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ABSRACT

The automatic determination of size and location of buried ferrous cylinders from magnetic

observables are the focus of this work . Applications include mapping of reinforcement bars

embedded in concrete and mapping of pipes buried in the ground . The problem requires an inverse

solution to infer the attributes of an inclusion based upon observables which contrast the inclusion

from its surroundings . Specifically , the inclusions of interest are ferrous cylinders , the observables

are magnetic fields, and the surroundings are non - magnetic media . This inverse problem cannot be

solved deterministically except for very idealized conditions . The subsystem methodologies

developed here derive from the fields of sensing , image enhancement , object classification,

knowledge representation , and inference capabilities . The system methodology is implemented to

interpret ferrous cylinders from magnetic fields.
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1 Magnetic Sensing a nd Sensors

The imaging and sizing of buried pipes in soil or steel rods in concrete are examples of the

inclusion-in-continuum problem with the potential of wide utility in civil engineering. The accurate

detection of embedded reinforcement is necessary to enforce the correct placement of reinforcement

in new concrete construction. Accurate reinforcement detection 'ncluding corrosion state is even

more important in assessing the structural integrity of as-built or historical structures. Rebar

detection is essential in operations such as coring and anchor emplacement in nuclear power plants.

A class of instruments have been specifically designed to meet the requirements of the manual

inspection of reinforcement bars in situ. Their principle of operation falls in the category of the AC

induction method, and a thorough examination of their observable characteristics has been made.

The covermeter (Alternately profometer, pachometer, Fe-Depthmeter or R-meter [1]) is an

electromagnetic device for determining the shallow cover to embedded steel, or is for locating the

position of reinforcement and ferrous fittings in existing structures [6, 11 ].

Generally covermeters are used to determine either cover depth or bar size, while the other is

known . However, there are occasions where both are unknown , e.g., in investigating an existing

structure for which detailed structural drawings are not available . Peak reading alone is insufficient

to determine both cover and bar size . This fact is illustrated in figure 1 where scans of two different

bars peak at essentially the same intensity value . The figure reveals that a deeper , larger source

creates a broader anomaly .. The correlation of peak and cross -section properties enable

determination of approximate depth to the source independent of any other information.

Although covermeters offer a great deal of portability and ease of use, in many instances even an

expert operator is unable to identify patterns and to unscramble misleading measurements [13].

Covermeters typically perform well while used on lightly reinforced structural members. In heavily

reinforced members the determination of cover thickness and individual bar size becomes almost

impossible. Also bars that are positioned near the surface overwhelm deeper observations. Further,

the density of manual observations is far too sparse to enable a complete imaging of reinforcing

arrays. Only by automatically sensing and interpreting a large amount of data by magnetic imaging it

is possible to reach higher levels of reliabilty in inspection.

Reinforcement bars are manufactured in diameters from 3/8 to 2-1/4 in. and designated by the number of eighths inches
contained in the bar diameter (e.g. 3/4-in-diameter bar is a #6)
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Figure 1 : Peak aliasing of two different size bars

2 Problem Scope and Methodology

2.1 Problem of Inversion as a Mathematical Model

The "problem of inversion", is to obtain information concerning surface and subsurface conditions

of a target object from a probe output signa!. The measured signal is influenced by many interacting

factors in the target object. Therefore the solution to the problem of inversion is possible only by the

development of mathematical models that can predict these interactions. Magnetic modelling is

complicated in two ways:

• The distribution of the magnetic field lines, even in a known material object, are not easily
determined; and
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• The inverse problem of imaging a source object from a surface magnetic field is known
not to have a unique solution.

Despite these advances, not all magnetic field problems have fallen to numerical solutions. As a

general rule, two-dimensional magnetic field problems, such as the non-linear two-dimensional

Poisson equation or the two-din-,.nsional eddy current and skin effect problems, may be considered

solved. However, the solution of three-dimensional magnetic field problems by finite-element method

is still problematic. Although solutions to these problems and improvements on the published

procedures have appeared in the literature, FEM solutions require complicated problem modeling

and lengthy solve execution time.

2.2 Why Magnetic Imaging?

Magnetic imaging solves the "inverse problem" of determining the dimensional properties of

ferrous objects from the surrounding magnetic field intensities by representing field gradients as

quantized images, and further employing tools in image processing to interpret the object features

that constitute the image.

Signal processing and pattern recognition techniques have had successful implementations,

making inferences in other than magnetic domains. Specifically, in medicine the automation of

inspecting human anatomy has been seen in systems that use ultra sound, x-ray tomography or

radiography [7] [2] [10]. In biological sciences the identification and classification of certain

abnormalities in blood cells, chromosomes [5] [8] [10] and other bacterial entities have all been

effectively automated by image processing. The literature is rich with references to applications of

processing images obtained from aerial surveillance, astronomy, robot vision, circuit board inspection

and many others.

