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ABSTRACT

Tensegrity prisms are three-dimensional self-stressing
cable systems with a relatively small number of disjoint

compression members , invented by Buckminster Fuller.

They form novel structural geometries and they constitute
a class of mechanisms that have not been previously
studied for possible application as variable geometry
truss (VGT) manipulators. They have a number of
seemingly advantageous properties -- they are self-

erecting , in that tensioning the final cable transforms
them from a compact group of members into a large

three-dimensional volume , and they are predominately

tension systems , in that they can function as a VGT
manipulator while actuating members only in tension.
These properties have not been explored but could be
broadly useful, for applications ranging from temporary

terrestrial construction to large on -orbit space structures.

However, they have a number of properties that make
them seemingly inappropriate for use -- they are not

conventionally rigid , they exist only under specific
conditions of geometry with a corresponding prestress

state , and the governing equations that do exist include

singular (non-invertible) matrices . In our opinion the

advantages and application potential justify the study and
discussion of tensegrity behavior. The mathematics of

tensegrity geometry , statics , and kinematics have not

been fully formulated , and such mathematical results
must be developed and assembled before applications

can be undertaken . This paper describes the physical
behavior of a basic family of tensegrity prisms , presents

the most useful available mathematical results, and
outlines a preliminary simulation study of such a prism

used as a VGT manipulator.

INTRODUCTION

As demonstrated by Buckminster Fuller and as

popularized in artists ' installations and in educational

toys, tensegrity structures present a novel , distinctive

geometry . The word tensegrity is derived from the

phrase tensile integrity, referring to the fact that the

compression members in the typical structure are

generally disjoint (not connected to one another) and that

the only "continuous" paths connecting all nodes are

formed by tension members ; it is also noted that a

prestress state can be sustained in such structures. These
original defining principles are provocative, and by
featuring the use of tension members they suggest
possible material efficiencies. Moreover , any direct

experimentation at constructing such structures reveals
additional intriguing properties such as a self-erecting

behavior and a range of adaptive geometry.

Fundamentally , these are form-finding tension structures,

and as such they are simple to construct but difficult to

describe mathematically . Specifically, the precise

structural , mechanical , and mathematical properties of
such structures were not identified or recognized at the
outset, and all of those questions remain largely open at

this time . This paper reviews the available
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understandings and discusses the possible use of
tensegrity structures as variable geometry trusses.

There are a large number of possible topologies (node
connectivities) with which tensegrity structures can be
built, and their devotees most frequently show them in
complicated geometries such as a truncated icosahedron
with 36 nodes, 18 (compression) bars, and 54 (tension)
cables. We restrict this paper to a particular minimal

form, in which three cables and one bar meet at each
node. The tensegrity structure with the connectivity
depicted in Figure 1 has nine cables and three bars. We
refer to it as a T-3 prism, and our specific results will be
offered for that topology; we will also discuss a related
T-4 prism with 12 cables and 4 bars. Intriguing
characteristics of such a prism include the fact that it
transforms from a compact bundle of bars into a full
three-dimensional framework as the last cable is pulled in

tension, that it is a form-finding structure, that it becomes

a prestressed system, that our conventional simple use of
Maxwell's rule does not properly describe the structural
type, that our conventional definitions of statical stability
and statical determinacy do not directly apply, that our
conventional model of structural stiffness does not apply,
and so on. It has long been understood that by suitably
changing the cable lengths the prism can be made to
change its nodal geometry, and it is for this behavior that

the prisms are likened here to variable geometry trusses.

We note at the outset that one cannot prescribe arbitrarily
the nodal positions (the "placement") to define a
tensegrity state. Equivalently, one cannot prescribe a set
of member lengths that will construct a tensegrity
structure. The topology depicted in Figure 1 is valid, but
that tensegrity structure cannot generally be achieved at
any geometry. However, from conditions of symmetry
and statics, one starting state can be defined
mathematically for the special case of a right regular T-

prism with the topology (connectivity) pictured. A right
regular T-3 would have two equilateral triangular end
faces, parallel to one another and normal to the axis
joining their centers. Figure 2 depicts a sketched top
view of such a T-3 prism, in which the upper face is ABC
and the lower face is DEF. Cables connect the node pairs
AE, BF, and CD, while bars connect the node pairs AD,
BE, and CF. For that topology, the tensegrity geometry
displays a relative twist angle between the end faces of
30 degrees. Figure 3 depicts the sketched top view of a
right regular T-4 prism, for which the twist angle is 45

degrees.

