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Abstract – 

In the construction industry, there is often a need 

to identify and localize assets and activities on the 

jobsite to assess and improve the performance of their 

associated processes. Traditional methods for 

monitoring construction activities are costly and 

time-consuming. Excavators and dump trucks are 

among the most common assets used in the 

construction industry. Consequently, accurately 

monitoring their activities can reduce time and 

increase the efficiency of progress monitoring. 

With the presence of cameras on jobsites and the 

advancement of methods based on artificial 

intelligence and computer vision, progress 

monitoring activities can be automated. Furthermore, 

by using techniques such as deep learning, a wider 

range of data resources can be processed, and 

oftentimes more accurate results can be produced for 

the purpose of object detection. 

This research proposes a computer-vision 

approach that utilizes a Mask Region Based 

Convolutional Neural Network (Mask-RCNN) to 

detect excavators and dump trucks in a construction 

site. This research investigates an innovative 

technique to achieve high accuracy object detection 

using relatively small datasets. To overcome the 

problem of overfitting and improve generalization, a 

pre-trained model based on a Microsoft COCO 

dataset is used as a network that presumably has 

already been trained to distinguish basic features. 

Finally, the model is further fine-tuned to minimize 

validation loss. 
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1 Introduction 

An efficient and effective workforce improves the 

time and cost performance of construction projects [1, 2]. 

Accurate progress monitoring, safety management, and 

quality control activities require skilled labor with 

adequate supervision, which in turn increases time and 

project costs. 

With the advancement of methods based on artificial-

intelligence, computer vision and deep learning, the 

abovementioned activities could be automated, leading to 

time and cost reductions. Specifically, there is a growing 

trend to use computer vision approaches to detect 

construction machinery from video outputs. These 

technologies could help project managers to access more 

accurate data in order to monitor construction assets, 

facilitate progress management and manage site safety.  

To address this need, a region-based deep learning 

architecture called Mask R-CNN is utilized in this study 

to detect and segment excavators and dump trucks in the 

images from jobsites using a relatively small dataset.  

The main objective of this research is to develop an 

improved deep-learning-based network to enhance the 

accuracy of predictions and decrease the processing time. 

The study’s sub-objectives are to:  

1. Develop a network for automatic detection of

machinery (i.e. excavators and dump trucks) on

construction sites from captured videos based on

machine learning algorithms.

2. Train and validate the network on a small dataset.

3. Fine-tune the network’s parameters to further

increase its performance.

2 Related Works 

AI techniques can assist project managers in 

monitoring and analyzing job site activities [2, 3, 4, 5, 6, 

7]. Furthermore, AI approaches can be used for safety 

management to monitor and reduce risks [8, 9, 10, 11, 12]. 

Machine learning techniques can be deployed to 

detect construction machinery on jobsites. Project 

managers can utilize the information about these assets to 

increase the efficiency and safety of the projects.  

Deploying an Unmanned Aerial Vehicle (UAV), Kim 

et al. [13] presented a visual monitoring method that 
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could automatically measure proximities among 

construction vehicles and workers. They localized 

objects using a deep neural network, YOLOv3, and 

developed an image rectification method that facilitates 

the measurement of actual distances from a 2D image. 

Struck-by hazards around workers could be detected with 

this method, making timely intervention possible. 

YOLOv3 provides bounding boxes for detected objects, 

but it is unable to generate pixel-level masks. 

In another study, Kim et al. [14] developed a vision-

based method to classify equipment operations in video 

data. The framework consists of four stages: equipment 

tracking, individual action recognition, interaction 

analysis and post-processing. The hybrid detector used in 

this study consists of ferns and a random forest 

classification algorithm, which uses a sliding window to 

propose bounding boxes and cannot provide shape data. 

To detect dense multiple vehicles from UAV, Guo et 

al. [15] presents a deep learning approach that uses a 

single-stage detection (SSD) algorithm with orientation-

awareness and integrates it with a developed feature 

fusion module. Similar to YOLOv3, the SSD algorithm 

is unable to provide pixel-level mask data for the detected 

objects. 

3 Methodology 

In this research, two common classes of construction 

vehicles, namely excavators and dump trucks, are studied. 

