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ABSTRACT. Methods and appropriate engineers -oriented tools DINA and LMS have
been developed for the automated simulation of flexible robot dynamics, including those
with closed kinematic loops and changing structure . The typical example of such
mechanism is robot , performing assembly operations in industry or construction.

1. Introduction

The current trend is to leave to engineers the informal part of dynamic systems de-
signing process, namely, the problem formulation and interpretation of the results.

The spatial mechanisms with closed loops, elastic bodies, one-sided constraints are
examined. The structure of mechanisms can change (putting on or removing of addi-
tional geometric or kinematic constraints), if interaction with other objects takes place.
Mechanisms can contain complex systems of drive and control, which include digital
and analogue elements. The kinds of tasks to be solved include direct and inverse ge-
ometry, kinematic and dynamic analysis as well as oscillation form and frequency
analysis. Together with well-known methods, such as constraint equations on the accel-
eration level with stabilization, the recursive Newton-Euler algorithm etc., original ap-
proaches, which allow to increase the simulation speed on both IBM PC's and parallel
processing computers, are implemented.

2. Used Methods

2.1. DYNAMIC MODEL IN THE IMPLICIT FORM

If we assume that q is a n-size vector-column of generalized coordinates of a
mechanism, then the equations of motion are of the form:

A(q)q+B(q•4)-Q(q,4,p,t)=0, (1)
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where A(q) - n x n matrix of inertia; B(q, q) - vector-column of generalized gyro-

scopic forces ; Q(q, q, p, t) - vector-column of generalized applied forces; p- 1 - size

vector of driving system variables (currents , voltages , pressures etc.).
The geometric constraints between bodies are of the form

11(q)=O, (i =1,2,...,m) (2)

Coordinates q can be displacements in translation or rotational pairs of mechanism

with tree structure , f - constraint equations for closing kinematic loops . Taking into
consideration of constraints together with the dynamic equations for an unconstrained

system (Newton-Euler equations for single bodies or equations of an unclosed branched

kinematic chain) yield a differential-algebraic equation system , the solution of which
involves heavy problems of numeric stability (see [1] ). Particular difficulties are en-

countered if the constraints are one -sided, e.g., during the time of bodies meeting and

separating . In this case violation of constraints frequently occurs , which gives rise to
tremendous accelerations and a process of in reality non-existing vibrations. Our practi-
cal experience suggests that the constraints should preferably be assigned to the deriva-
tives with a stability according to Baumgarte [2]:

Aq+B-Q-CT 2= 0,
(3a,b)

Cq+Cq+klf+k2f =0,

of
where C = - -mxn Jacobi matrix of additional constraint equations (2);

dq

A - Lagrange multipliers - m - size vector of additional constraint forces;
k1, k2 - coefficients for constraints stabilization [2].

The algorithms for developing an automatic dynamic model , which enable one to

calculate the left sides of the constraints equations (2), also allow to calculate their first
and second derivatives which are contained in equation (3), without using numerical

differentiation [3].
A traditional way to determine the movement is to find the matrices and vectors

A, B,C,C,Q, f, f and solve a set of n+m linear algebraic equations in regard to q and

2 by formalized description of kinematic scheme, if q, q, p are known . Such a proce-

dure must be performed repeatedly at each step of integration and this slows down the
simulation process . The idea to consider the equations of motion in their natural im-
plicit form is used in programs DINA and LMS :

where H =

H (q, q, q, p, t) = 0 (4)

H9
- left sides of the equations of motion and constraits.

H,,

In the case of opened branched kinematic chains it is quite easy to calculate the dis-

crepancy of dynamic equations Hq and the discrepancy of additional equations H. by

the recursive principle of Newton-Euler equations without calculation of A, B,C,C . It
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requires computing time proportional to n [3]. Using, for example, the absolute stable
implicit trapeze (Newmark) method for numerical integration:

2
q1+1 =

q'+hq'+
4

(4 ' +4 1+1);

+b(q1 +qt+' ),
2

(5)

together with equations (4) gives us a set of non-linear equations in regard to q 1+1 and
A;+1 (Index i means the values of variables at the i-th moment of time t3 = to + ih, h-
step of integration ). A Newton type iteration method can be used to solve those equa-
tions . Doing only one iteration in each step with k times less step proves more efficient
than doing k iterations . Thus we obtain the following formula of iteration :

+I

q = j]- S H(q P

where S is (n+m)x(n+m) matrix

S
OH

h
OH h2 OH OH

- + +--
c"iq 04 4 Oq Oa,

t = t K
(7)