BEHAVIOR OF TENSEGRITY PRISMS

The behavior of tensegrity structures is best introduced

with a description of what is encountered physically

when constructing such a T-3 prism. It is understood that

Figure 3. Top view of right regular T-4 prism

in the intended tensegrity geometry a prestress state will
be encountered with all cables in tension and all bars in
compression. For purposes of discussion it is useful to
designate one cable as the last one to be constructed. All
members except that last cable can be connected and the
system will remain a loose bundle of bars and cables.
The construction task then requires that the two nodes to
be joined by the last cable be displaced towards one
another in space, defining a line that will subsequently be

occupied by that last cable.

The construction is first described for a structure in
which the axial deformation of bars and cables is
negligible. The displacement of the last pair of nodes is
initially unrestrained, in that no structural resisting forces
are developed at those nodes as the other cables and bars
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move with that displacement. However, it is found that
at some specific separation length the two nodes can no
longer approach one another, because the whole system
has "snapped" to a geometry in which a three

dimensional truss has been formed. Any attempt to

bring the nodes closer together becomes a force (along

that line of action) that acts to prestress all members in
the truss. The structure has thereby reached its tensegrity
geometry through a "form-finding" behavior. This is a
dramatic self-erecting condition, and it is immediately
observed that the tensegrity geometry achieved is unique.
Every member length, except for that of the last cable,
has been fixed, and it is found that there is only one
unique length of the last cable at which the tensegrity

structure will form, and there is only one unique
geometry (set of nodal positions) at which that will occur.
It is further noted that the tensegrity geometry is
characterized by the physical prestress state, controlled
by "tightening" that last cable. The resulting geometry is
essentially stable, a point to be discussed more fully in a

later section.

If the length of any one cable, or set of cables, is

changed, then this physical exercize can be repeated and

the last cable re-adjusted in length to reach a new

tensegrity geometry . In so doing the nodes will take new

positions in space. It is by such compatible changes in

cable lengths that the T -prism can be made to operate

like a VGT.

A very different physical sense of the problem is

obtained if the T-prism is constructed with some subset
of cables displaying large elastic elongations. It often

proves easiest , and most revealing, to construct such
prisms with springs ("rubber bands") for some or all of
the cables. In this particular discussion, we might
imagine that all cables in the end faces are inextensible,
but that the longer cables AE, BF, and CD are
constructed with such springs or rubber bands. In this
construction, the form-finding occurs more gracefully.
Most significantly, one can physically assert changes in
the nodal positions, and the structure will automatically
reshape itself into an accompanying tensegrity geometry.
(When this behavior is experienced the tensegrity prism
appears to be a highly adaptive structural form.) For
example, if one purposely moves two nodes such as A
and E closer together, this is equivalent to having
replaced member (spring) AE with one of shorter initial
length and/or greater stiffness, and the deformed length
of members BF and CD will change accordingly and
automatically as a form-finding behavior. In such cases,
the structure moves through different tensegrity

geometries as changes in nodal position are imposed.

These two different physical approaches to constructing a
tensegrity prism reveal two alternative ways of posing

their mathematics and their mechanics. In the first
construction it is obvious that the unique tensegrity
geometry (the set of nodal positions) represents a

constraint satisfaction problem, in which the member

lengths (other than that of the last cable) and the
equilibrium conditions are the constraints. In that same
construction it is also obvious that changes in nodal
position require ongoing satisfaction of the same
constraint problem as some member lengths are altered.
In the second construction it is obvious that the tensegrity
geometry corresponds to a state in which the stored
energy in the elastic members is made stationary.

In discussing possible use for VGT applications, it is
necessary to address the problem in its first construction.
A known starting tensegrity geometry has been asserted,
and in principle from that starting state every achievable
T-3 geometry can be reached by suitably changing
member lengths. However, we will show that identifying
"suitable" (permissible) changes in member lengths
remains a challenging problem in itself.

In summary, several distinctive characteristics of
tensegrity structures motivate us to study their suitability
for robotic applications, including the following:

• Tensegrity prisms can be totally self-erecting from a
low-volume bundle by tensioning the last cable.
Such a capability would be useful for constructing

temporary structures. It could also be used for
constructing a conventionally framed tower; a
tensegrity tower could be self-erected, strong enough
and stiff enough to support the weight of workers,
who could then climb the tower and add additional
structural members to create a conventional tower
framing. Similarly, a self-erecting prism could be
remotely maneuvered to some location within a
piping system in its collapsed bundle state, and then
self-erected to form an internal framework.