2.3 Image Understanding Models

Image understanding is a descriptive process in which an image field is examined to generate some

non-pictorial description of the image. A variety of models for image understanding systems have

been proposed, however they all contain the same set of broadly defined processing and

manipulating elements; feature extraction, symbolic representation and semantic interpretation. The

models differ in their organization of elements, control flow among elements and the degree of

inference employed in drawing meaningful conclusions [9].

Although the elements developed here for magnetic imaging stand on their individual merit, the crux

of this work is the integration of magnetic vision system that infers and maps ferrous cylinders. The
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"bottom up" model of figure 2 represents both data and control flow of the implementation. The key

to the success of this model is the reduction of information dimensionality from one stage to the next.

This reduction is important, for processing complexity is greater at each subsequent stage of

functionality. This approach is limited to applications where the description task is simple and the

range of input imagery is narrow.
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Figure 2 : "Bottom up " approach of the experimental model

• Data acquisition is the most primitive task. Sensor readings are correlated to a spatial
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scan over the domain of interest. The data is grey-scaled in the manner of pixel

digitization.

• Feature extraction preprocessing applies image enhancement, thresholding and

skeletonizing operations to generate binarized chains of line-like features.

• Pixel chains are symbolized into strings of vertex coordinates which instantiate a graph of

line segments.

• A cylinder axis algorithm performs simple assertions on segment chains (e.g. is a chain

long? straight?) to infer admissible cylinder axis. The spatial relation among lines are

investigated to classify patterns (e.g. intersection ? parallelism).

• At the highest level the system uses its hypothesis of cylinder topology to invoke

emulations of human operator heuristic for determining cylinder size and depth. This

takes the form of specifying actions to acquire additional data for use in correlations of
cylinder depth and size.

This process hierarchy emulates somewhat the strategy of a human operator who searches

intuitively to define a skeleton pattern. The search is directed by seeking magnetic features (e.g.

peaks of anomalies) that correspond to pattern attributes. Using the knowledge of the pattern for

directed search, the operator then correlates readings with known sensor signatures to infer target

dimensions.

3 System Hardware

Figure 3 presents the implemented hardware configuration. The heart of the system is a Motorola

68000 based microprocessor board that is responsible for controlling the position of the robot arm,

acquiring sensory data and performing various image processing algorithms on the generated

images.

4 Image Decomposition and Object Classification

Figure 4 shows the magnetic image2 of a single reinforcement bar. The image is shown in 16 levels

of grey, and to a human observer the appropriate location and orientation of the bar is quite clear.

However, the region surrounding the bar is very fuzzy, and it is difficult to precisely fix the locus of the

bar.

2Throughout the remainder of this report a "Magnetic Image" is considered to be the grey scaled representation of a 2-D
array of magnetic sensor intensity readings.

149



J

(lip ii

(ii I roll ii

Multi -Bus

terminal

C P U

RS-232

RS-232

Vax 11/750

0 0
0 0

Manipulator

Controller

Switch
0 0

Interrupt Handshakes

(Parallel Port)

__z7<0JzJ/1

Figure 3: Hardware configuration

Guo K

RAM

61

A / D

Test Frame

Sensor Output

0
0
0

R-Meter

Teach Pendant

.f

i cr



J

Figure 4: Grey scaled magnetic image of a single bar

5 Image Segmentation

5.1 Segmentation by Thresholding

Much work in pattern recognition treats scenes containing objects with fairly well-defined outlines

(e.g., the recognition of machine parts in an automated workshop). In other applications (such as the

classification of chromosomes in biological samples where the outlines are less sharp) the objects are

distinguishable by applying a brightness thresholding operation. Magnetic imaging occupies the

other extreme where the boundaries of objects are usually not well defined or are obscured by noise.

The edges of the magnetic image in figure 4 are highly diffused, however the segments of concern

are the darkest region which represents the spine of the anomaly. Initial experiments were conducted

on images that contained single cylinders , where it is adequate to segment those clusters of pixels

that represent the peaks. For these cases there was no need to resort to algorithms that recover

diffused edges, and simple brightness thresholding produced satisfactory results.

The most common means to extract objects from an image is to Threshold the image . A function

f(x,y) represents the greyness intensity in the range [z zK] of an image at coordinates x and y of the

image . Given an image f, and t, which is any number between z1 and zK, the result of thresholding f

is the two -valued image f defined by:

f(xy)

11 if f(x,y) >_ I
0 iff(x,y)<I
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The resultant binary overlay image J, masks the original image , f. If a property about is known in

advance , the image f can be segmented for different values of i, until the desired f is obtained.

