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Abstract – 
The need for efficient computing in construction 

modelling and analysis workflows often requires 
making tradeoffs between the inherent advantages 
and disadvantages of different datatypes being 
generated and managed. This is notably observed in 
geometry reconstruction (e.g., scan-to-BIM, reverse 
engineering, etc.), where a tradeoff often occurs 
between computational efficiency and the choice 
between increased semantic enrichment or increased 
representational accuracy (often both cannot be 
achieved simultaneously). This dichotomy can be 
generalized as a choice or tradeoff between 
parametric and non-parametric object 
representation forms. This paper presents a simple 
conceptual model for characterizing the datatypes 
used for representing and defining construction 
geometry to understand key tradeoffs that exist. First, 
we survey existing literature across multiple domains 
to identify and distill key attributes used in 
characterization according to the terms parametric 
and non-parametric. Then, we develop and illustrate 
a conceptual model using an analogy to mathematical 
expressions vs. discrete digital approximations 
employed in computer vision (e.g., Gaussian kernel, 
Hough Transform, and Scale Invariant Feature 
Transform (SIFT) algorithm). Finally, we outline 
future research opportunities for improving the state 
of object representation. 
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1 Introduction 
In construction workflows, the virtual representation of 
physical objects forms the basis for design, 
communication of product and process requirements, and 
as-built verification of constructed works. When objects 
are represented by a set of simple algebraic primitives 
such as curves, planes, and polysurfaces, an object is said 
to have a “parametric” form [1]. In contrast, when objects 
cannot be accurately represented by such primitives, and 

rely on implicit algebraic forms (e.g., surface normal 
histograms) or large, non-semantic data structures (e.g., 
point clouds and meshes), objects are said to be “non-
parametric” [2,3]. Computer-aided design (CAD) and 
building information modelling (BIM) favor parametric 
representations [2,4], while workflows used for 
digitization of as-built objects (using tools such as 
photogrammetry and laser scanning) favor non-
parametric representations [3,5]. Practitioners require 
specific object representations for different purposes 
across the construction life-cycle. As a result, across the 
lifecycle of any given project there can exist a wide range 
of construction elements, components, assemblies, and 
conditions exhibiting or being represented by parametric 
and non-parametric forms. This dichotomy exists due to 
(1) the nuance of methods employed for object
representation, (2) inattention or inability to control
dimensional variability during construction, and (3) the
diversity of geometric forms and conditions that exist
across various systems in the AEC industry.

1.1 Geometric Challenges in AEC Related to 
Parametric and Non-parametric Forms 

The premise that geometry can be characterized by a mix 
of parametric and non-parametric forms has unique 
implications in Architecture, Engineering, Construction 
(AEC) that few studies have investigated in detail, but 
that continues to create challenges for mediation and 
resolution efforts. Many geometric and topological 
challenges can be traced to an inability to mediate 
effectively between parametric and non-parametric 
domains, as evidenced in the following examples: 
• Existing conditions characterization. The

challenge in these workflows is the process of
fusing parametric and non-parametric data
stemming from existing conditions and new
components or assemblies. This is evidenced
particularly in adaptive building reuse where data
used to represent existing conditions is most
accurately facilitated through non-parametric data.
Parameterization of unstructured data can be
performed, but often results in a loss of
representational accuracy. Examples of as-built
conditions which are difficult to parameterize
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include large concrete structures, beam camber, rail 
track levelness, or curvature of free-formed 
bespoke architectural features. 

• Updating BIM to reflect the as-built status. The 
process of updating BIM during construction is 
complex and subject to varying degrees of accuracy 
for geometric representation. When objects deviate 
outside of allowable tolerance thresholds and 
cannot be accurately or easily represented using 
parametric primitives, updating the as-designed 
BIM becomes time-consuming and error-prone. 

• Abstraction of geometric deviations. While the 
comparison of 3D sensed data (e.g., point clouds) 
with BIM has been relied upon in industry for many 
uses cases, the challenge that still exists is 
localization, interpretation, and abstraction of 
discrepancies. While a 3D point cloud can be 
overlaid on a 3D model to produce a map of 
geometric deviations, this analysis by itself does not 
translate into distinct kinematic (i.e., parametric) 
deviations or non-kinematic (i.e., non-parametric) 
deviations. The challenge of sensing and 
interpreting geometric deviations is especially 
important in repetitive assembly workflows, such as 
modular construction, where parametric corrections 
to assembly geometry configuration (i.e., location, 
orientation, size of objects, etc.) can have a 
profound impact on manufacturing efficiency and 
reduction of rework due to dimensional variability.  