• Noting the large number of cables in any typical
tensegrity structure, it is likely that they will frame a
geometry with less total material weight than a
conventional three-dimensional truss. The self-
erecting property, together with the anticipated

weight efficiency , suggests its applicability for on-

orbit space robotics and space structures.

• When member lengths can be varied, or when large

elastic elongations are admitted , tensegrity structures
present a new family of machine kinematics and a
new family of shape-adaptable structures, with the
immense advantage that actuation is required only
for tension members, requiring a far simpler
technology than general bi-directional translational

actuators.
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PREVIOUS WORK

Tensegrity structures were demonstrated by Buckminster
Fuller [1] and Snelson with a patent date of 1962. The
famed literary critic Hugh Kenner [2] provided an
insightful quantitative analysis of regular tensegrity
prisms and spherical tensegrities as introductory

e at d book
in his 1974 book on geodesic geometry. A

by Pugh [3] is essentially an instruction manual for
building hundreds of tensegrity structures. The
fundamental contributions in mechanics are found in
papers by Calladine [4-9] and his colleagues (Tarnai,
Pellegrino, and others), and that work is the basis for

most of the results reported here.

Mathematical studies of tensegrity frameworks have
focused on characterization of rigid configurations,
generalizing classical results on rigidity of pinned
frameworks. The word tensegrity as used in the
mathematics literature refers to structures which involve
tension-only members (cables) and compression-only
members (struts) as well as conventional structural bars.
The Fuller-type tensegrity structures addressed here are
only a subset of that class. Recent contributions are well

characterized in the work of Roth and Whiteley [10],
Connelly [11], and Connelly and Whiteley [12].
even a body of work in cell biology, described by Ingber
[13], examining the mechanical behavior of the tensegrity
prism as the basis of the cytoskeleton. However, our
discussion in this paper will focus on analytical results
for engineering applications to construction robotics.

ANALYSIS; EXAMPLE PROBLEMS

The analytical results are best described with reference to

examples, and the T -3 and T-4 prisms will be used. We

first examine these prisms by the conventional
interpretation of Maxwell's rule. For a pin-connected
framework in three-dimensional space , the determinacy

measure is labelled k and is equal to (n-3j+6), where n is

the number of members , j is the number of joints, and 6

reflects the number of independent rigid body motions in

space ; alternately , 6 is the minimum number of required
reaction forces needed to create a conventional supported

spatial structure . We make the following observations:

• The T-3 prism generically yields a determinacy
measure k equal to zero, which conventionally

describes a determinate truss . However, the T-3

prism is flexible (structurally unstable) in any
placement other than the tensegrity position, in

which it is stabilized by a prestress.

The T-4 prism generically yields a determinacy
measure k equal to -2, which conventionally

describes an unstable structure, namely a machine
with two independent (finite) mechanisms.

However, the T-4 prism may assume a tensegrity

position, in which it supports a stabilizing prestress.

The description of these observations is effected by

consideration of the equilibrium (or statics) matrix [A].

The placement (nodal geometry) of a given structure
determines the matrix [A] which relates nodal forces {p }
to member forces {f} in the form {p}=[A]{f}, which is a

generalized force- stress relationship. Dually, the nodal

displacements {v} are infinitesimally related to the

member elongations {e} by the matrix equation

{e}=[B]{v}, which is a generalized strain-displacement
relationship, where [B] is called the compatibility (or
kinematics) matrix. From the contragradience principle
of mechanics [B] is equal to the transpose of [A]. A

prestress then is defined by the condition [A]{f}={0}.

Similarly, an infinitesimal flexure is defined by the

condition that the matrix product [B] {v} yield a vector of
zeros, corresponding to nodal displacements without
member elongation, or a vector with negative elongations
for cable members, corresponding to nodal displacements
with slackening of cable members. Equilibrium of a
placement then is alternatively describable through the
force-stress or the strain-displacement relation. For
computations it is convenient to remove rigid-body
motions from consideration. Most easily one introduces
constraints on nodal displacements, For example, a
structure essentially equivalent to the T-3 prism can be
formed by making nodes D, E, and F into pinned
supports, eliminating the cables DE, EF, and FD.

