727

INTUITIVE SIMULATION MODELING
USING
OBJECT ORIENTED CONSTRUCTS

By

Amr A. Oloufa, Ph.D., P.E.
Assistant Professor
University of Hawaii, Department of Civil Engineering
2540 Dole Street, Holmes 383, Honolulu, HI 96822, USA

ABSTRACT

The development and computer coding of an accurate simulation model is
probably the most important and time consuming activity in the modeling of systems
and the operations they are involved in. This hardship has confined the use of
simulation modeling to the planning stages of the project. The object oriented view is
that the system is composed of interacting physical objects. Work to date in interactive
simulation modeling has focused on the automation of network coding through the
specification of interactions between generic icons that represent transactions, queues,
resources, etc. This paper will build on a previous paper by the author for the creation
and coding of the simulation model using a more intuitive approach through the
utilization of object oriented constructs.

INTRODUCTION

Discrete-Event simulation offers an extremely powerful tool for the planning and
execution of operations. After the creation of a model representing the problem domain,
simulation is used to compare different scenarios and to check the feasibility of
alternative construction methods. A typical simulation study starts by studying the
simulated system through identifying its components and how they interact with one
another. The success of operational simulation is largely a function of the accuracy of
the simulation model used in the study and a large proportion of time invested in
simulation studies is spent on formulating, coding and debugging the simulation model.

In the process of model building and verification, many specialists are involved.
These include the domain expert who is conversant with the modeled system, the
modeler and the simulation programmer. After the simulation model is developed, the
decision maker has to be confident of its validity. To reduce the investment in time
required for the development of a successful model, the decision maker would have to
be trained in simulation methodology and techniques. This is clearly not practical and
has been the biggest impeding factor against successful use of discrete event simulation
in construction operations.

An alternative approach is to provide the manager with an integrated tool capable
of handling the various stages of simulation model development. This integrated
environment should allow the decision maker to develop discrete event simulation
models with no programming. Major requirements for such a system (adapted from
Wales and Luker 1986) are as follows:

728

1- Allow users to define the system in terms familiar to them not in terms of the
simulation language used.

9. Guide users in the steps required for model development.

3- Allow the development of a simulation-model-by-example similar to
query-by-example in database systems.

4- Check users responses for consistency and completeness.
5. Creation of new models by the adaptation of existing ones.

6- Provide a visual representation of the system in a form understandable by decision
makers.

7- Generate the simulation model code automatically.

Due to the special nature of construction operations and the likelihood of the
presence of unforeseen conditions where a quick response is needed, there is a definite
need for a utility that "assembles" the simulation model and codes it without
programming,. :

In developing a modeling methodology for construction applications, several
issues in addition to the ones mentioned above have also to be considered. The first is
the incorporation of site specific information in modeling. Most current modeling
methodologies fail to consider the fact that the construction site is always changing with
time thereby affecting performance and durations of the various work tasks. Also since
communication is a cornerstone for a meaningful simulation, the model and its output
should be comprehensible to the end-users.

It is therefore desirable to develop a modeling methodology for construction
operations that is capable of accurate representation, easy and intuitive to build models
with, and generates simulation code.

Late in the 1960's, a new approach was proposed with the introduction of the
GPSS simulation language. The novelty of GPSS was its emphasis on a modeling
structure that hides from the user the mechanics of the simulation. GPSS was built upon
a predefined class of active entities called "transactions" which flowed through a
flowchart of selected operations; similar to the programming flowcharts of procedural
languages.

In the 1970's and 80's, several languages like SIMSCRIPT, GPSS/H, SLAM and
SIMAN, were introduced and/or modified. These languages have tried to satisfy the
dual goals of generality (found in general programming languages) and convenience
(provided by specialized simulation languages) by providing a set of predefined
concepts for direct modeling.

In construction applications, following the early work at Stanford University by
Fondahl, Teicholz and Gaarslev [1960, 1963, 1969], Halpin [1976] developed
CYCLONE (CYClic Operation NEtwork). At Stanford University, CYCLONE modeling
capability was extended. Kavanagh [1985] at the University of Missouri-Rolla has
proposed a computer model for repetitive construction operations by using a personal
computer to prepare the code for use by a remote mainframe running GPSS. All above
simulation analyses employed in construction operations lacked a feed-back mechanism
that adjusts the model's performance due to site changes. Because of the nature of
construction operations, Oloufa [1988] proposed an integrated simulation approach as
shown in fig.(1) that includes a feed-back mechanism.