• Mixed-form object assembly planning. 
Challenges in object assembly planning arise due to 
varying levels of object regularity, manufacturing 
processes and dimensional variability. For instance, 
the assembly of manufactured products into “stick-
built” buildings can be particularly challenging 
since manufactured products are often 
characterized as being highly parametric with low 
dimensional variability, while site interfaces are 
often non-parametric with a high degree of 
variability [6]. Another example of mixed-form 
object assembly planning is the optimal packing of 
irregularly shaped objects into containers, which 
occurs in nuclear waste disposal. In this case, 
irregularly shaped objects exhibit non-parametric 
representations while regularly shaped objects 
(containers) exhibit parametric representations [7]. 
These types of packing scenarios are challenging to 
derive optimized solutions for. 

1.2 Problem Statement and Contribution 
In light of the challenges with having a mixture of 
parametric and non-parametric representations in various 
AEC workflows, this research provides a better 
understanding into the trade-offs that exist. In some cases, 
parametric representations might be preferred, while in 

other cases non-parametric representations might be 
necessitated. Current classifications and definitions for 
parametric vs. non-parametric datatypes are verbose, and 
as a result of the different requirements for datatypes in 
AEC, navigating this delineation is challenging.  

This contribution of this paper is as follows. First, a 
review of existing classifications for parametric vs. non-
parametric entities is explored from a systems-, 
geometric schema-, semantic information-, and 
associative modelling-based standpoint. Then, a simple 
conceptual model is proposed, which captures the 
intrinsic trade-offs between these representation forms. A 
demonstration is used to demonstrate how such a model 
is efficacious for describing these trade-offs.  Finally, the 
implications of this model are discussed, to provide a 
better understanding into decision making regarding the 
handling of geometric data in AEC. 

2 Delineating between Parametric and 
Non-Parametric Entities 

2.1 Systems Context 
The distinction between parametric and non-parametric 
systems is verbose and multi-variate. In mathematical 
modelling of systems, the distinction between parametric 
models and non-parametric models lies with fixity and 
immutability of system parameters. Parametric models 
have fixed non-changing parameters for system 
characterization, while non-parametric models assume 
that a fixed set of parameters cannot be used for proper 
system characterization [8]. This notion also appears in 
robust parameter design [9] where systems are 
characterized in terms of controllable design aspects, or 
parameters, and noise variables which are much more 
challenging and sometimes not feasible to control.  

In some cases, non-parametric systems are viewed as 
having an infinite number of parameters, and since only 
a finite number of these parameters are used for 
modelling these systems, the output can change with the 
same input [10,11]. It should be noted that a clear 
association of, and connection between the terms 
parametric, non-parametric, stochastic and deterministic 
for codifying systems cannot be made. For instance, 
parametric models can be stochastic if the data being 
observed fits a known distribution with constant variance, 
and variables are numerical and continuous [12].  

Systems can also comprise both parametric and non-
parametric attributes, and thus can be considered semi-
parametric. The use of semi-parametric for domain 
classification also appears in the context of regression 
analysis, where a combination of linear and non-linear 
regression can be useful for statistical inference [13]. The 
use of localized variables and global parameters define 
model components that do not change (i.e., global 
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parameters of an entire population), and model 
components that do experience variation (i.e., local 
variable instances of a sample from a population). In 
addition to describing system certainty, these classes also 
describe system scale and provide a distinction between 
design vs. observational attributes.   

In summary, the distinction between parametric and 
non-parametric systems is multi-variate across domains 
and is based on several factors including modelling 
approach, system certainty, design vs observational data, 
and system scale (Figure 1).  

Figure 1. Taxonomy of systems classification in 
terms of modelling approach, system certainty, 
design vs. observational data, and system scale. 

2.2 Geometric Schema Context 
The representation of object geometry using distinct 
geometric schemas is also verbose and oftentimes 
unclear. Classification of these schemas are often based 
on ambiguity, directness, and compactness. 