It is also necessary to calculate matrices A = OHq /d4, C = OH,, /Oq, but we need not
do it in every step of the integration , because the configuration of the mechanism
changes relatively slowly and, once calculated, matrix S in fact guarantees convergence
of (6) for at least further 100 steps of integration . Besides that we can take into account
only the great components of matrices OHq /O q and W. /Oq from the stiff springs and
the dampers in joints:

tHq
aQ alq aQ

ay ay di
Thus S can be used in the form:

1t=t

where DI and D2 are diagonal matrices of the stiffness and the friction coefficients.
Moreover, the calculation of S has been reduced to inversion matrices A + DI + D2 and
C(A + DI + D2 )--1 CT . Those are symmetric , positively definite matrices, hence in the
iteration process they can be replaced by their diagonals . It creates a possibility to do
the integration process simultaneously for all q , if 4 is a vector-column of generalized
speeds of a single unconstrained bodies system :

a°
I V, X7vly^VIZ, OlX^((.Y^ zl...'VATx,VJVY,VNz,O)Nx,CONY, OJNz (10)

(8 a,b)

S-
9

1
A+DI +D2 CT

C 0
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2.2. CONSIDERING THE FLEXIBILITY OF BODIES

Two techniques were used for considering body flexibility. The first approach is
based on the finite element (FE) method to describe, for example, the distributed elas-

ticity and inertia of flexible robot link. To obtain a simulation procedure demanding a

reasonable expenditure of computing resources, the following steps are proposed.

Decomposition of motion . The full motion of a mechanism is considered as consisting

of "rigid" one with superimposed "flexible" vibrational motion [4,5]. Description of the
"rigid" motion is obtained by recording displacements in joints q,, velocities and accel-

erations of bodies (links) o;, a,, a during simulation of rigid mechanism by program

LMS. "Flexible" motion is described as additional displacements of FE model nodes in
coordinate frames, connected with bodies in "rigid" motion. Considering n; linear and

angular displacements of the i-th body as vector ul with components, small enough to

neglect some terms in expressions of inertia forces, caused by "rigid" transfer motions,
the "flexible" dynamics of a separate link is represented by linear equations:

M; a; +C; u; = R; , (11)

where M;, C; - constant matrixes of inertia and stiffness of the body's FE model, R; - a

column-matrix of external loads, including inertia forces.

Reduction of FE model . As the size n, of the system (11) usually is too large for prac-

tical use, the reduction of the model is necessary. Various reduction techniques have
been suggested, see [6,7], but fulfillment of the following demands for reduced models

are still actual:
1) the reduced equations system must be of minimal size m1, using as variables a set of

chosen displacements from unreduced FE model;
2) displacements in statics solution from applied forces R,, inertia features of link as

solid body and first m; eigenfrequencies and vibration modes (eigenvectors) must be

preserved in reduced model.
To fulfill these demands the approach, proposed in [10], is modified for enforced oscil-
lations [9]. The vector u; is devided in retained part u;l and omitted elastic freedoms

u; 2 . After transformation

Yn all (12)
Y' Lu +u.Y;2 ;n .2

where L; _ 20;1i - matrix with the first m; modal vectors of (11 ) as columns, the

system ( 11) may be presented in the form:
Y;1 +X;11Y;1 +Xn2Y;2 = P;1; (13a,b)
3';Z + Xi22Yi2 = Pit

As shown in [10], eigenvalues of X;ll correspond to m, lower eigenfrequencies and

those of Xi22 - to n1 -m; higher ones of unreduced FE model . Usually frequency
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spectrum of R, is sufficiently lower as these n, - m; frequencies of X122. As result

(13b) gives
1

Y12 X;22P12 (14)
After returning to the variables u, , the reduced model is obtained , which satisfies all
demands , formulated above:

Mlii» +K;u1l = R11 +I',Ri2 , (15)

where expressions for k, and F, are the same obtained from the method of static con-
densation, but

(16)M;=M;1-Mi12L,+r:(M121-M;22L.) ,
Considerable advantage of proposed reduction procedure is the possibility to obtain L,,

as shown in [8], by iterative solution of a Riccati matrix equation:

L,.G;11-G122LI - LIG;12LI +G121 = 0
where

(17)

G1 =M;1K1 . (18)

"Assembly" of complete mechanism model . A formalized algorithm and program
MON is developed to perform "assembly" of reduced models of links to obtain a model,
which describes displacements of a chain, consisting of rigid and flexible bodies, from
nominal "rigid" configuration, given by q,. Three constraints are imposed by each

hinge - coincidence of displacements of hinge elements central points. Relative angular
displacements in hinge appears as variables in complete model, one of them, p is

additional turning around the main axis of the hinge. As result the model of the whole
mechanism is obtained in form of a linear equations system with time - dependent ma-
trixes, determined by nominal position vector q :

MU+KU=R+F(q+p,q+µ,p,p) , (19)

where F is vector of torques of the drives.
Simulation . A special modification of the program LMS (named VMS) was developed
for simulation of the model (19). The proposed FE approach and programs were suc-
cessfully used for simulation of a large scale space manipulator after testing by com-
parison with results, obtained by in-cut fictitious joint method, described below as the
second technique.