729

USING OBJECTS IN SIMULATION

Dijkstra [1979] mentions that "The technique of mastering complexity has been
known since ancient times: divide ef impera (divide and rule)". In the modeling process,
it is essential to decompose the system into its component parts. We then proceed to
refine these parts further in an attempt to capture the system's essence. Booch [1991]
mentions two methods for system decomposition, the algorithmic and object-oriented
decompositions. In the algorithmic decomposition, the system is explained in the
conventional top-down structured approach where the system processes are identified.
Object-oriented decomposition on the other hand is the definition of the system in terms
of its key abstractions or components. Booch [1991] also mentions that complex systems
can not be modeled by both approaches simultaneously since the above mentioned
decompositions are orthogonal. He mentions that experience leads us to apply the
object-oriented view first and then use the resulting framework for expressing the
algorithmic decomposition perspective.

In describing a system using the Object-Oriented decomposition, we define its
components and how these components interact together [Rothenberg (1986),
Cammarata et al (1987) and Roberts ef al (1988)]. We also declare the valid operations
these components engage in and specify how this engagement affects their states before,

during and after these operations. The states of these equipment along with their
respective. performance parameters are described before they engage in their respective
operations, during, and after the operations are completed.

In the process of system modeling, the components of the system, how they
interact and the possiblé outcomes of their interaction are identified. The next step is the
mapping of these components to the respective terminology in the modeling
environment: We are faced with a situation that what used to be comprehensible
physical components have now to be represented in terms of transactions, queues,
resources, attributes, etc. in a network-oriented simulation language (see fig.(2)).

The object oriented view is that the system is composed of interacting physical
objects. These objects are typically the central focus of the simulation studies. The
simulation problem is one of finding convenient means of modeling these objects in an
effort to simulate their behavior.

Each object represents a physical component of the system being modeled. The set
of objects that represent the same kind of system component is called a class. A class
definition is used to define a particular abstract data type. An abstract data type
specifies its own operations in addition to its own characteristics. A class has individual
objects called instances. A class describes the form of its instances and how they carry
out their operations. Objects communicate with other objects using messages. A
message is a request that an object carry out one of its operations. A message specifies
the operation desired but not how it is done. The receiving object, using its embedded
methods, determines how to carry out the operation requested by the message. An
object with its instance variables and methods is used to model any piece of equipment
used in the project where instance variables and methods correspond to performance
parameters and functions respectively as shown in fig.(3).

One of the most powerful features of object oriented languages is inheritance
through hierarchical system description. The principle feature of class hierarchy is that
any class inherits all the properties from its superclass. Each subclass has the properties
of its super class and may also have properties that are unique to it. Inheritance
facilitates programming since new classes need only be specified by their difference
from an existing class rather than having to be defined from scratch.

730

Oloufa [1990] used a customer-server approach to demonstrate the application of
both object-oriented [Knapp (SimTalk 1986, 1987), Bezivin (1987, 1988) and MODSIM 1
(CACI 1990)] and traditional simulation languages. Shown in fig.(4) is the model used
to simulate an earthmoving operation using simTalk. Here we have class
SimTalkEarthMovingSite which is the simulation environment. Classes SimTalkTrucks
and SimTalkLoaders represent the equipment involved in the simulation. Class
SimTalkLoaders is the superclass of classes SimTalkLoaderl and SimTalkLoader2. The
former classes (SimTalkLoaderl & 2) inherit the same function (i.e. methods) from their
superclass SimTalkLoaders however they have their own performance parameters (i.e
instance variables) as shown in fig.(5). In our case, the loading operation is the method
loadTruckWith: however each of the subclasses has its own performance parameters
defined in the method initialize. In the case of adding new loaders to the simulation,
the user need not specify their methods but rather only what is "different" about the
newly added element (subclass) since the "similarities" are inherited from the superclass.
Inheritance is a major advantage of object oriented programming.