Unambiguous (or complete) representations are used 
to describe the entirety of a physical object, and 
underlying primitives or descriptors can be inverted to 
recreate the exact same object being represented. 
Unambiguous approaches can be used to provide a one-
to-one mapping between objects and their representation 
[14,15]. Ambiguous representations are often used to 
distinguish between objects in a very efficient manner 
[15], even though the descriptors used cannot provide a 
one-to-one mapping between objects and their 
representation. Within unambiguous representations, 
methods can be further classified into implicit and 
explicit representations. The key difference between 
these two approaches is the directness for computing 
objects. Indirect representations use intermediate 
geometric descriptors such as histograms of normals or 
curvature to describe objects [1] as compared to explicit 
methods which directly describe objects using surface 
(e.g., polysurfaces, meshes), or volumetric (e.g., 
constructive solid geometry) descriptors [1,5].  

A final division between approaches is parametric vs. 

non-parametric representations. While explicit methods 
can be either parametric or non-parametric, implicit 
methods are distinctly not of a parametric form [16]. 
Parametric representations are more algebraically refined 
than non-parametric methods, however, they can be more 
computationally intensive to perform operations on [2]. 
While this may not be the case for simple primitives such 
as lines, circles and planes, it is especially true for 
representing complex geometry, using formats such as 
polysurfaces, Bezier curves, B-Splines, Non-Uniform 
Rational Basis Spline (NURBS), and piecewise functions. 
Non-parametric representations, in contrast, are more 
computationally efficient, but are more difficult to 
achieve exact geometric representation. A non-
parametric representation can be implicit as in the case of 
differential properties of a surface of a given location [1], 
or can also be explicit as in the case of polygonal meshes. 
The conversion between parametric and non-parametric 
representations is discussed in [16]. The conversion from 
parametric to non-parametric is defined as implicitization 
and it is possible to perform for any rational parametric 
surface of curve. The reverse process, parameterization, 
is not as easy to execute and is not always possible to 
perform for higher-order descriptors. Parametric 
representations have become the “quasi-standard” for 
CAD modelling [2] due to algebraic topology capabilities, 
while non-parametric representations are preferred in 
machine vision and as-built modelling systems [5,15] due 
to computational efficiency. 

Despite the existence of classifications for 
representation schemas such as the one shown in Figure 
2,  exact definitions and distinctions are at times fuzzy 
and inconsistent. For instance, some studies state that 
explicit representations can be either parametric or non-
parametric [1,3], while other studies state parametric 
approaches are always based on implicit methods of 
describing geometry [17]. This fuzziness stems from the 
fact that some classifications refer to the datatype itself 
as the entity being characterized, while other 
classifications refer to the process taken to derive a 
datatype as the entity being characterized.  In addition, it 
is difficult to understand clear distinctions between the 
nature of datatypes with respect to parametric vs. non-
parametric attributes. For example, it is well regarded 
that a representation scheme that allows for 
modifications of its underlying variables (e.g., control 
points in NURBS) is parametric. However, the same 
argument could theoretically be made for meshes (i.e., 
control vertices can be modified), yet these are clearly 
defined as being non-parametric schemas. Perhaps there 
is a theoretical limit to the number of control variables in 
a representation scheme whereby it starts to become non-
parametric. However, no such definitive limit has been 
(or perhaps can be) defined, which further adds to the 
existing fuzziness of classification.
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Figure 2. Classification of geometric schemas used to represent physical objects in AEC according to ambiguity, 
directness, and compactness (adapted from [3] using [1,2,5,14-16]).  

2.3 Semantic Information Context 
From a building information modelling standpoint, the 
classification of objects as being parametric extends 
beyond just representational form and has unique 
attributes to facilitate use across the entire construction 
lifecycle. Parametric BIM objects must also include 
semantic information (parameters) in the form of 
associated data, rules, topology and material-specific 
data [4]. Parameters are also used to classify objects into 
categories, families, types and instances, which is stored 
as data in the form of text, integers, numbers, area, 
volume, angles, URLs, or binary data [18].  Across this 
wide definition of parametric objects in BIM, attributes 
related specifically to geometry and topology are 
investigated in this research since they directly affect 
geometric mediation between objects. Topology 
describes the spatial relationships between elements that 
do not change based on changes to geometric parameters 
of those elements [19]. Topology can relate to the 
relationship between features of an element (e.g., face to 
edge), the relationship between elements (e.g., beam to 
column) or relationship between groups of objects or 
spaces (e.g., room to room). Topology plays a key role in 
the way architects and engineers understand the function 
and expected behavior of building elements. Topology, 
geometric representation and material properties are 
distilled into the “semantics” of an object, which can be 
interpreted as the form, function and behavior of objects 
and systems of objects [20]. Current modelling practice 
in construction emphasizes the creation and preservation 
of semantics by explicitly outlining that building 
information models must contain parametric intelligence, 
topological relationships and object attributes [21], 
otherwise, they are considered no more than 3D 
geometric models.  

