 
more robustly. 

Table 2. End effector pose estimation error 

Method d1 error 
(m) 

d2 error 
(m) 

d3 error 
(m) 

Simple line-
fitting [34] 

0.93±1.06 0.39±0.50 0.15±0.07 

ICP [35] 0.15±0.11 0.10±0.07 0.24±0.26 
Our method 0.13±0.07 0.09±0.09 0.10±0.08 

5 Conclusions 
In summary, this research proposed a workspace 
modeling system for teleoperated construction 
equipment based on laser scanning. Through field tests at 
a mock urban disaster site, the constructed 3D workspace 
model was demonstrated to be able to estimate the 
positions of the excavator and target assets accurately and 
improve the performance of human operators on 
manipulation tasks. This represents an important step 
towards achieving the goal of improving the efficacy of 
remote robot operation, reducing human operator needs, 
and reducing the operator's cognitive burden during 
teleoperation. For future work, the method will be 
extended to more types of heavy equipment such as 

Figure 6: Visualization and pose estimation of excavator workspace. The top row shows 2D images of the scene 
whereas the bottom row shows the corresponding 3D visualization 
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loaders and dump trucks and further evaluated in more 
challenging manipulation scenarios. 
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