In object oriented programming, the simulation environment need not know
"how" the equipment execute their operations since the equipment objects themselves
execute the methods included "within" their definition constrained by and subject to
their instance variables. This means that the same message actions can be executed
differently depending on the receiving object. Therefore the addition of new classes of
equipment in the model need not change and code in the former program but rather to
respond to the same message actions. This is known as polymorphism and is an
important advantage of object oriented programming. Another example is for a scraper
and a backhoe. Both pieces of equipment are used for excavation. However, each
performs the excavation differently. The method "startExcavation" can be sent by an
object but is implemented differently in the scrapers and backhoes. A user can therefore
change the machinery used in the simulation without having to change the program
code in the calling object.

AUTOMATED MODEL GENERATION

Most work to date in the discrete event simulation of construction operations has
focused on the adaptation of simulation in manufacturing applications. We have shown
that a separate methodology is needed in the simulation of construction operations. So
far, the author is only familiar with the work of Leland Riggs of Georgia Tech to create a
graphical user interface for CYCLONE (for an example of a CY CLONE network, see
fig.(6)). The research done by Riggs however used "generic" icons to create a model.
The user had to be familiar with the simulation language which was not object oriented
and also had no animation capabilities. The author proposes in this work the
development of a graphical interactive environment for simulation model generation.
Here the user will build the model through the selection of icons and the specification of
the interaction/s between these icons. These icons will resemble actual construction
project entities and will function as "Customer" or "Server' roles depending on the
modeled situation.

The proposed work to be done can be summarized in the following steps:

1- Identify all the entities that need to be represented in a typical model along with
their operational attributes.

2- Identify the different operations that each entity may engage in.

3. Categorize the potential interactions between entities and categorize entities as
customers and/or servers.

A TDecion the oranhical interface with these entities as "building blocks".

731

5- Develop the dialogue with the user where the specification of the interaction
between the different entities is defined.

6- When the model "blocks" are specified, proceed to develop the code.

O'Keefe [1987] mentions that there are three benefits to "Visual Simulation",
namely Selling (i.e. presentation power), Gaming (i.e. what-if analyses) and Learning,
Several researchers (Gordon and McNair (1987), Davis et al (1988), Glicksman (1988),
Thomasma and Ulgen (1988), Tseng et al (1988) and Ozden (1991)) and indeed a few
software packages such as XCELL+ (Conway and Maxwell 1987) and SIMFACTORY
(Tumay 1987) have attempted to automate the model building process. All these
implementations however were designed specifically for manufacturing environments
and suffer from most of the shortcomings listed in the previous sections.

The component objects of our prototype system are one of four types: Labor,
Equipment, Material, and Workspace. Each of these objects forms an abstract class (i.e.
a class that has no instances). Each abstract class will have subclasses that will add to its
content and behavior and augment its methods. For example the abstract class
Equipment may have a subclass called Loaders containing methods such as Load_Truck
or Dump_Soil. The subclass may in turn contain other subclasses representing the
various type of loaders, each with its own performance parameters and specialized
methods.

The process starts by the user identifying the "objects" involved in the simulation.
Such objects are mapped into the four abstract classes mentioned before. The user then
proceeds in "naming" all the possible operations these objects MAY engage in,
depending on their capabilities. For example a bulldozer may be used in "moving
brush" or "pushing a scraper' and so on. The user would then select any "real" object
(e.g. a crane) from the menu. The program then asks the user whether this object will
play a customer role or a server role. Based on the user's response, the program will ask
the user to identify the objects that will serve the complementary server/customer roles.
Establishing a customer/server relationship enables the program to create a queue
where resources (customers) will reside if a server is busy or not available. A server
may serve customers from different abstract classes and the same customer maybe
seized by one or multiple servers. However, if a server is not available, each customer
will wait in the queue, with different queues created for each abstract object type. After
the customer/server roles are identified, the system then asks the user for the
method/methods that will be executed after the resource is captured. This is followed
by the methods executed after the resource is released by the server.

The proposed prototype will have two types of methods, Independent and
Dependent. Independent methods do not rely on the instance variables of other objects
in the simulation, in contrast to dependent methods. An example of an independent
method is the truck's velocity between two given points. If however, this velocity was
dependent on the rolling resistance of the haul road, then this method would belong to
the dependent type. If the users specifies that a method is dependent, the system then
asks about the instance variables needed and the objects they belong to.

After the model is created, the system would create the model code in an object
oriented simulation language. This approach facilitates model assembly and greatly
aids model validation and verification and also creates the simulation code with no
programming. Users familiar with the simulation language may enhance the developed
simulation code if the need arises.