2.4 Associative Modelling Context 
A fourth context can also be used to describe the 
delineation of parametric vs. non-parametric entities in 
AEC. Parametric modelling (or parametric design) 
involves the use of geometric rules and constraints to 
embed explicit domain knowledge into BIMs and 
provides a way for automated design regeneration via an 
“associative” model [22]. While any CAD modelling 
system can contain a parametric representation of an 
object, the following characteristics differentiate 
parametric modelling systems: users can define custom 
relationships between features and objects, parameters 
between objects can be integrated into a system (i.e., a 
parameter of one object can be used for defining 
parameters on other objects), parametric definitions are 
compatible in a system or are otherwise mutually 
exclusive such that no two parameters create conflicting 
relationships; geometry should be object or feature-based 
[22]. This approach to modelling has become very 
popular in the manufacturing industry and is seen in 
software such as SolidWorks®. Constraint-based design 
requires all dimensions of features and parts to be 
parametrically defined, constrained and related to other 
features [23], or it is otherwise considered under-
constrained, and cannot be realized [24]. While this 
degree of parametric constraints is not employed in most 
AEC workflows, the use of associative model does 
provide a source of additional parametric properties that 
can be exploited.  

2.5 Summary 
Exploring a range of contexts reveals a verbose and 
multi-variate landscape for describing the delineation 
between parametric and non-parametric entities. 
Selecting a suitable object representation (whether 
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parametric or non-parametric) extends beyond just the 
geometric schema employed, includes semantic 
information requirements, and might include associative 
relationships to other objects. In a systems context (2.1), 
the delineation between parametric and non-parametric is 
fuzzy (with an intermediate category sometimes being 
used), and this also translates down to the object level. 
However, it is clear from the examples of cases where 
both datatypes exist in AEC, that assessing trade-offs is 
useful for understanding the inherent benefits and 
constraints to each datatype. In some cases, parametric 
object representations are preferred, while in other cases, 
non-parametric object representations might be required. 

3 Proposed Conceptual Model 
This research presents a conceptual model to help 
summarize the key trade-offs between parametric and 
non-parametric object representations. This model is 
based on the distinction between analytical expressions 
and digital approximations that appear in computer 
vision for pattern and shape recognition processes. As 
depicted in Figure 3, this model classifies parametric 
object representations as having many relations between 
individual datapoints or entities, and are by nature more 
abstract, while non-parametric object representations 
have a greater number of unstructured datapoints and are 
by nature more discrete or approximate. 

Figure 3. Conceptual model for characterizing the 
delineation of parametric and non-parametric 
object representations 

3.1 Analogy to Pattern Recognition Techniques 
In computer vision, various techniques for pattern 
recognition can be used to resolutely employ digital 
approximations of analytical expressions for recognition. 

One of the most common methods for shape detection 
in computer vision is the Hough Transform which detects 
curves by exploiting the duality between points on a 
curve and parameters of that curve [25]. It works by first 
considering the analytical expression of a curve, often in 
the parametric line form (𝑟𝑟,𝜃𝜃), and edge segments of an 
image given by (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) . The transform is then 
implemented by discretizing the Hough parameter space 
over finite intervals of the image, or “accumulator cells”. 
This technique takes an inherently parametric 
mathematical expression and discretely approximates it 
in a non-parametric manner to extract and transform 
information from an image (which itself can also be 
defined as a non-parametric data source).  