The chief distinguishing characteristic of T-prisms, as for
any tensegrity structure, is that equilibrium requires

prestressibility, and is accompanied by the presence of

one or more infinitesimal kinematic mechanisms. An
example with lower dimensionality is shown in Figure 4.
In two dimensions as shown, a truss is constructed with

three members and three joints. That topology would
generically create a triangle, which would be a stable and
determinate structure, one which would not sustain a
prestress state and would not demonstrate any mechanism
motion. However, in the specific geometry shown in
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Figure 4 a prestress state is possible, exemplified by
members AC and CB in tension with member AB in
compression. Visualize support reactions vertically and
horizontally at A and vertically at B, and then consider
the two generalized nodal degrees-of-freedom at C in the
absence of prestress. A force applied in the x-direction
would be directly resolved by an axial force in member
AC. However, a force applied in the y-direction would
not be resolved until some displacement occurred; an
infinitesimal kinematic mechanism is present.
Specifically, the resulting structural stiffness (the force-
displacement relationship for that nodal degree-of-

freedom) in the y-direction is a non-linear geometric

cubic stiffening with an initial slope of zero; that initial
flat slope corresponds to the finding of an infinitesimal
mechanism motion. However, the presence of prestress
causes the initial slope of the force-displacement
relationship to be positive. The behavior of the simple
planar structure in Figure 4 exemplifies the behavior of

the spatially complex tensegrity structures.

A proper, generalized interpretation of Maxwell's rule

(see Calladine [4,8]) establishes that the determinacy

measure denoted k is equal to (s-m), where s is the

number of possible independent prestress modes and in is

the number of possible independent kinematic

mechanisms. For tensegrity structures these conditions

supersede the more conventional definitions of necessary

conditions for structural stability, determinacy, etc. For

example, in a conventional structure with a determinacy

measure k equal to zero , the number of possible prestress

modes, s, and the number of kinematic mechanisms, m,

are both equal to zero. In contrast, for the T-3 prism in

its tensegrity geometry there is found to be one prestress

mode and one infinitesimal mechanism, resulting in the

same indeterminacy measure of zero . Similarly, the T-4

prism has one prestress mode and three (infinitesimal)

mechanisms, totalling to the resulting indeterminacy

measure of -2.

• The number of prestress modes and the number of
infinitesimal mechanisms is found from the
conventional application of Maxwell' s rule in

combination with the rank of [A]. Equilibrium
(tensegrity) positions require existence of a prestress,
which occurs in these T-prisms only when the [A]
matrix is rank-deficient. For T-prisms the column
dimension of [A] is always exceeded by the row-
dimension (equal for T-3, strictly less for all others).
In the examples considered the number of prestress
modes s is equal to the rank deficiency and is

observed to equal one . Therefore, for the T-3 prism
the quantity m is equal to one, and for the T-4 prism
the quantity m is equal to three. For higher order T-
n prisms the quantity in is equal to (2n-6+1). The
prestress modes and the mechanisms themselves are

then expressed in the fundamental subspaces of [A].
Specifically, the {f} vector describing the member
forces comprising the prestress mode forms the
nullspace of [A], while the {v} vectors describing
the nodal displacements comprising the kinematic
mechanisms form the left nullspace of [A], most
conveniently calculated as the nullspace of [B].

Applied loads can be decomposed into those which
are resisted within the equilibrium geometry and
those which are resisted only after mechanism

motion.

• For any general set of nodal positions, not a
tensegrity geometry, a truss structure with T-3
topology would appear to be almost conventional in
its behavior. By the ordinary application of
Maxwell's rule it would be characterized as a
determinate truss, and analysis by the method of
joints or by use of the statics matrix would yield the
member forces in terms of applied nodal forces.
However, it is then recognized that a tensegrity
geometry is a pathological state for such a truss. The
determinant of the statics matrix becomes zero, a
condition which must be present if rank deficiency
occurs. More conventionally, the singularity of the
statics matrix is interpreted to mean that applied
nodal forces, in general, cannot be resolved by the
truss members. In a related observation , an analysis

attempt using the matrix stiffness method would be
expected to fail because the stiffness matrix would
be singular. Conventionally, this would all be
interpreted to indicate that the structure is unstable.
In a tensegrity geometry that "instability" is limited
to the infinitesimal kinematic mechanisms.

• In the tensegrity prisms of interest, the mechanisms
are infinitesimal rather than finite, such that they
display a geometric stiffness (cubic force-
displacement relationship) to resist applied loads.