Due to the unavailability of open datasets, a dataset of 

341 annotated images of excavators and dump trucks is 

created to train the proposed network. In order to develop 

a high-quality dataset of these heavy machineries in 

construction sites, public domain images were gathered 

through Google Image® and Flicker®. Some 269 images 

are used for the network training, while 72 images are 

assigned to the evaluation process. VGG Image 

Annotator (VIA) [16] is used to annotate the images of 

the dataset to provide the ground truth for the training 

process (Figure 1).  

 

Figure 1. Data annotation using VIA [16] 

Since the size of the dataset is relatively small, pre-

trained weights for the MS COCO dataset are used as a 

transfer learning technique to overcome overfitting 

problem and increase the accuracy.  

3.1 Instance Segmentation 

In this study, an instance segmentation technique 

called Mask R-CNN is used, which can provide pixel-

level boundaries for each detected object. Mask R-CNN 

has a new ability to segment objects in addition to 

classification and detection, compared with its 

predecessor Faster R-CNN [17]. 

As illustrated in Figure 2, first, the feature map of the 

entire image is extracted using a ResNet-101 architecture 

as a convolutional backbone. Then, a Region Proposal 

Network (RPN) analyzes the developed feature map and 

proposes candidates for object bounding boxes. To 

resolve Faster R-CNN’s problem regarding the pixel-to-

pixel misalignment between network inputs and outputs, 

a quantization-free layer called Region of Interest (RoI) 

Align is utilized, which preserves spatial locations. After 

fixing the misalignment problem of the bounding-box 

candidates, using fully connected (FC) layers, the 

network can classify objects and recognize bounding 

boxes and in parallel, a convolutional layer unit predicts 

masks that are applied separately to each RoI [17]. 

 

Figure 2. Mask R-CNN architecture 

3.1.1 Loss Function 

A multi-task loss is defined on each RoI as the sum of 

the classification loss (Lcls), the bounding-box loss (Lbox), 

and the mask loss (Lmask) [17]. 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (1) 

3.2 Training Method 

As shown in Table 1, the hardware setting is Laptop 

ROG Strix GL502VS with a NVIDIA GTX 1070 8GB 

GPU. It has an Intel Core i7 7700HQ as CPU processor 

and 16GB of RAM. Concerning the limitation of GPU 

memory, we use 1 image per GPU for each mini-batch 

and each epoch consists of 100 steps. 

Table 1. Hardware setting 

ROG Strix GL502VS 

CPU Intel Core i7 7700HQ 
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GPU NVIDIA GTX 1070 8GB 

RAM 16GB 

Matterport’s implementation [18] of Mask R-CNN on 

Python 3, Keras, and TensorFlow is used. The backbone 

of our network is ResNet-101 and we utilize only one 

class of data augmentation in our training phase, which 

consists of horizontally flipping 50 percent of the images. 

As described in section 3, pre-trained weights on MS 

COCO are used as our initial network weights. We 

adapted a multi-phase training strategy to fine-tune our 

results. In the first phase (first 5 epochs), only the top 

layer (heads) of our developed network was trained with 

the learning rate (lr) of 0.001. Next, for epoch 6 to 15, 

ResNet stage 4 and up were trained with lr of 0.001, while 

the rest of the layers are frozen. In the third step, for 

epoch 16 to 30, ResNet stage 3 and up were trained and 

lr decreased to 0.0001. In the final phase (epoch 31 to 40), 

all layers of ResNet were trained with lr of 0.00001. 

Table 2 presents the specifications of the developed 

multi-phase training. 

Table 2. Multi-phase training specification 

Phase Epochs Training layers lr 

I 1-5 Only top layer 0.001 

II 6-15 ResNet stage 4 

and up 

0.001 

III 16-30 ResNet stage 3 

and up 

0.0001 

IV 31-40 ResNet all layers 0.00001 

3.3 Metrics for Evaluating Performance 

The network’s performance is evaluated and 

quantized using two metrics: Average precision (AP) and 

inference time, which is the amount of time the network 

requires to do the prediction. 

3.3.1 Average precision (AP) 

 According to the definition of Pascal VOC 2010 [19], 

for a specific value of Intersection over Union (IoU), the 

AP measures the precision/recall curve at recall values (r₁, 

r₂, etc.) when the maximum precision value drops. The 

AP is then computed as the area under the curve by 

numerical integration [20].  