If the mechanism contains elastic beam-shaped bodies, then it is rather expedient to
use the in-cut fictitious joint method by placing in them massless springs which simu-
late the body's elasticity. This method has been long known in literature, in the report
[8] the term "superelement" is used to designate a combination of several such joints.
For the replacements and turnings of a beam length I caused by forces applied to its
ends in statics to coincide with co-planar model of a beam, it is necessary to place into
it two fictitious joints at equal distances from its ends, by dividing it into parts of

lengths a, b, a (see Fig. 1.), a = (1-V 12 )I The stiffness of the springs placed in
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the joints has to be C = 2 EI/1 . In this way 2m in-cut joints can be accommodated in

the beam . In the spatial case of the model , joints have to be placed also along other axis
perpendicular to the beam, as well as the joints with axis along the beam for considera-
tion of the torsion deformation of the beam (see Fig. 2.). Such a model of the beam in
statics coincides precisely with its FEM model.

Fig. 1. Beam FE and rigid bodies model Fig. 2. Flexible robot model

A test was conducted in which the eigenfrequencies for a console were compared
under use of this method , of the "superelement " a = 1/4 used in [8] and FEM with the

balanced inertia matrix . The method at issue , given an equal number of degrees of free-
dom (DOF), yields eigenfrequencies by one order more precise than FEM, with the ex-
ception just of the n-th frequency, which comes out somewhat more precise with FEM
(see Table 1 .). The beam pendulum with the mass concentrated at the end [8], gave
analogous results.

Table 1.
DOF 0)1 (02 (03

A B FEM A B FEM A B FEM
2 1.01 6.08 .475 62. 6 40.8 57.9 - - -

4 .018 1.45 .048 2.77 5.21 . 848 16 .4 7.49 80.4
6 .002 .641 .010 .222 2.25 .328 4.18 3.58 16.3

8 .0005 .359 .003 .44 1.26 .117 .597 2.03 1.45

10 .0001 .230 .002 .013 .801 .050 .161 1.30 1.17

Relative error % of beam eigenfrequencies. A : a=.2211; B : a7-- .251; FEM: finite
element method with balanced inertia matrix.
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3. Software engineering tools and their applications

DINA and LMS are broadly used for simulation of robots, cranes, aerials, artificial
limbs etc. The unified pre- and postprocessors for all tools are used. Description of the
objects, tasks and results can be stored in data base. All tools run on IBM and compati-
ble PC under MS-DOS. DINA was successful in participating in the IAVSD organized
tests [11] by simulating the dynamics of a five point wheel suspension.

The in-cut joint method just considered was used for simulation by means of a LMS
program of a 3 DOF elastic robot (see Fig. 2.). Joints 1,2,15 are genuine joints, opera-
tive in which are PID-controlled drives, but for the others in-cut joints with springs and
elements of linear friction. The total number of DOF is 27. Fig.3. present the graphs of
some of the simulation results. Compared to the motion division method, the advan-
tages are that repeated simulation is not required and such elastic systems can be simu-
lated, in which the "hard" motion differs strongly from the elastic one. Because the de-
formations appear just as generalized coordinates but not as displacement differences as
it is in the FEM models, smaller numeric rounding errors are obtained.

Deformation angles [Rad]

Fig. 3. Robot arm deformations

4. Conclusions

1. The problem of inverse dynamics (obtaining the motion by the active forces) is not to
be reduced to calculation of the acceleration. Efficient algorithms can be obtained only
if the formation of the dynamics model involves the method of numeric integration.
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2. If the algorithm is dominated mainly by the quantities which the constructors are
interested in (the linear and angular coordinates of the bodies, the speeds and accelera-
tions in the Cartesian coordinate system, the reactions and the driving forces in the
joints, reactions on the contact points of the bodies etc.) and each of them is calculated
from the quantities previously calculated by a minimum number of operations , the al-

gorithm should be considered as conditionally optimal.
3. Interface with the corresponding optimization and identification codes provide a
wide area of applications in calculations of controlled machine dynamics. Correspond-
ingly well -grounded engineers decisions can be made with relatively low involved ex-

penses.
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