The proposed prototype is by no means capable of modeling every conceivable
situation in the construction project. Currently the specification does not support
conditional branching mechanisms. Such mechanisms will be included in the future
extensions of the system. 3

732

PROPOSED TOOLS

The choice of programming tools is of extreme importance in this research.
Although it is possible to develop object oriented applications using a procedural
language, the produced code will suffer from the disadvantages of procedural
programming languages. It was decided to use an object-oriented programming tool
that interfaces with the user and helps them to interactively specify and assemble the
model. This tool should be capable of the following:

1- Use graphical icons to represent objects.

2- Provide for user responses through common Graphical User Interface (GUI) objects
(e.g. buttons, radio buttons, check boxes, list boxes, edit boxes and hypertext).

3- Provide for simple rule-based reasoning.

This research utilizes' KnowledgePro from Knowledge Garden Inc. [1991].
KnowledgePro is a rich object-oriented programming language that was designed
mainly as a hypertext or expert system tool. Through a dialog with the user, the
program requests information about resources and their interactions. The program then
asks the user to specify the types of methods invoked and requests any extra parameters.
For example, for a Travel To method contained in a truck object, the program may ask
about the distance, slope and rolling resistance etc. After the model specification is
complete, the program generates the simulation code using the MODSIM II object
oriented simulation language [CACI 1990]. MODSIM II is a powerful language that also
allows an object to do more than one operation in the same time. An object in the
middle of an operation may receive a message to do a different conflicting operation. In
response the object may ignore, defer or execute the conflicting request. For example a
scraper may be required to move, excavate and monitor road surface conditions at the
same time. If it is confronted with large boulders, it may continue moving but should
cease to excavate to save the blade. Although this is a fairly common situation, it has
been traditionally difficult to model especially when these activities interact.

Limiting the choice of development tools to object oriented ones facilitates
mapping from one program syntax to another and greatly aides debugging of the code.
It also minimizes problems related to tracking the source of some run-time errors.

EXTENSIONS AND FUTURE RESEARCH

"Operation Libraries'" may be developed for a variety of construction resources
where all the potential interactions between these resources are identified. When a
problem arises in the construction site, the project team may update the model
parameters and/or alter the model with no programming.

The proposed approach may also be used as a teaching tool where students may
assemble the simulation model without programming and observe the impact on
productivity and/or performance through changing the model parameters. If some
programming is needed, the proposed system may be used to develop an "initial"
model that serves as a template for further model enhancements.

ACKNOWLEDGEMENTS

The author would like to thank CACI Products Company of San Diego, CA and
Knowledge Garden Inc. of Nassau, NY for supporting this research.

733

REFERENCES

1- Bezivin, J.: "Design And Implementation Issues In Object Oriented Simulation", Simuletter, 1988.

2- Bezivin, J.: "Timelock: A Concurrent Simulation Technique and Its Description in Smalltalk-80",
Proceedings of the 1987 Winter Simulation Conference, Atlanta, GA.

3- Booch, G.: "Object Oriented Design With Applications", The Benjamin/Cummings Publishing
Company, Redwood City, CA, 1919

4- CACI Products Company: "MODSIM II User's Manual", San Diego, CA, 1990

5- Cammarata, S, Gates, B. and Rothenberg, J.: "Dependencies and Graphical Interfaces In Object Oriented
Simulation Languages", Proceedings of the 1987 Winter Simulation Conference, Atlanta, GA.

6- Conway, R, Maxwell, W. L., and Worona, S. L.: "User's Guide to Xcell Factory Modeling System",
Scientific Press, Palo Alto, CA, 1985. _

7- Davis, C. K., Sheppard S. V. and Lively, W. M.: "Automatic Development of Parallel Simulation Models
In ADA", Proceedings of the 1988 Winter Simulation Conference.

8- Dijkstra, E.: "Programming Considered as a Human Activity", Classics In Software Engineering, New
York, NY, Yourdon Press, 1979. ;

9- Fondahl, J. W.: "Photographic Analysis for Construction Operations", Journal of the Construction
Division, ASCE, Vol.86, No. C02, May 1960.

10- Gaarslev, A.: "Stochastic Models to Estimate the Production of Material Handling Systems in the
Construction Industry", Technical Report No. III, The Construction Institute, Stanford University,
Aug. 1969.