Gaussian kernels are another example of discrete 
approximation used in computer vision to perform an 
analytical transformation on an image (Figure 4). A more 
general case of this is convolutional kernels and filters, 
which transform an expression into a discrete 𝑛𝑛𝑥𝑥𝑛𝑛 matrix 
and is convoluted over an image. Discrete 
approximations such as kernels are efficacious in 
complex algorithms such as Scale Invariant Feature 
Transform (SIFT) due to the ability to perform analytical 
operations in a computationally efficient manner.    

In the same way that many pattern recognition 
techniques transform analytical expressions into discrete 
approximations, this same analogy can be used to 
delineate between parametric and non-parametric object 
representations. On one hand, we can postulate a trend 
that the more abstract an expression or representation is, 
the fewer entities are required to relate components 
together. Conversely however, when these relations are 
broken and discretized, more discrete values are required 
to perform a similar level of approximation compared to 
its analytical counterpart.  

Figure 4. Analytical Gaussian Expression and its 
Digital Approximation (i.e., 5x5 Gaussian Kernel) 

3.2 Measuring the Degree of Semantic Fidelity 
The final component to the proposed model is 
characterizing the degree of semantic information 
encapsulated in an object representation. The greater the 
number of entities and degree of relations between those 
entities, the greater the semantic fidelity of a 
representation. In practice, there is a trade-off that occurs 
between parametric and non-parametric object 
representations with respect to the degree of semantic 
encapsulation.  This is perhaps most evident when 
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representing “as-is” objects. While non-parametric 
object representations are positioned better for obtaining 
a higher degree of representational accuracy, they cannot 
be semantically enriched to the same level as parametric 
object representations. Despite the high level of 
abstraction in parametric representations and the 
significant advancements being made to leverage better 
parametric modelling approaches that maintain 
representational accuracy of as-is objects, the inability to 
achieve the same degree of representational accuracy as 
non-parametric representations restricts its ability to 
achieve the highest level of semantic fidelity. As such, a 
notable trade-off occurs between parametric and non-
parametric representations with respect to semantics.  

4 Demonstrating the Conceptual Model  
Previous research has provided information for assessing 
the trade-offs between geometric schemas (Table 1). 
Using this breakdown, a simple demonstration can be 
carried out for the representation of an I-beam element 
(Figure 5) to show how parametric representations tend 
to have fewer entities, which are more tightly related. The 
first digital representation in this figure is a point cloud, 
which can be obtained by performing sampling 
reconstruction of existing mathematical descriptions or 
from reality capture [26]. The other digital 
representations which are more structured than point 
clouds are triangular and polygonal (tessellated) meshes. 
As shown, the point cloud representation has 7296 
datapoints (i.e., XYZ points), whereas the triangular 
mesh contains 1740 datapoints (i.e., triangle vertices), 
and in the most simplified case, the polygonal mesh 
structure has 108 datapoints (i.e., polygon vertices). 
These digital representations are also considered to be 
non-parametric. As opposed to regular shapes (e.g., 
rectangular, cylindrical, prismatic, etc.), non-parametric 
forms cannot be defined parametrically using a shape 
type and a limited set of parameter values that specifies 
the object [1]. Figure 5 also depicts two common 

mathematical representations. Non-Uniform Rational 
Basis Spline (NURBS) is a common boundary 
representation, which uses a series of surfaces to 
completely enclose and represent a given shape. 
Constructive Solid Geometry (CSG) is a mathematical 
representation that describes the volume of an object 
through use of Boolean operations (e.g., addition and 
subtraction) of simple geometries to create more complex 
shapes. While CSG has been the preferred method for 
representing geometry in building information models 
(BIM) due to its simplistic data structure [1], there are 
many applications where NURBS are preferred, since it 
can describe complex geometry more appropriately 
[21,27]. As shown for the steel beam, the NURBS 
geometry contains 56 datapoints (i.e., control points), 
whereas the CSG geometry contains 9 datapoints (3 
extrusions built with 3 control points each). 

Figure 5. Digital and Mathematical Representations 
for a Physical Object (Steel Beam Element).  