For the right regular T-3 prism, the mechanism
consists of a rotation about the longitudinal axis of
the upper triangular face with respect to the lower
face, with a compatible axial displacement.

• Considering other tensegrity prisms of the same
topological family, such as the T-4 depicted in
Figure 3, it is instructive (and practical) to install
them with support at each node in their "base."
Upon doing so, eliminating the cables forming the
edges to the base polygon and noting in passing that
the support condition still exceeds the minimum set
of required reaction components, the resulting
tensegrity prism is found to have a square statics

matrix [A] and to possess one prestress state and one
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kinematic mechanism, precise counterparts to the

conditions found for the T-3-

Establishment of a prestress grants to each
mechanism an initial constant stiffness (a linear

force-displacement relationship) to resist applied

loads.

In order for a tensegrity structure to carry loads, the
prestress state should assure that all cables remain in
tension as external loads are applied. Therefore, it is
necessary to find the member forces under the
applied loads and set the prestress level to overcome

all compression forces induced in cables. If a nodal
position is perturbed slightly the member forces can
be found using conventional analysis tools.

Most significantly for robotics one can utilize the
{e}=[B]{v} relation to relate increments in member
lengths to changes in nodal positions. This
corresponds to the linearized inverse kinematics of
the tensegrity prism as a manipulator. However,
there are three major challenges. The first is that the
matrix is not invertible, so that a direct solution for
nodal motion given length changes is not possible-
A second challenge is that finite changes in position
cannot be calculated directly but must be obtained
by a series of small steps. The most significant
challenge, however, is that any change in position

must be a movement
into another tensegrity

geometry, placing another constraint on the

{e}=[B]Iv} relation
. The relationship asserted by

the kinematics matrix [B] does not, in itself, assure a
move to a new tensegrity geometry. We have begun
construction of algorithms which will ensure that
each incremental step carries into a new tensegrity
geometry, ensuring that the prism may trace a path
through neighboring tensegritY geometries when

used as a manipulator.

In principle, for a given topology, if a set of nodal
positions is proposed it should be possible to check

whether that set constitutes a tensegrity geometry by

simply forming the statics matrix and seeing if it is
rank deficient. However, in real terms the
identification of a zero determinant is subject to the
numerical conventions of the computational tool

employed. In this study both MATLAB and Map i
ehave been used for that purpose, but the analyst

advised to examine results carefully. Direct methods
to guarantee determinant-zero conditions do not

seem
convenient, so we must have recourse to a

secondary computation to recorrect incremental

motions to attain the tensegrity position.

DISCUSSION OF EXPERIMENTAL RESULTS

These various results have all been verified by
experimental study of a T-3 prism approximately lm tall.
It was constructed with cables demonstrating negligible

material extensibility, but with manual turnbuckles in
cables AE, BF, and CD to represent a controllable

manipulator. The physical behavior conditions described
herein were all observed, including manual control of the

prism as a manipulator. The mathematical
results

derived from the statics matrix [A], as outlined in this

paper, were all confirmed in comparison to the
experimental observations. Structural analysis was
undertaken with geometrically non-linear behavior
modelled using the ABAQUS finite element analysis
package, loaded by nodal forces in the direction of the
kinematic mechanism displacements. With the structure

in its
"exact" tensegrity geometry, and in the absence of

prestress
, the analysis was found to fail as a consequence

of the zero slope
condition in the generalized force-

displacement relationship. However, with any slight

alteration
in nodal position the analysis properly revealed

the geometrically stiffening behavior as described earlier

for the example in
Figure 4. Similarly, in the presence of

prestress the analysis properly revealed an initial stiffness

as well as the
subsequent effect of geometric stiffening.

We note that a finite element analysis can also be made
numerically stable by attaching very soft springs to the
nodes to provide artificial support. The T-3 prism
behavior was also studied using the Working Model 3-D
application software, modelling the assembly step
outlined earlier, in which the two nodes to be connected

by the last cable are displaced toward one another. In

some attempts , at some initial geometries, it successfully

traced the motion of the bars and cables to the tensegrity

geometry,
instability; use of that softwareu

tdeserves further study.

SUMMARY

The physical behavior of tensegrity structures
has been

described, with particular attention to a family of prsmss

of minimal configuration referred to as T-pnsms.

available analysis
approaches have been discussed and

example results
have been outlined. An experimental

study provided the opportunity for direct physical
observations and for confirmation of analytical and

numerical results.
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