11- Glicksman, J.: "A Simulator Environment For An Autonomous Land Vehicle", Proceedings of the 1986
Winter Simulation Conference.

12- Gordon R.F. and McNair, E. A.: "A Visual Programming Approach To Manufacturing Modeling",
Proceedings of the 1987 Winter Simulation Conference.

13- Halpin D. W. and Woodhead, R. W.: "Design of Construction and Process Operations", John Wiley &
Sons, New York, 1976, '

14- Kavanagh, D.: "SIREN: A Repetitive Construction Simulation Model", Journal of Engineering and
Management, ASCE, VoLIII, Sep. 1985.

15- Knapp, V.: "The Smalltalk Simulation Environment", Proceedings of the 1986 Winter Simulation
Conference, Washington, D.C.

16- Knapp, V.: "The Smalltalk Simulation Environment, Part II", Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA.

17- O'Keefe, R. M.: "What is Visual Interactive Simulation? (And is There a Methodology For Doing it Right)",
Proceedings of the 1987 Winter Simulation Conference, Atlanta, GA.

18- Oloufa, A. A.: "A Framework for the Operational Simulation of Construction Projects", Department of
Civil Engineering, University of California, Berkeley, Ph.D. Dissertation, May 1988.

19- Oloufa, A. A.: "Modeling Operational Activities In Object Oriented Simulation", Submitted to the ASCE
Journal of Computing, Sep. 1990.

20- Ozden, M. H.: "Graphical Programming of Simulation Models In an Object-Oriented Environment",
Simulation, February 1991.

21- Roberts, S. D. and Heim, J.: "A Perspective on Object Oriented Simulation", Proceedings of the 1988
Winter Simulation Conference.

22- Rothenberg, J.: "Object-Oriented Simulation: Where Do We Go From Here?", Proceedings of the 1986
Winter Simulation Conference, Washington, D.C.

23- SimTalk User's Manual, Tektronix Corp., Beaverton, OR, 1988.

24- Teicholz, P.: "A Simulation Approach to the Selection of Construction Equipment", Technical Report #26,
The Construction Institute, Stanford University, 1963.

25- Thomasma T. and Ulgen, O.: "Hierarchical, Modular Simulation Modeling In Icon-Based Simulation
Program Generators For manufacturing", Proceedings of the 1988 Winter Simulation Conference.

26- Tseng, F. T, Zhang, S. X. and Wolfsberger, J. W.: "Automatic Programming Assistant For Network
Simulation Models", Proceedings of the 1988 Winter Simulation Conference.

27- Tumay, K.: "Factory Simulation With Animation: The no Programming Approach", Proceedings of the
1987 Winter Simulation Conference, IEEEF, Atlanta, GA.

28- Ulgen, O.].: "Simulation Modeling in an Object Oriented Environment using Smalltalk-80", Proceedings

of the 1986 Winter Simulation Conference, Washington, D.C.

734

VOLUME PERFORMANCE
CALCULATION EVALUATION

SIMULATION

Feed-Back L.oop

Fig. [1]

REALITY MODEL

Trucks
Resources
Loaders
Soil Queues

Statistical Collectors
Weather Impact :

~ Sources
Access Problems

Sinks
Slopes o~

Fig. [2]

735

OBJECT EQUIPMENT

Fig. [3]

SimTalkEarthMovingSite
Access Intialization Animation
loaderIcon CalculateCutVolume makelcons
soillcon CalculateFillVolume
totalCutPlusValue: initializeObjectArrivals
totalFillPlusValue: initializeOptionalViews
trucklIcon initializeQKeeperDictionary
initializeVariables
openTrace
SimTalkTrucks
simulationControl initialization
actions initialize
dumpLoad : initializeIcon
goBack:
toDump:
SimTalkLoaders
simulationControl
loadtruckWith:
truckCapacityls:

SimTalkLoaderl SimTalkLoader2
simulationControl initialize simulationControl initialize
actions initialize actions initialize

initializelcon initializeIcon

Fig. [4]

736

INHERITANCE

Super Class

Subclass

Subclass
Methods
Methods

|

Methods

LOADERS

Loader 1T

Loader 2

Fig. [5]

TRUCKS

TRAVEL
BACK

ot

EARTH COUNTER
LOAD
e] s e
LOADER
@ [TRAVEL
TO
DUMP
INPUT " PROCESS OUTPUT

Fig. [6]

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