Figure 5 is the image in figure 4 at the threshold of z^ = 9.

Figure 5: Binarized image of fig.4, zk =9

5.2 Skeletonizing

A skeleton or stick figure representation of an object is often sufficient to express the structural

relationship of complex objects in a scene [9]. In this work a connected chain of pixels that coincides

with the main axis of a segment in a magnetic image is a clearer representation of a ferrous cylinder

than the raw data. The idealized thin line not only satisfies the requirement of defining the topology of

buried elements, but also satisfies, the definition of a line as "that which has length without breadth"

while still retaining its connectivity. Skeletonizing is best defined by the "prairie fire" analogy

[3] where a shape to be composed of dry grass and the boundary of it to be the source of a fire or

wavefront . If the fire were to start simultaneously on the perimeter of the grass, the fire would

proceed to burn toward the center of the shape until all of the grass was consumed . The points at

which wavefronts first meet form a "skeleton" or quench lines, which are the locus of points that are

equally distant from at least two closest points on the shape boundary. Each point has a function

assigned to it which is the value of its distance from the edge3 . This transformation is reversible, in

the sense that the original object may be obtained by the isotropic expansion of the skeleton a

number of times equal to the maximum value of their distance from the closest edge. The pruning of

the skeleton also allows for smoothing the original object during reconstruction. Figure 6 is the

resultant skeleton of the segmented image of figure 5.

3This is the "quench function" of Blum
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Figure 6: The stick figure representation after skeletonizing figures

5.3 Symbolizer

Once parts of a magnetic images can be isolated as meaningful line segment entities that define a

topology figure, the next objective is to define these line segments in terms of their geometric

properties.

In describing the lines or line like figures, two problems need to be overcome ; where to break the

original figure into segments, and how to fit a line to each segment [4].

The one pixel wide skeletons that are representations for ferrous cylinders are a collection of pixels

in the image that exhibit no association with each other . The line segment extraction scheme outputs

from the image a symbolic image , with a data structure representing the relationship of groups of

pixels that define individual line segments (contours). This data structure is a record structure

containing the following information [ 12]; Starting point x0,}o of each ( line) in the image, ending point

of the line , a flag indicating whether the contour is closed or open , the array of bidirectional pixel

coordinates making each line and the arc length of the contour.

6 Size / Depth Heuristics

Once the pattern of individual steel rod segments have been determined , the manipulator performs

local post sensory measurements near the midpoint of a segment. The mid - section as a rule of thumb

is an area where the non - uniform bar end response has the least impact . In multi bar problems where

bars can cross one another , each crossed bar is segmented into segments , and the mid-section of

each segment offers the quietest region for making additional measurements.
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6.1 Cylinder Size and Depth Estimation

The size and depth of placement of fen ous objects are obtained by the correlation methods and

sensor response characteristics. For the following reasons it is required that a rescan by the

manipulator be performed.

1. For the case of a sensor which does not respond isotropically, the original raw data is a

representation of sensor response at a some orientation. This anisotropy expands the

solution space, and requires a data base of sensor response for all possible orientations

of objects and sensor.

2. The resolution of the original data may not meet the requirements of the estimating

techniques of bar size and depth estimation.

3. The initial information is gathered at one elevation . More information is available at
different elevations (e.g. for 'shimming").

7 Conclusion

The application of higher technologies to Civil Engineering tasks in construction and inspection is

more tractable now than ever before due to the advent of accurate robotic manipulators, artificial

intelligence, smart sensor technology, and faster and less expensive computing power. Unlike most

settings, where these technologies are implemented in highly predictable environments, in

construction, the work space is dynamic and the unexpected is the norm. As a result, task execution

and passive awareness of changing environments are dependent on sensory perceptions and

intelligent software. Contributions to, and applications of the state of the art in sensory systems and

their utility is imperative in strategizing task execution in the construction setting.

The objective of this work has been to explore the integration of a class of sensory devices into a

system that can reveal spatial information that is pertinent to the domain under study . Unlike natural

scene pictures, magnetic images are artificial scenes of fields which are only indirect information

linked to target objects . Although a priori knowledge of the expected target shapes is available, the

exact scene content is unknown a priori.

Unlike a human operator who is blind to the complete picture of anomaly behavior, the automatic

thresholding and skeletonizing tasks are global and prove to be effective in delineating all features

that are common to target anomalies . The liabilities of the human "search and see" sequence are

circumvented. However, the algorithm performs well only for those cases where ferrous elements are

sparsely placed.

The outcome of this project is useful to task control applications where it is necessary to remove the

.1
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media around each object without harming the inclusion. The skeleton of objects can indicate the

areas to be avoided. Applications include locating and excavating utility lines in the ground, and

drilling concrete walls without harming the reinforcement.
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