Table 1. Summary of the key trade-offs between geometry representations employed in AEC 

Geometry 
Representation 

Geometry Kernel 
Processing Demand 

Continuity Representational 
Accuracy (As-is) 

Semantic 
Richness 

Exactness for 
Complex Geometry 

Sources 

Point clouds Slow (high 
computational effort) 

Discretized High Low Low [28] 

Mesh Fast (no interpretation 
required) 

Discretized Med-High Low Med [28] 

BREP Med (interpretation 
required) 

Exact, 
continuous 

Med High High [17,28] 

CSG Med (interpretation 
required) 

Exact, 
continuous 

Low-Med High High [28] 

NURBS Med (interpretation 
required) 

Exact, 
continuous 

Med-High High High [28]
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The general trend for this simple example is that as 
representation moves from digital to mathematical, it 
becomes more compact, with fewer entities that are 
abstractly related. In addition, we can plot each of these 
geometric descriptors on the conceptual model (Figure 6). 
One hand the point cloud representation is the most non-
parametric with the highest number of entities (which are 
not related), while the CSG representation is perhaps the 
most abstract parametric representation. While not 
directly considered in this example, the Boundary 
Representation (BRep) geometric schema is another 
parametric representation which arguably has the highest 
semantic encapsulation across all geometric schemas. 
This is because the BRep schema is based on a 
hierarchical topological structure, with explicit relations 
between bodies, faces, edges and vertices (refer to [17] 
for a more detailed breakdown of this schema).  

While this example demonstrates how geometric 
schemas can be characterized using the proposed model, 
the purpose of the analysis is not to provide a 
comprehensive (or exhaustive) classification of all 
possible schemas. However, certain schemas are better 
suited for more semantic fidelity than others. For instance, 
given how NURBS and BRep can be discretized by 
adding additional control points without changing the 
initial geometry of an object, these representations 
potentially have the ability to harness the semantic 
fidelity requirements of a given application as opposed to 
those of CSG or non-parametric representations.   

Figure 6. Depicting the Conceptual Model Using 
Geometric Schemas 

5 Conclusions 
Within AEC, the choice of object representation form 
invokes trade-offs with respect to computational 
efficiency, representational accuracy, and semantic 
enrichment. Since there remains to be one ubiquitous 
object representation that can simultaneously meet all of 

these objectives, the choice of representation will 
continue to require making trade-offs. Review of existing 
classifications for object representation reveals that there 
can be a significant degree of verbosity and ambiguity, 
further compounding the task of selecting a suitable 
representation. This paper demonstrates that approaching 
classification through a parametric vs. non-parametric 
lens is useful for providing key insight required in 
selection of a desired object representation. A conceptual 
model is established by considering two dimensions of an 
object representation: number of entities used to 
represent an object and the degree of relations between 
those entities. These dimensions are fundamental in 
computer vision for applications such as pattern 
recognition and shape detection.  For instance, the 
discretization of analytical expressions is a key 
component to achieving computational efficiency in 
methods such as the Gaussian kernel, Hough Transform, 
and Scale Invariant Feature Transform (SIFT) algorithm. 
In addition to geometric schemas, other attributes can 
also be described by the proposed model, namely 
semantic enrichment and associative modelling 
relationships. These dimensions clearly fit into a 
parametric vs. non-parametric context within AEC 
workflows. A functional demonstration using various 
geometric schemas reveals the trend that parametric 
representations have a high degree of analytical 
abstraction, while non-parametric representations have a 
high degree of digital approximation.  

5.1 Future Research Opportunities 
In practice, there are numerous workflows which require 
either parametric or non-parametric representations due 
to current trade-offs. While this trend is expected to 
continue, there are opportunities to bridge this gap as 
evidenced in the following areas of research: 

• ‘Geometry as a feature’. Rather than defining
objects as an abstraction of geometry, geometry can
be viewed as a feature of object. This is already the
premise of object-oriented modelling (and is used in 
IFC, for instance), yet a more concerted focus on
this concept can allow for multiple geometric
schemas to be used to represent the same object
without necessitating the landscape of parametric vs. 
non-parametric trade-offs.

• Towards improved geometric schemas. Current
limitations and trade-offs can be addressed by
developing new schemas that do not have the
limitations of existing schemas. One example is
developing a global or ‘master’ schema that can be
modified or updated throughout the lifecycle of
AEC projects as required.

• Developing parametrization methods that
preserve fidelity of information. Rather than
converting non-parametric datatypes into a
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parametric form at the expense of loss of 
representational fidelity and semantic information, 
it is possible to discretize initial parametric forms 
(e.g., such as NURBS) in such a way that can 
achieve suitable accuracy while maintaining 
semantic fidelity. 
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