𝐴𝑃 = ∑(𝑟𝑛+1 − 𝑟𝑛) 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) = max
�̃�≥𝑟𝑛+1

𝑝(�̃�) 

 

 (2) 

The metric mAP is the average of AP over a range of 

IoU from 0.5 to 0.95 at intervals of 0.05 (AP@ [.5:.95]) 

[20]. 

3.3.2 Detecting Threshold 

To eliminate network predictions having a low 

confidence score, only detected instances above the 

threshold level of 0.9 are considered in the final results. 

4 Results 

Over the 40 epochs of training the network, the 

minimum validation loss function took place at epoch 38 

with a value of 0.1889. Figure 3 illustrates the loss 

function of the network at each epoch. As shown in Table 

3, the total training time was 68 minutes on 1 GPU. 

 

Figure 3. Loss function at each epoch 

Table 3. Training time 

Phase Training time 

I  7 min 

II 24 min 

III 48 min 

IV 68 min 

4.1 Metrics Results 

The results of the average precision of the network 

predictions are reported in Table 4. 

Table 4. Average precision results 

Average precision 

AP50 0.8792 

AP75 0.7438 

mAP  0.5984 

The inference time is calculated by averaging the time 

required to segment 10 images, which amounted to 

3173 ms with the current hardware setting. 

4.2 Examples of network predictions 

As illustrated in Figure 4 and Figure 5, the network’s 

performance was excellent for the classification task with 

a confidence score nearly equal to 1, while keeping a 

reasonably high-performance level on segmentation with 
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an IoU measured above 0.85. 

 

Figure 4. Excavator example (Confidence 

score/IoU), network prediction (red line) vs. 

ground truth (green line) 

 

Figure 5. Truck example (Confidence score/IoU), 

network prediction (red line) vs. ground truth 

(green line) 

Although the developed network performs with a 

good level of accuracy on most testing images, there are 

some situations in which the network segments the 

instances weakly. For example, if there is an occlusion in 

the image, as illustrated in Figure 6, the network has 

difficulty recognizing the proper boundaries of the 

occluded objects. For example, in the case of Figure 6, 

the IoU for the excavator was as low as 0.485. 

Another condition that dramatically affects the 

network’s performance is low illumination. As shown in 

Figure 7, the overall lighting in the image is low. The 

network confidence score associated with the truck was 

consequently below the detecting threshold of 0.90, 

which means the truck cannot be detected by the network. 

 

Figure 6. Example of Occlusion (Confidence 

score/IoU), network prediction (red line) vs. 

ground truth (green line) 

 
Figure 7. Poor illumination example 

5 Discussion 

A deep learning model is developed to segment 

excavators and trucks utilizing a relatively small dataset 

of public domain images. 

By using a small dataset, complications arise in the 

training process as the network faces challenges such as 

overfitting. Transfer learning, data augmentation, and 

fine-tuning techniques were used to decrease the effect of 

overfitting and increase the accuracy of results. 

To deal with the challenges associated with occlusion 

and low lighting, it is proposed that a larger training 

dataset should be created to enhance the network’s 

performance. In this study, the use of data augmentation 

is limited to flipping, yet the use of a conclusive data 

augmentation that deals with occlusion and lighting 

should be considered in future studies. 

With the current hardware setting, the inference time 

was measured as 3173 ms, which is high for real-time 

applications. By using a more powerful hardware setting, 

the inference time could be decreased. Additionally, 

other implementations of Mask R-CNN should be tested 

to avoid slow performance related to weak network 

implementation. 
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6 Conclusion 

In this study, a deep learning model was developed to 

accurately detect and segment two types of construction 

machineries. The network’s performance resulted in an 

average precision of 0.8792 and inference time of 

3173 ms, using a relatively small dataset and a transfer 

learning technique.  

The pixel-level segmentation approach can provide 

the spatial information about objects. Compared with the 

previous approach relying on bounding boxes to measure 

proximities between vehicles, the generated pixel-level 

masks increase the accuracy of the proximity calculations 

related to safety control and decrease false safety alarms. 

The number of vehicle classes in the proposed model 

could be increased to include a broader range of 

machineries and could be used to efficiently manage 

construction assets and monitor safety on jobsites.  

The network performs poorly when objects are 

occluded or poorly lit. In future studies, it is proposed that 

a larger and more diverse dataset be used to overcome 

problems such as occlusion and poor lighting. Further 

work is also needed to study the effect of data 

augmentation on the network performance when it faces 

occlusion or illumination challenges.  
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